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Abstract

The growing concern about data privacy has led to the
development of private inference (PI) frameworks in client-
server applications which protects both data privacy and
model IP. However, the cryptographic primitives required
yield significant latency overheads which limits their wide-
spread application. At the same time, changing environ-
ments demand PI services to be robust against various nat-
urally occurring and gradient-based perturbations. De-
spite several works focused on the development of latency-
efficient models suitable for PI, the impact of these mod-
els on robustness has remained unexplored. Towards this
goal, this paper presents RLNet, a class of models that can
vield latency improvement via the reduction of high-latency
ReLU operations while improving the model performance
on both clean and corrupted images. In particular, RLNet
models provide a “triple win ticket” of improved classifica-
tion accuracy on clean, naturally perturbed, and gradient-
based perturbed images using a shared-mask shared-weight
architecture with over an order of magnitude fewer ReLUs
than baseline models. To demonstrate the efficacy of RL-
Net, we perform extensive experiments with ResNet and
WRN model variants on CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets. Our experimental evaluations show
that RLNet can yield models with up to 11.14x fewer Re-
LUs, with accuracy close to the all-ReLU models, on clean,
naturally perturbed, and gradient-based perturbed images.
Compared with the SoTA non-robust linearized models at
similar ReLU budgets, RLNet achieves an improvement in
adversarial accuracy of up to ~47%, in naturally perturbed
accuracy of up to ~16.4%, while improving clean image
accuracy up to ~1.5%. Code is available at: https:
//github.com/sreetamasarkar/rlnet.

1. Introduction

In recent years, there has been a growing concern about data
privacy, particularly in applications that rely on Machine
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Figure 1. Clean, naturally-perturbed, and adversarial accuracy of
ResNet18 for non-robust linearized models (left) and RLNet mod-
els (right) on CIFAR-10 for different ReLU budget. SoTA lin-
earized models lack robustness against natural and adversarial per-
turbations, while RLNet performs well on all three fronts outper-
forming its non-robust counterpart even in clean accuracy. (Note:
all axes do not have same scale)

Learning as a Service (MLaaS) [20, 26] in which user data
is sent to the cloud to perform inference. This has led to the
development of private inference (PI) frameworks, where
the server performs computations on a client’s encrypted
data, preserving both model and data privacy. Nevertheless,
the implementation of the required cryptographic protocols
including homomorphic encryption [31] and secure multi-
party communication [28] dramatically increase the compu-
tation and communication latency, making it impractical to
perform private inference on large scale models. A deeper
look into the inference latency of these cryptographic prim-
itives applied to CNN’s suggest that the overhead associated
with the ReLU layers is ~340x more than that of the con-
volutional layers [21]. This has sparked an interest in the re-
duction of ReLU non-linearity for latency-efficient private
inference of CNNs.

Techniques for ReLU reduction without compromis-
ing accuracy has been extensively studied in the literature
[6, 16, 21]. However, these models lack robustness against
naturally or adversarially perturbed images, necessary to
ensure trustworthy deployment, as demonstrated in Figure
1 (left). The natural perturbations may stem from seasonal
changes (summer versus winter), environmental conditions
(rain, fog, and snow), and/or camera noise and blurring ef-
fects [12]. Adversarial perturbations [9, 27] are carefully
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crafted using gradient-based attacks such that they are not
noticeable to the human eye but cause misclassifications.
These issues are particularly important for applications such
as household robots [29], which operates in dynamic envi-
ronments such as changing lighting conditions, and collects
enormous amount of user’s sensitive personal data, necessi-
tating PI. To the best of our knowledge, robustness against
natural and adversarial perturbations of the partially lin-
earized models is yet to be explored. With this motivation,
the objective of this paper is to understand, analyze, and
improve the relevant trade-offs as well as to build a training
framework that guarantees both privacy and robustness.

The failure of models on naturally perturbed images
is caused by a shift in the distribution between the infer-
ence and training data. To improve generalization to these
distribution shifts, data augmentation techniques [13, 39]
are commonly used, but they cannot defend against strong
gradient-based perturbations. Adversarial training [27, 34]
is the most popular and effective defense against gradient-
based adversarial attacks. However, the improved adversar-
ial accuracy does not guarantee improved performance on
natural perturbations and is often achieved at the cost of a
significant reduction in clean accuracy [47, 48]. One means
of achieving high clean, naturally perturbed, and adversarial
accuracy is to have multiple models in the server and switch
models in real time during inference. However, this triples
off-line processing and storage requirements, induces en-
ergy and latency overheads when switching between mod-
els, and increases the logistics of maintaining and deliver-
ing multiple models to the customer. To solve this prob-
lem, this paper proposes RLNet, a class of shared-mask
shared-weight conditional models, that provides a config-
urable trade-off between accuracy and robustness while im-
proving latency via reduced ReLU operations. As shown in
Figure 1 (right), RLNet maintains close to baseline accura-
cies on clean, naturally perturbed, and adversarial images
with up to an 11.14 X reduction in ReLUs.

Our Contributions Our contributions in this work are
three-fold. Firstly, we propose a training framework that
achieves a “triple win ticket”, that is, improved accuracy on
clean, naturally perturbed, and adversarial images. Specif-
ically, we implement a conditional learning [22, 38] strat-
egy using dual Batch Normalization (BN) to build a multi-
path model, to retain performance on all three fronts. Un-
like [22, 38], our model requires no additional layers or pa-
rameters and, hence, incurs no increase in computational
overhead. Secondly, we develop a fine-tuning framework
for partial ReLU (PR) model distillation from an all ReLU
(AR) model such that it provides both accuracy and robust-
ness with a reduced PI latency budget. We present RLNet,
a class of conditionally trained PR models, efficiently fine-
tuned to yield improved performance. Finally, we conduct
extensive experimental evaluations to demonstrate the ef-

ficacy of the proposed training framework across various
models on multiple datasets. Compared with the SoTA
non-robust linearized model [21], at similar ReLU budgets,
RLNet achieves an improved adversarial accuracy of up to
~47%, naturally perturbed accuracy up to ~16.4%, while
improving clean image accuracy up to ~1.5%.

2. Related Work
2.1. Model Robustness

Robustness against Natural Perturbations Data augmen-
tation methods [13, 39] are commonly used to improve gen-
eralization to distribution shifts. They are easy to imple-
ment, have low computational overhead, and often improve
clean accuracy. A number of simple augmentation tech-
niques, including Cutout [5], occluding random portions in
an image, CutMix [44], replacing sections of an image with
another image, and MixUp [46], generating an image using
a linear combination of two different images, have yielded
promising results. Augmix [13], which randomly samples a
set of augmentations and linearly combines the augmented
images, has shown to be one of the most effective against
the common image corruptions benchmarks like CIFAR-
10-C and ImageNet-C [12]. DeepAugment [14] generates
augmented images by distorting the weights of image-to-
image models. Augmax [39] tries to further improve Aug-
mix by learning the mixing coefficients of augmented im-
ages to generate harder samples. In this work, we generate
augmented images to train our conditional model inspired
from the strategy proposed in Augmix [13].

Adversarial Robustness Adversarial images may
be viewed as augmented images, with [,-norm
bounded perturbations, generated using strong gradient-
based attacks. Data augmentation techniques like
Adversarial Augment,[1], an enhancement of DeepAug-
ment [14], are designed to achieve better robustness against
natural as well as adversarial perturbations. Training
with adversarial images or adversarial training (AT)
[9, 19, 27, 37] is the most commonly used defense against
adversarial attacks, although it causes a degradation in clean
accuracy. The increased training overhead of standard AT
techniques like PGDAT [27] has led to the development of
compute-efficient alternatives like Free AT [34] and FastAT
[40]. Recently, robust distillation methods [8, 47, 48] have
proved to achieve better adversarial robustness compared
to standard AT. While TRADES [47] uses a self-distillation
technique, which utilizes clean predictions of the same
model to learn its adversarial predictions, ARD [8] and
RSLAD [48] leverage knowledge distillation to learn
from an adversarially robust teacher. We perform robust
distillation inspired from RSLAD, to generate robust and
latency-efficient PR models from robust AR models.
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2.2. Efficient Private Inference

PI frameworks use cryptograhic protocols such as Homo-
morphic Encryption (HE) [17, 35] and Additive Secret
Sharing (ASS) [6, 25]. Fully HE based protocols like Cryp-
toNets [7], CHET [4], TAPAS [33] incur huge computation
and communication latency, limiting their applications to
networks that are only a few layers deep. Gazelle [17], Del-
phi [35], Cheetah [32] uses HE for linear operations such
as convolution and fully-connected layers, while Garbled
Circuits (GC) [42] are used for non-linear ReL.U operations
on the client’s encrypted data. Delphi [35] introduces an
online-offline topology, where the client-data-independent
components are pre-computed during an offline phase, en-
abling online plaintext computation for linear operations.
Although this reduces online latency due to linear oper-
ations, the input dependent ReLU computation using GC
still causes high inference latency. This necessitates either
removing ReL.U operations [2, 21] or replacing them with
some other compute-efficient alternatives like polynomial
or quadratic functions [7, 25, 35]. Various approaches for
ReLU reduction have been proposed in literature. They
range from manually dropping ReLU layers from existing
models [16], [;-regularization based approaches [2] to evo-
lutionary neural architecture search (NAS) techniques [6]
for ReLU reduction. Kundu et al. [21, 24] proposed a 3-
stage training approach that meets a target ReLU budget for
negligible accuracy reduction. In this paper, we enhance the
training pipeline proposed in [21] for robust generalization.

2.3. Conditional Learning

Conditional learning involves training a single model with
multiple paths that can be selectively enabled during infer-
ence. Conditional models have been used to provide an in-
situ trade-off between efficiency and accuracy [43] or ac-
curacy and adversarial robustness [22, 38]. OAT [38] uses
a parameter lambda to control the trade-off between clean
and adversarial accuracy through feature-wise linear modu-
lation (FiLM [30]) layers, conditioned on lambda, and dual
BN [41]. To remove the FiLM latency overhead, recently,
a few works have proposed [22, 23] weight-conditioned
learning for accuracy robustness trade-off. We propose a
conditional model using dual BN for accuracy robustness
trade-off in PR models with no extra parameters or compu-
tational overhead.

3. Proposed Approach

We propose a three-stage pipeline for training RLNet mod-
els that consists of training a robust AR teacher, generating
a ReLU mask for achieving a target number of ReLU opera-
tions in the PR model, and finally, fine-tuning the PR model
with the ReLU mask frozen to reduce the performance gap
with the AR model. RLNets have two different modes of

operation: normal mode which targets clean and naturally-
perturbed images, and adversarial mode which targets ad-
versarial images. The model may be equipped to automati-
cally switch modes based on prediction confidence, as sug-
gested in [36]. We leverage data augmentation, adversarial
distillation, and dual BN to achieve our three-fold objective:
clean accuracy (CA), naturally perturbed accuracy (NPA),
and adversarial accuracy (AdvA).

3.1. Data Augmentation

In our framework, we generate augmented images (2 4.4)
using Augmix [13] to improve generalization against nat-
ural perturbations. Augmix (augment+mix) involves ap-
plying a chain of simple augmentation operations including
translation, rotation, shear, auto-contrast, and linearly com-
bining or mixing the augmented images. Augmentations
based on brightness, contrast, colour, used in CIFAR-10-C
or CIFAR-100-C, which are used for robustness evaluation,
are excluded from the set of augmentations during training.
Images from multiple augmentation chains (by default, 3)
are then mixed together using a set of convex coefficients
randomly sampled from a Dirichlet distribution.

3.2. Adversarial Training

We generate adversarial images (.4, ) using the PGD at-
tack [27] to use for robust teacher training. Attacked images
are generated by finding perturbations within the maximum
perturbation strength e that maximizes the cross-entropy
(CE) loss, as shown in Equation 1.

Tagw = argmax CE(¢)  (Zeaw), ) (1
[|Zado—2||p<e

The AR teacher model is represented as ¢ and the PR stu-
dent model is denoted as ¢s. A = 0 denotes the path trained
using clean and augmented images and A = 1 denotes the
path trained using adversarial images. During training of
the PR model from the AR model through distillation, x4,
is generated by maximizing the KL divergence loss, in-
spired from RSLAD [48], as shown in Equation 2.

Tady = argmax KL( gzl(xadv), %‘p:o(x)) 2)
[1Zaaw—||p<e

3.3. Dual Batch Normalization

Previous work [38, 39, 41] has pointed out that separation
of the BN statistics is critical for a single model to perform
well on both clean and adversarial images. BN relies on
the fact that input images have the same underlying distri-
bution. Because the distribution of adversarial images is
significantly different from that of clean images, adversar-
ial training fails to perform well on clean images. Xie et al.
[41] demonstrated that adversarial images can in fact im-
prove clean accuracy only if the BN statistics of adversarial
images do not interfere with clean training.
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Figure 2. Running mean and variance of the last BN layer of
ResNet18 trained on Tiny-ImageNet using dual BN

Inspired by [22], we build a model with two distinct
paths for A = 0 and A = 1, for two different modes of
operation, which differ only in BN layers. BN, denotes the
BN layers for clean, augmented, and BN, for adversarial
images (Figure 3). [41] uses a triple BN formulation when
training with clean, augmented and adversarial images. We
do not use separate BN for clean and augmented images, be-
cause we observe that using simple augmentations actually
makes the dataset more diverse and improves clean accu-
racy rather than adversely affecting it. The BN statistics of
a ResNet18 model trained on Tiny-ImageNet, illustrated in
Figure 2, clearly shows two distinct clusters, justifying this
choice. We further demonstrate that a triple BN formula-
tion, separating clean and augmented images, is redundant
(see Section 4.3).

3.4. Training Framework
3.4.1 Training a Robust Teacher

The PR model is distilled from a teacher model, which has
the same architecture as the PR model but with all ReLUs
present. Therefore, the first step is to train a teacher model
that is robust against natural as well as adversarial perturba-
tions and still retains its clean accuracy.

The teacher model is trained on a classification task with
input = and corresponding labels y. 4.4 and x4, are gen-
erated from z as described in Sections 3.1 and 3.2 respec-
tively. ¢ is trained by minimizing the loss function Lp
with respect to &, Zqy4, and T4y, as shown in Equation 3,
where CE denotes cross-entropy loss.

Lr = (CE((ZS%\“:O( ) ) + CE( (xaug) y)+ 3)
CE( T (xadv)vy) /3

3.4.2 ReLU Mask Identification

Given a global ReLU budget, the number of ReL.U units per
layer has to be determined. [21] found an inverse relation
between pruning sensitivity and ReLU sensitivity and for-
mulated an approach to determine the layerwise ReLU bud-

get. Following [21], we allocate the layerwise ReLU count,
given by r; for ReLU layer . A binary ReLU mask is ini-
tialized in layer [, with r; 1’s in random locations, where
I’s and 0’s indicate the presence or absence of ReL.U units.
ReLU returns 0 if the activation value is negative but retains
the original value if the activation value is positive. Hence,
the absence of a ReLU unit only makes a difference for neg-
ative activation values. At the end of each epoch, the ReLU
mask is updated with 1’s in the top r; locations, where the
absolute difference between the post ReLU activation map
of the AR and the PR model is the highest. During mask
search, the masks and weights of the PR model are updated
in parallel. The model weights are updated for each mini-
batch using the loss function Ltqg.2 described in Eq. 8.
Note, the activation maps for absolute difference calculation
and mask updating are obtained using clean images only.

3.4.3 Three-way Robust Distillation

We formulate three different loss functions for our dual BN
framework L.., L£r; and Lpgray based on CE loss, KL
divergence based distillation loss [15], and post-ReL.U acti-
vation mismatch (PRAM) loss [21].

Lee =(CE(¢57"(x),y) + CE(65" (Taug), y)+
CE(¢§ (Taav), y))/3 €5
Li =(KL(¢5~%(z), 67" (x ))+KL( ~(Caug),
70 (2)) + KL(¢5™ (Taaw), 67" (2))) /3 (5)

Each of these loss functions can have three different
components corresponding to three different versions of
the input, 2, Tqug and 244, and their corresponding paths
through the model. While L., ensures learning from the
original hard labels y, L; enforces that the student model
learns the output for clean, augmented, and adversarial im-
ages through distillation from the clean predictions of the
teacher.

PRAM loss [21] is given by

H \IﬂlgR Vir()
[

Hz R (@)l

where W', (z) and U, (x) denote the m!" pair of post
ReLU activation maps for input = for the PR and the AR
model. £pgraps ensures feature similarity between the AR
and PR model and is used only during the final fine-tuning
to reduce the performance gap. We consider PRAM loss for
2 and 4,4, as we find PRAM loss for 4, do not provide
significant benefits (see Section 4.3).

PRAM (x

(6)

2

Lpram =0.5 % (PRAM(:Z?) + PRAM(:L‘aug)) @)

The necessity of each of these loss functions has been justi-
fied through ablation studies in Section 4.3. Weight updates
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Figure 3. RLNet framework: model architecture and inference path. Here, A = 0 and 1 correspond to clean and adversarial paths

respectively. We use the same path as clean for classifying against natural perturbations. This means that unless the perturbation is

attacker-driven, we use the A = 0 path for inference.

for the student model ¢ during mask identification and fi-
nal fine-tuning are performed through optimizing Ls:qge2
and L4 ge3 respectively.

LstageQ :Ekl + Ece (8)
EstageS :Ekl + Lce + B * ‘CPRAM )

4. Experimental Results
4.1. Experimental Setup

Models and Dataset We evaluate the efficacy of RLNet on
three datasets, namely, CIFAR-10, CIFAR-100 [18], and
Tiny-ImageNet [10] with ResNet-18, ResNet-34 [11], and
WRN-22-8 [45]. Evaluation against natural perturbations
is performed using the common image corruption bench-
marks: CIFAR-10-C, CIFAR-100-C, and Tiny-ImageNet-C
[12], which are generated by adding fifteen different cor-
ruptions (for example, Gaussian noise, shot noise, contrast)
at five severity levels to the original dataset.

Evaluation Metrics Performance on clean, naturally-
perturbed, and adversarial images is evaluated using CA,
NPA, and AdvA respectively. NPA is the average accuracy
over all 15 corruptions, where accuracy on each corruption
is averaged over five severity levels. In addition, we also re-
port mean corruption error or mC'E on naturally perturbed
samples. mC'E on CIFAR-10-C and CIFAR-100-C is eval-
uated as 1 — N P A, whereas for Tiny-ImageNet the error for
each type of corruption is first normalized by the corruption
error of a baseline model and then averaged [12, 13, 39].
CA and AdvA are given by the Top-1 accuracies evaluated
on the original dataset and using PGD-7 attack [27], if not
mentioned otherwise. Communication savings is the ratio
of communication cost of an AR to that of a PR model.

Training Hyperparameters The baseline AR model train-
ing and final fine-tuning are performed for 240 and 120
epochs on CIFAR and Tiny-ImageNet datasets, using SGD

optimizer, with a starting learning rate (Ir) of 0.05 for base-
line training and 0.01 for fine-tuning. A step Ir decay policy
is followed during both, where Ir drops by a factor of 0.1 at
62.5%, 75%, and 87.5% of the total training epochs. Mask
search is performed for 150 and 100 epochs on CIFAR and
Tiny-ImageNet, without any drop in learning rate. Distil-
lation temperature is maintained at 4.0, unless otherwise
stated. 5 = 1000 is used in Equation 9. Data augmentations
are generated using the default parameters as in [13]. Ad-
versarial augmentations during training are generated using
PGD-7, where the attack is performed for 7 iterations with
maximum perturbation strength e = 8/255 and step size
a = 2/255. Attack evaluations are also performed using
FGSM with € = 8/255, PGD-20, with identical parameters
as PGD-7 with 20 steps, and Auto-PGD [3], a variant of
AutoAttack, with e = 8/255 and 100 iterations.

4.2. Results and Analysis

AR Model In Figure 4, we compare our conditional teacher
training approach with individual SoTA training methods
using natural, augmented, and adversarial images. Our ap-
proach achieves improvement in CA by 0.65% over a stan-
dard trained model, NPA by 0.89% over a model trained us-
ing Augmix [13], and AdvA by 2.68% over a model trained
using PGDAT [27] for ResNetl8 on CIFAR-10. While
TRADES [47] achieves the best AdvA among these train-
ing methods, however costs a degradation of 10.72% in CA.

PR Model The performance of RLNet on CIFAR-10,
CIFAR-100, and Tiny-Imagenet for different ReLU budget
is presented in Table 1. On CIFAR-10, our method achieves
3.7x ReLU reduction with almost no degradation in CA
and NPA and AdvA degradation of 4.14%. We achieve up
to 5.8 x ReLU reduction on CIFAR-100 dataset with a nom-
inal reduction in CA of 0.4%, AdvA of 3.84%, and with no
degradation in NPA. In fact we observe that some amount
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Dataset Model State RLNet SeNet [21] #ReLU | Comm.
CA(%) NPA(%) mCE| AdvA(%) | CA(%) NPA(%) mCE| AdvA(%)| (k) | Savings
AR | 9588 8815  0.12 51.18 9523 7498 025 0.01 557 ™
PR | 9371 8562 014 44.95 9341 7378 026 0.58 50 | 11.14x
CIFAR-10 ResNetl8 | pp | 9443 8483 0.15 45.75 9424 7299 027 0.28 82 6.79x
PR | 9536 8835  0.12 46.52 9512 7453 025 0.13 120 | 4.64x
PR | 9567  89.04  0.11 47.04 95.0 7517 025 0.12 150 | 3.71x
AR | 7868 6331 037 26.99 7759 4867 051 0.04 557 ™
ResNetl8 | PR | 7487  60.72  0.39 22.07 7451 4871 051 0.07 50 | 11.14x
PR | 7700 6445 036 22.99 7667 4990  0.50 0.09 100 | 5.57x
CIFARL100 AR | 7971 6525 035 26.57 7825  49.63 0.0 0.29 967 1x
- ResNet34 | PR | 7372 6127  0.39 22.03 7284 5167 048 0.30 80 12
PR | 7576 6390 036 23.17 7607 5159 048 0.26 200 4.8%
AR | 8096 6638  0.34 29.69 7977 49.62 050 0.03 1393 1%
WRN22-8 | PR | 8053 6658  0.33 25.85 7975 5073 0.49 0.04 240 5.8x
PR | 80.66 6749  0.33 25.61 7995 5111 049 0.05 300 | 4.64x
AR | 6722 3799 081 20.52 66.1 2691 096 0.08 2228 1%
Tiny-ImageNet | ResNetl8 | PR | 5872 3131  0.90 12.85 5931 2401 099 0.15 150 | 14.85x
PR | 6657 3945  0.79 15.99 66.18 2754 095 0.19 300 | 7.43x

Table 1. Performance evaluation of RLNet models on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets and comparison with SeNet

[21]. The higher accuracy and lower mCEs are highlighted in bold.

CA NPA AdvA

9523 95.72 95.88

B 87.26 87.73 8516 83.15

b o 78.11 R 76

52.55 5118

Accuracy (%)

Standard Augmix PGDAT TRADES Ours

Figure 4. CA, NPA, and AdvA for ResNet18 on CIFAR-10 for
different training modes

of ReLU reduction actually boosts NPA. NPA for ResNet18
with 150k ReLLU on CIFAR-10-C, 100k ReLLU on CIFAR-
100-C, and 300k ReLU on Tiny-ImageNet-C are higher
than the baseline AR models. For more aggressive ReLU
pruning up to 11.14 %, our model suffers a degradation in
CA of only 2.17%, NPA of 2.52%, and AdvA of 6.23%
on CIFAR-10. For the same ReLU budget on CIFAR-100,
degradation in CA, NPA, and AdvA are 3.81%, 2.59%, and
4.92% respectively. For Tiny-Imagenet, we achieve 7.43x
ReLU reduction with close to baseline CA, NPA and AdvA
reduction of 4.5%. We try to ensure minimum degradation
in CA through our choice of hyperparameters and loss func-
tion, as discussed in Section 4.3. This explains the higher
degradation in AdvA compared to CA and NPA.

We also compare RLNet models with a SOTA linearized
network SeNET [21]. RLNet consistently outperforms
SeNet not only in NPA and AdvA but also in CA. RL-
Net achieves an improvement in CA over SeNet by 0.67%
and 0.3% for ResNet18 on CIFAR-10 for ReLLU reduction
of 3.7x and 11.14x respectively, 0.78% for WRN22-8 on

CIFAR-100 and 0.39% for ResNet18 on Tiny-Imagenet, for
a ReLU reduction of 5.8x and 7.43x respectively. RL-
Net yields up to 16.38% improvement in NPA and 47% im-
provement in AdvA over SeNet models.

4.3. Ablation Studies

Study of Robust Distillation Loss Adversarial robust dis-
tillation techniques [8, 48] demonstrate that learning from
teacher predictions significantly improves adversarial ro-
bustness as compared to regular AT using hard labels. The
increase in adversarial robustness is accompanied with a
drop in clean accuracy. We try to build a robust distilla-
tion approach for our dual BN framework that prioritizes
CA, and at the same time achieves a reasonable trade-off
between CA, NPA, and AdvA. We formulate three differ-
ent robust training techniques, inspired from PGD AT [27],
ARD [8], and RSLAD [48]. Traingg uses CE loss for z,
ZTaug» and Tgq,, similar to PGD AT [27] for x and 44y,
which requires no teacher model. Trainc gk uses distil-
lation only for z,4,, following ARD [8], and CE loss for
2 and Zgyg. Traingr, inspired from RSLAD [48], uses
distillation for all three inputs , T4y, and x4q,, Where
the model learns from the clean predictions of the teacher.
The loss functions for these robust training methods are pre-
sented in Table 2.

Table 3 presents the evaluation results for our PR model,
trained using these robust training techniques. We observe
that KL divergence loss for z and x4,, improves CA and
NPA by ~3% compared with CE loss. Hence, we formu-
late the loss Ly; (Equation 5) according to Traing . The
degradation in AdvA for Traing; may be attributed to the
choice of distillation temperature, favourable towards CA
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Method

Loss

Traing g

(CE(S*"(x),y) + CE(S*"(a™),y) + CE(S*! (%), y))/3

TrainCEKL

(CE(S*"(x),y) + CE(S*"(a"),y) + KL(S*! (™), T*(2))) /3

|
|
|
Traing, | (KL(S*(x), T(x)) + K L(S*=0(2949), TA=0(z)) + K L(S*=1(299), T7=0())) /3

Table 2. Robust distillation losses for conditional model training

and NPA, as discussed in the next section.

State Accuracy #ReLU Loss
CA(%) NPA(%) AdvA(%) ‘ (k) ‘
AR 78.68 63.31 26.99 557 -
PR 70.21 58.08 23.91 50 Traincg
PR 70.53 58.75 22.21 50 Traincgxr
PR 73.47 61.13 21.82 50 Traing,

Table 3. Study of robust distillation techniques for ResNet18 PR
models on CIFAR-100

Choice of Distillation Temperature The choice of distil-
lation temperature plays a critical role in the trade-off be-
tween CA and AdvA. In line with RSLAD [48], we ob-
serve that using a distillation temperature of 1.0 results in
improved AdvA. However, this reduces CA, both with and
without PRAM loss, as observed in Table 4. Since we pri-
oritize CA, we choose a distillation temperature of 4.0.

Accuracy Loss Temperature
CA(%) NPA(%) AdvA(%)
73.47 61.13 21.82 L 4.0
71.08 58.6 23.32 L 1.0
74.16 61.19 21.81 Ly + Lpram 4.0
73.5 59.11 24.55 Ly + Lpram 1.0

Table 4. Study of distillation temperature for ResNet18 PR models
(ReLU count = 50k) on CIFAR-100

Study of Robust Feature Similarity Loss In this sec-
tion, we explore the effectiveness of PRAM loss [21] in
our robust training setup. PRAM(z), PRAM(Z4.4), and
PRAM(z,4,) are the PRAM losses with original, aug-
mented, and adversarial images as input. In Table 5, we
perform an ablation to understand the contribution of each
of these PRAM loss terms. We observe that the presence
or absence of PRAM loss causes a variation in adversar-
ial accuracy by less than 0.5%. PRAM(x), PRAM(Z4ug),
and PRAM(z,4,) boosts CA, NPA, as well as AdvA, in
the absence of L... However, when we incorporate L..,
PRAM(z,4,,) is found to degrade both CA and AdvA.
Hence, we only use PRAM(z) and PRAM(z,4) for fea-
ture similarity during fine-tuning (Equation 7).

Ly | Lee | PRAM | PRAM | PRAM Accuracy

(x) (Taug) (Tadv) CA RA  AdvA

(%) (%) (%)

v X X X X 7347 61.13 21.82
v X v X X 73.85 6048 21.73
v X v v X 74.16 61.19 21.81
v X v v v 7420 61.53 22.19
v v v v X 74.87 60.72 22.07
v v v v v 7428 61.12 2195

Table 5. PRAM ablation for ResNet18 PR models (ReLU count =
50k) on CIFAR-100

Necessity Analysis of CE Loss In this section, we analyze
whether L., helps or hurts performance when used together
with Li; and Lprap- In Table 6, we present results with
and without using £.. on a number of models and datasets.
We observe that L. improves CA as well as AdvA for both
ResNet18 and ResNet34 models on CIFAR-100, whereas
it retains the same CA for ResNet18 on CIFAR-10 dataset.
Since our main focus is to minimize degradation in CA, we
incorporate L. in our training framework.

Model/ State Accuracy #ReLU | L.
Dataset CA(%) NPA(%) AdvA(%) | (k)
AR | 9588  88.15 51.18 557 | -
SeietlS | PR | 971 562 4495 50 | x
PR | 9370  85.13 43.57 50 | v
AR | 7868 6331 26.99 557 | -
Cl};j\lftllgo PR | 7416  6L19 21.81 50 X
] PR 74.87 60.72 22.07 50 v
AR | 7971 6525 26.57 97 | -
Clilii\lftfg() PR | 7330 6123 21.69 80 x
- PR | 7372 6127 22.03 80 | v

Table 6. Fine-tuning PR model with and without CE loss

Performance on Other Attacks We evaluate RLNet mod-
els against existing SOTA white-box attacks FGSM [9],
PGD-20 [27] and Auto-PGD, a variant of AutoAttack [3].
For ResNet18 on CIFAR-10, we train a robust teacher us-
ing PGDAT [27] and distill PR models for different ReLU
budgets using RSLAD [48]. In Figure 5, we compare these
PR models, distilled from a PGD trained teacher, and fo-
cused solely on improving AdvA, to our RLNet models
for different ReLU budgets. We still outperform PGDAT
PR models for all ReLU counts on FGSM attacked images
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Figure 5. Performance comparison of RLNet vs ResNet-18 models, distilled from a PGD trained teacher, for different ReLU budgets, on
FGSM [9], PGD-20[27] and Auto-PGD [3] attacked images on CIFAR-10 dataset

and for ReLU count lower than 100k on PGD-20 gener-
ated images. PGDAT models demonstrate higher robustness
against Auto-PGD on CIFAR-10. Attack evaluation perfor-
mance for RLNet models on CIFAR-100 are presented in
Figure 6.
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Figure 6. Performance of ResNet18 for different ReLU budget
on FGSM [9], PGD-20[27], and AutoPGD [3] attack generated
CIFAR-100 test images

Sufficiency Test of Dual BN We demonstrate results using
a triple BN formulation, using three separate BN for clean,
augmented and adversarial images and compare it with dual
BN in Figure 7a. We observe that triple BN yields no extra
benefits, as hypothesized in Section 3.3

Sufficiency Analysis of Single ReLU Mask The perfor-
mance of RLNet models is compared with three separate
models, trained using standard, Augmix [13] and PGDAT
[27] training, for the same ReLLU count, in Figure 7b. RL-
Net achieves improved accuracy over separately-trained in-
dividual models in all three cases. This confirms that a
shared mask shared weight dual BN model is sufficient to
achieve improved performance on all three fronts.

5. Conclusion

The latency overhead for PI in CNNs can be largely
attributed to the presence non-linear ReLLU units. Latency
efficient PI methods have devised ReLU reduction tech-
niques in CNNs. However, robustness of these partially
linearized models remain unexplored. In this paper, we
propose RLNet, a class of shared-mask shared-weight

RLNet Triple BN RLNet Individual models

9443 g 00

Accuracy (%)
Accuracy (%)

118 5163

8575 4455

CA NPA AdvA CA NPA AdvA

(a) RLNet vs Triple BN (b) RLNet vs Individual Models

Figure 7. (a) Dual vs triple BN for ResNet18 on CIFAR-10 (b)
CA, NPA, and AdvA of RLNet vs separate ResNet18 PR models
(ReLU count=82k) trained using standard, Augmix [13] and PG-
DAT [27], respectively.

conditional models that yields close to baseline accuracy
against clean, naturally perturbed as well as adversar-
ial images with up to 11.14x fewer ReLU. Compared
with its SoTA non-robust counterpart, RLNet models
improve adversarial accuracy up to ~47%, naturally
perturbed accuracy up to ~16.4%, while improving
clean image accuracy up to ~1.5%. Exploring robust-
ness of vision transformer models for latency efficient
PI can be an interesting future research in this direction.
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