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Abstract

Anomaly detection is crucial in large-scale industrial
manufacturing as it helps detect and localise defective
parts.  Pre-training feature extractors on large-scale
datasets is a popular approach for this task. Stringent data
security and privacy regulations and high costs and ac-
quisition time hinder the availability and creation of such
large datasets. While recent work in anomaly detection pri-
marily focuses on the development of new methods built on
such extractors, the importance of the data used for pre-
training has not been studied. Therefore, we evaluated the
performance of eight state-of-the-art methods pre-trained
using dynamically generated fractal images on the famous
benchmark datasets MVTec and VisA. In contrast to exist-
ing literature, which predominantly examines the transfer-
learning capabilities of fractals, in this study, we compare
models pre-trained with fractal images against those pre-
trained with ImageNet, without subsequent fine-tuning. Al-
though pre-training with ImageNet remains a clear winner,
the results of fractals are promising considering that the
anomaly detection task required features capable of dis-
cerning even minor visual variations. This opens up the
possibility for a new research direction where feature ex-
tractors could be trained on synthetically generated ab-
stract datasets reconciling the ever-increasing demand for
data in machine learning while circumventing privacy and
security concerns.

1. Introduction

Identifying unusual structures in images is a challenging
problem in computer vision with numerous applications, in-
cluding industrial inspection ([3, 5]), healthcare monitoring
([17, 29]), autonomous driving ([6, 11]), and video surveil-
lance ([15, 18]). Due to the rarity and complexity of deter-
mining the full specification of defect variations, most of the
literature addresses the Anomaly Detection (AD) problem
unsupervised, where a model is only trained on anomaly-
free images. However, obtaining training data is expen-
sive and time-consuming, and privacy concerns limit avail-

ability, especially in industrial and medical scenarios. Re-
cently computer vision systems have expanded greatly as
large-scale datasets, such as ImageNet, have led to a shift
from model-driven to data-driven approaches ([12]). For
example, in AD, many current state-of-the-art methods rely
on deep feature extractors pre-trained on a proxy task on
large-scale datasets. In addition to the technical challenges
and high costs associated with acquiring and labelling these
large datasets, questions have arisen over privacy, owner-
ship, inappropriate content, and unfair biases. This has
resulted in ImageNet being restricted to non-commercial
applications, the 80M Tiny Images dataset ([24]) being
withdrawn, promising datasets such as JFT-300M ([23]) or
Instagram-3.5B ([16]) being unavailable for public use, and
LAION-5B ([22]), which was used to train the famous Sta-
ble Diffusion ([20]), being withdrawn due to ethical con-
cerns.

“What if we had a way to harness the power of large
image datasets with few or none of the major issues and
concerns currently faced? ([2])”. Fractals are complex
geometric structures generated by mathematical equations,
thus, anyone can produce the images making them open-
source, without the necessity of massive manual labelling
and ethical or bias concerns. The work of [12] was the first
to introduce the possibility of using fractals as an alterna-
tive pre-trining method for image recognition tasks. In light
of the promising results shown in image classification ([2])
and 3D scene understanding ([27]), in this paper, we con-
duct extensive experiments to examine the potential utility
of using a synthetically generated dataset composed of frac-
tals for the detection and localization of industrial anoma-
lies. This study differs from the existing literature that
mainly focuses on fractals’ transfer-learning (fine-tuning)
ability for supervised classification, we compared the AD
methods pre-trained with fractals against ImageNet with-
out fine-tuning, introducing additional complexity to the
comparison as the model’s weights remain untuned, thereby
lacking familiarity with the dataset. Moreover, defect detec-
tion is a challenging task as normal and abnormal samples
look very similar but differ in local appearance, necessitat-
ing robust features capable of discerning even minor visual
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variations, while classification tasks involve semantically

distinct classes, simplifying the discrimination process. Our

contributions are summarised as follows:

* We conducted the first systematic analysis comparing
the performance of AD models pre-trained with fractals
against ImageNet.

* We analyze the impact of feature hierarchy and object cat-
egories in solving the AD task, showing that low-level
fractal features are more effective and emphasizing the
importance of anomaly type selection when considering
fractal images.

e Our findings motivate a new research direction in AD,
where there is the potentiality to replace large-scale nat-
ural datasets with completely synthetic abstract datasets
reducing annotation labour, protecting fairness, and pre-
serving privacy.

2. Related Works

Most unsupervised AD models can be divided into two
main groups: (i) reconstruction-based and (ii) feature
embedding-based methods. In this paper, we focus on the
latter. Feature embedding-based methods rely on the abil-
ity to learn the distribution of anomaly-free data by ex-
tracting descriptors from a pre-trained backbone (feature
extractor) that most of the time is kept frozen during the
entire AD process. Anomalies are detected during infer-
ence as deviations from these anomaly-free features, as-
suming the feature extractor produces different features for
anomalous images. According to [26], feature embedding-
based methods can be divided into four categories: teacher-
student ([4, 8, 10, 25]), memory bank ([7, 13, 21]), normal-
izing flow ([9, 28]), and one-class classification ([14, 19]).
For teacher-student models, during the training phase, the
teacher is the feature extractor and distils the knowledge to
the student model. When an abnormal image is passed, the
teacher will produce features that the student wasn’t trained
on, so the student network won’t be able to replicate the
features. Thus, the feature difference in the teacher-student
network is the most important principle in detecting anoma-
lies during inference. Regarding memory bank-based ap-
proaches features of normal images are extracted from a
pre-trained network and stored in a memory bank. Test
samples are classified as anomalous if the distance between
the extracted test feature and the closest neighbourhood fea-
ture point inside the memory bank exceeds a certain thresh-
old. Normalizing flow is used to learn transformations be-
tween data distributions. In AD, anomaly-free features are
extracted from a pre-trained network and projected by the
trainable flow model to an isotropic Gaussian distribution,
in other words, the model applies a change of variable for-
mula to fit an arbitrary density to a tractable base distri-
bution. During inference, the normalizing flow is used to
estimate the precise likelihood of a test image. Anoma-

lous images should be out of distribution and have a lower
likelihood than normal images. For one-class classification,
the goal is to identify instances belonging to a single class,
without explicitly defining the boundaries between classes
as in traditional binary classification.

3. Fractals Images

Fractal images are generated using Iterated Function Sys-
tems (IFS), composed of two or more functions, each as-
sociated with a sampling probability. Affine IFS involves
affine transformations: w(z) = Ax + b, where A represents
a linear function and b represents a translation vector. The
set of functions has an associated set of points with a par-
ticular geometric structure called attractor. Following the
definition of [2] and [12], an IFS system S, with cardinality
N ~ U({2,3,..,8})3, defined on a complete metric space
X = (IR?,|| - ||2) is a set of transformations w; : X — X
and their associated probabilities p;:

S = (wi,pi) 1= 1,2...N (1)

which satisfy the average contractility condition. The at-
tractor Ag is a unique geometric structure, a subset of X
defined by S. The shape of Ag depends on the function w;,
while the sampling probabilities p; o |detA;| influence the
distribution of points on the attractor that are visited dur-
ing iterations. Affine transform parameters are associated
with the categories of the synthetic dataset. [2] improved
the sampling strategy to always guarantee the contractility
condition of .S and produce fractals with “good” geometric
properties. Fractal images with good geometry are not too
sparse, containing complex and varied structures with few
empty spaces. An affine transform must have singular val-
ues less than 1 to be a contraction, which can be imposed
by construction. Thus, the authors used singular values de-
composition of A = ULV, where U and V are orthogonal
matrices and X is a diagonal matrix containing the singular
values o1 and oo. By sampling o and o9 in the range (0,
1), we ensure the system is a contraction. Regarding good
geometry, the authors empirically demonstrate that singu-
lar values’ magnitudes dictate how quickly an affine con-
traction map converges to its fixed point under iteration.
Small values cause quick collapse, while values near 1 lead
to “wandering” trajectories which don’t converge to a clear
geometric structure. They empirically find that given o; 1
and o; 2 be the singular values for A;, the ith function in
the system, the majority of the systems with good geometry
satisfy £(5+ N) < a < £(6 4+ N) with o being

N

o = Z(Ji’l —+ 20’1‘,2). (2)

i=1

For N = 2, ..., 8, the founded range works well, although it
may also work for a wider range.

164



Dataset Generation

Pre-training

Anomaly Detection

Iterated Fucation System
Xev1 = Aixe + by

Sample system
parameters

Multi-class
classification

1
‘ Create classes

6,0,0,d.. | 0,6,¢d..

Image?
[ o, 9, (I), d ] { o,0, ¢’ d D» generation

1 2

Model fy

fo) =9 / -
e score
0.891
- Inference
Ly, 9)
oL » Model fp
a6
backpropagation
Unsupervised

\ Memory

training

anomaly detection

/

\J

Figure 1. We generate a dataset of IFS codes by sampling the parameters of the system which are used to generate fractals images. The
generated images are used to train a computer vision model for multi-class classification. Finally, the model is used as a feature extractor

for unsupervised anomaly detection.

4. Implementation Details

Our synthetic dataset, named “Fractals” for simplicity,
consists of single-fractal images for multi-class classifica-
tion obtained by grouping 100,000 IFS into 1000 classes.
We follow the default configuration of [2]. We trained
WideResNet50 with the standard cross-entropy objective
function for 100 epochs using 1,000,000 training samples
per epoch with an image resolution of 256 x 256 and batch
size of 512. For the anomaly detection, we used teacher-
student methods RD ([8]), STFPM ([25]), memory-based
methods PatchCore ([21]), PaDiM ([7]), the flow models
FastFlow ([28]), C-Flow ([9]) and the one-class classifica-
tion methods PANDA ([19]), and CutPaste ([14]). To fa-
cilitate reproducibility, we used Anomalib ([1]) to train the
anomaly detection methods, except for PANDA and Cut-
Paste deployed through the official code implementations.
The overall framework can be seen in Fig. 1.

Datasets: To study industrial anomaly detection perfor-
mance, our experiments are performed on the MVTec ([3])
and VisA ([30]). MVTec contains 15 sub-datasets of indus-
trially manufactured objects. For each object class, the test
sets contain both normal and abnormal samples with vari-
ous defect types. The dataset is relatively small scale, where
the number of training images for each sub-dataset varies
from 60 to 391, posing a unique challenge for learning deep
representations. VisA contains 12 sub-datasets. The objects
range from different types of printed circuit boards to sam-
ples with multiple or single instances in a view.

Evaluation Metrics: Image-level metrics are used to
assess AD algorithms’ classification performance, whereas
pixel-level metrics are used to assess their segmentation (lo-
calization) performance. These two types of metrics rep-

resent distinct capabilities of AD algorithms, and they are
both extremely important. Following prior work we use the
area under the receiver operator curve (AUROC) for both
image-level and pixel-level anomaly detection. To measure
localization performance we also use the area under the per-
region-overlap (AUPRO). In contrast to the ROC measure
which is biased in favour of large anomalies, the PRO score
weights ground-truth regions of different sizes equally to
better account for varying anomaly sizes, see ([4]) for de-
tails.

5. Results

In this section, we analyze in depth the experimental results
of the chosen AD algorithms. Note that, except for Cut-
Paste, none of the algorithms had their model weights fine-
tuned. In each table the reported accuracies are expressed in
percentage, the best result for each method is marked in red
for ImageNet and blue for Fractals pre-training; in addition,
each cell contains the results for ImageNet/Fractals.

For MVTec the corresponding result table are 1, 2 and 3.
In Tab. 1 we observe that PatchCore is the winning approach
followed by RD when using ImageNet as they both solve
7 of the 15 sub-datasets. With Fractals CutPaste solves 7
of the 15 classes achieving the highest average image-level
AUROC of 80.9%. For some classes Fractals surpass the
performance of ImageNet: grid when using CutPaste and
PANDA, wood with FastFlow and toothbrush with C-Flow,
PaDiM, RD and CutPaste. In Tab. 2 we can see that Patch-
Core reaches the heights pixel-level AUROC for both Im-
ageNet and Fractals, followed by PaDiM. When using the
AUPRO, Fractals performance drops. As shown in Tab. 3
C-Flow is the methods that have the biggest drops in lo-
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Class FastFlow C-Flow PatchCore PaDiM RD STFPM CutPaste PANDA

carpet 98.6/64.5 92.7/49.6 98.0/40.9 99.0/42.5 98.9/30.6 98.0/53.9 85.9/69.2 93.4/31.2

grid 99.8/58.0 96.1/82.0 97.5/93.7 96.9/78.5  100.0/68.3 98.3/46.0 98.3/100.0  52.0/54.4

leather 99.7/88.5 96.1/63.3 100.0/82.0 ~ 99.7/81.9  100.0/75.2 99.8/67.9 100.0/87.3  96.5/54.4

tile 99.9/95.6 99.9/92.7 98.8/95.6 99.5/97.3  100.0/60.9 98.6/74.0 94.7/84.8 96.8/65.1

wood 99.2/99.6 95.6/93.8 99.4/97.9 99.1/97.1 99.4/84.3 99.7/75.5 99.7/95.7 95.9/56.8

bottle 100.0/97.6  100.0/56.7 100.0/88.2  99.8/95.9 99.9/93.2 100.0/54.9 99.8/97.9 96.8/65.1

cable 92.9/55.6 92.0/45.9 98.8/52.2 93.2/61.4 96.2/58.6 91.3/43.9 90.6/85.8 84.5/54.9

capsule 94.7/42.1 90.4/61.6 97.8/73.4 91.9/70.8 97.6/78.3 57.9/56.5 83.5/78.1 91.8/71.8

hazelnut 97.9/97.6 99.6/85.7 100.0/92.0  94.1/93.9  100.0/89.5  100.0/90.8 97.2/71.3 88.5/61.3

metal_nut 98.7/57.8 96.4/34.4 99.8/38.1 98.7/47.9  100.0/69.8 96.6/66.2 94.2/80.7 72.9/41.5

pill 96.4/79.5 82.4/76.5 93.1/75.9 92.3/77.2 96.7/72.4 81.0/77.4 89.1/71.0 81.0/65.3

screw 85.0/27.5 89.1/69.0 97.9/61.7 85.2/40.0 98.1/69.1 90.3/60.4 79.0/42.775  70.5/41.3

toothbrush 77.5/60.8 71.4/78.3 100.0/99.2  87.2/98.6 93.9/96.7 85.0/79.2 87.8/97.8 88.1/68.9

transistor 89.7/59.7 87.8/33.0 99.9/55.2 98.5/78.6 97.4/66.8 94.9/37.5 92.8/79.8 91.0/71.2

zipper 89.3/74.4 91.6/44.6 99.3/81.2 88.3/76.8 98.3/83.2 81.5/46.5 99.8/70.9 97.0/57.6

Model Avg 94.6/70.6 92.1/64.5 98.7/75.1 94.9/75.9 98.4/73.1 91.5/62.0 92.8/80.9 86.4/57.4

Table 1. MVTec image-level AUROC. Each cell carries the results for ImageNet/Fractals.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM Class FastFlow C-Flow PatchCore PaDiM RD STFPM
carpet 98.2/78.4  98.8/71.2  98.7/727  98.8/732  98.8/562  99.2/76.7 carpet /513 93.8/33.1  92.7/31.4  953/39.6 94.8/24.8 97.0/51.9
erid 98.6/85.0  97.4/72.2  98.0/823  96.7/69.6  99.3/88.3  99.2/69.5 erid 95.1/632  90.8/40.3  90.1/60.7  89.0/41.1  97.3/70.2  97.0/31.6
leather 98.9/96.6  97.4/842  98.9/95.6  98.9/90.5  99.1/92.4  99.6/83.5 leather 98.3/89.8  90.8/47.9  96.3/76.7  98.0/68.9  97.9/69.0  99.0/51.6
tile 95.7/87.1  95.8/76.0  94.9/85.9  94.9/742  95.4/69.0  97.1/76.0 tile 87.4/72.1  90.2/63.3  79.6/69.0  86.3/64.3  87.5/45.1  92.4/49.5
wood 90.8/84.9  95.0/82.0 93.2/84.0 93.9/84.5  94.9/849  96.9/85.2 wood 89.3/75.0  88.6/50.7 84.6/54.9 91.6/65.5  91.3/70.3  95.7/62.7
bottle 97.8/923  98.5/59.3  98.0/84.4  983/922 98.3/76.4  98.7/59.9 bottle 88.7/76.1  93.5/28.1  92.3/647  95.1/774  953/532  96.2/22.5
cable 93.8/782  95.6/683  98.0/843  97.2/89.0 96.4/53.9  94.9/73.8 cable 80.3/38.6  84.8/29.9  91.1/46.8  88.5/62.5 90.1/41.4  89.0/30.4
capsule 98.7/85.5  98.7/90.8 98.8/95.2 98.5/95.0  98.7/943  97.6/95.1 capsule 92.4/59.3  91.0/73.9 92.3/75.1 91.1/77.6  93.0/81.8  91.1/81.9
hazelnut 95.3/959  98.2/95.7  98.4/97.1  98.6/97.9  98.8/96.5  99.1/95.2 hazelnut 95.2/89.7  95.1/86.2  94.4/87.0  95.0/90.1  96.3/90.1  97.6/87.6
metal_nut 98.6/82.7  97.4/76.1  98.5/84.4  96.1/86.5 97.0/82.4  98.2/81.8 metal_nut 92.8/47.5  87.2/27.4  91.9/49.4  91.9/54.1  93.8/40.0  95.4/36.8
pill 97.5/85.3  98.0/90.7  97.5/94.6  952/927  97.4/91.2  95.8/88.0 pill 91.3/68.9  93.4/65.0  93.8/83.8  94.4/856  96.2/822  95.1/72.7
screw 98.1/85.0  97.4/93.9  99.2/957  98.7/948  99.6/97.0  98.9/93.6 screw 91.2/59.9  89.2/80.3  95.5/84.0  94.7/83.6  97.7/88.5  95.0/78.8
toothbrush 95.2/72.6  98.2/88.2 98.7/97.1 99.0/97.6  98.9/93.2  99.0/91.9 toothbrush 77.8/28.3  82.9/64.1 86.2/82.7 93.2/91.6  91.6/79.4  92.9/70.4
transistor 92.6/78.3  85.9/53.7  96.7/752  97.6/86.5  89.1/66.6  82.3/59.5 transistor 79.1/444  73.8/21.8  94.0/423  94.0/62.4  79.2/41.1  69.4/16.0
zipper 95.9/743  96.3/70.7  98.1/86.6  97.2/88.0  98.5/78.0  98.1/78.6 zipper 87.8/41.8  87.7/30.2  92.5/67.7  91.3/642  953/50.4  94.2/38.3
Model AVG | 96.4/84.1  96.6/78.2  97.7/87.7  97.3/87.5 97.3/81.4  97.0/80.6 Model AVG | 89.1/60.4  88.9/49.5  91.2/65.1  92.6/68.6  93.2/61.8  93.1/52.2

Table 2. MVTec pixel-level AUROC. Each cell carries the results
for ImageNet/Fractals.

calization performance when compared with the results in
Tab. 2. PaDiM reaches the highest AUPRO of 68.9%. Note
that the AUPRO metric with the carpet class for the Fast-
Flow pre-trained with ImageNet is missing. Anomalib ([1]),
the repository used for the evaluation, led to a value of 1.21,
which is a bug, thus, we did not report any value.

For VisA the corresponding result tables are 4, 5 and
6. As shown in Tab. 4 when using Fractals, PatchCore
reached the best accuracy of 80.4% followed by CutPaste
with 79.2%. We have some cases where Fractals surpass
ImageNet results: capsules with PatchCore and PANDA,
macaroni2 with CutPaste and PANDA, pcbl PaDiM and
CutPaste and for pch2 with PatchCore, PaDiM and Cut-
Paste. Tab. 5 shows the pixel-level AUROC. For ImageNet
the best approach is RD for Fractals PatchCore. On av-
erage the pixel-level performance differs around 11% be-

Table 3. MVTec AUPRO. Each cell carries the results for Ima-
geNet/Fractals.

tween ImageNet and Fractals. Here, too, using AUPRO
metrics results in a performance drop as shown in Tab. 6.

Overall for both datasets is clear that memory-based
methods seem the more suitable when using Fractals, while
flow-based methods are the ones with the lowest perfor-
mance. CutPaste works well with fractals reaching the
first position on MVTec and the second on VisA. For Im-
ageNet the best results remain between teacher-student and
memory-based methods. When using AUROC metrics, us-
ing fractal images leads to promising results both at the
image and pixel level. The performance drops when us-
ing AUPRO, indicating that small defects are not well lo-
calized. Meanwhile, ImageNet weights can maintain good
performance across all metrics.
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Class FastFlow C-Flow PatchCore PaDiM RD STFPM  CutPaste ~ PANDA

candle 94.2/69.7  92.2/69.1 97.9/83.1 92.6/79.7 94.0/76.2  80.7/70.7  96.6/77.9  88.4/67.9

capsules 85.6/49.8  79.4/69.1 68.4/79.6 65.6/62.7 84.6/62.7  88.4/68.4  83.7/71.4  57.1/68.2

cashew 89.0/90.9  91.9/78.6 95.6/91.8 88.1/82.3  96.3/65.0  86.1/80.2  82.7/73.1  91.6/90.2

chewinggum | 95.8/91.6  98.4/80.1 99.4/81.9 98.3/71.7  99.4/67.8  98.2/73.5  96.6/86.0  92.2/69.0

fryum 78.0/61.1  78.0/71.4 91.6/82.6 84.6/80.7  91.9/70.8  89.2/60.7  93.4/75.8  84.5/74.8

macaronil 95.0/84.8  87.7/66.2 89.7/75.9 81.1/71.5  96.3/73.1  92.2/72.9  85.1/67.1  77.2/68.0

macaroni2 86.9/52.4  76.8/58.0 71.7/59.6 62.0/60.8  80.8/62.7  84.3/59.1  63.1/75.5  58.7/67.3

pebl 95.2/72.4  90.9/54.6 95.1/89.8 83.2/83.3  97.0/62.9  87.6/36.0  89.4/92.7  87.0/59.5

pcb2 95.2/80.7  80.0/29.8 93.5/94.7 82.7/88.3  96.8/85.6  90.3/30.2  93.6/95.5  91.3/83.7

pcb3 94.4/50.5  85.6/56.6 91.9/71.1 78.9/76.5  96.5/93.2  90.0/64.0  89.7/72.6  78.1/64.3

pcb4 97.0/69.8  97.1/83.9 99.5/90.6 93.2/94.0  99.8/96.5  95.5/81.4  97.4/95.0  96.5/83.0

pipe_fryum 99.5/64.8  94.8/64.5 98.5/64.4 96.7/66.1  97.3/74.6  92.6/64.3  76.3/67.3  80.1/59.8

Model AVG | 92.1/69.9  87.7/65.2 91.1/80.4 83.9/76.5  94.2/743  89.6/63.4  87.3/79.2  81.9/71.3

Table 4. VisA image-level AUROC. Each cell carries the results for ImageNet/Fractals.

Class FastFlow  CFlow  PatchCore PaDiM _ RD _ STFPM the original paper ([2]) with the model trained with multi-
candle 99.2/80.7  98.7/74.6  98.9/82.6  98.7/77.4 99.0/859  98.9/86.5 . ;- :
capsules 982/84.2  97.0/822  97.6/90.9  963/902  99.6/92.5  99.3/76.8 Cla_SS. and multi-instance. MUI.U'mStance 1sa more advance.d
cashew 98.2/89.6  99.191.8  99.0/75.1  98.6/743 95.1/414  97.0/92.8 training where there are multiple classes per image. Multi-
chewinggum | 99.2/96.9  98.8/94.1  98.9/87.3  98.9/69.1 98.7/86.7  99.1/933 instance prediction learns first-layer filters that are very
fryum 80.0/88.5  96.5/89.0  94.9/942  955/94.1 963/92.1  95.4/87.0 .. ..
macaronil | 963980 98.6/913 9820952  97.4/938 99.598.6  99.4/97.3 similar to those learned from ImageNet pre-training and
macaroni2 | 98.7/94.9  97.5/90.9  96.9/91.8  94.9/91.0  99.2/962  99.6/95.5 also their multi-class weights show more complex patterns
pebl 99.7/940  99.1/872  99.5/984  98.7/89.6 99.6/31.1 99.4/47.7 : : - s
peb2 98.7/91.0  96.1/840  97.8/92.8  973/943 98.5/89.5  97.3/76.8 meaning their model has h.kely k?amed to detect more intri
peb3 93.5/85.4  97.3/862 9820927  97.2/9.1 99.0/950  98.1/89.3 cate and nuanced features in the input data.
pebd 98.4/77.0  97.8/81.9  97.7/832  96.5/88.4 98.1/943  98.2/89.6
pipefryum | 98.3/90.7  98.6/95.8  98.8/96.0  98.9/96.9 98.7/97.2  97.9/96.7 . . .
Model AVG | 97.3/89.2  97.9/87.4  98.0/90.0  97.4/87.9 98.4/83.4 98.3/85.8 5.2. Comparison between object categories

Table 5. VisA pixel-level AUROC. Each cell carries the results for
ImageNet/Fractals.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM
candle 94.8/42.5  92.7/43.2 94.3/72.8 94.0/49.4  94.1/71.4  94.5/61.8
capsules 90.6/45.9  75.3/51.3 67.8/61.9 68.7/56.8  93.1/51.7  95.3/44.6
cashew 81.1/81.3  92.5/74.3 89.4/42.6 84.6/37.7  87.4/38.1  92.1/77.0
chewinggum | 84.4/62.7  88.9/53.7 84.7/43.0 86.5/29.8  80.5/48.0  83.0/68.6
fryum 69.7/68.7  81.0/69.7 80.2/722  70.1/70.6  88.4/77.8  85.9/65.3
macaronil 87.1/95.1 90.7/79.1 91.8/81.8 87.6/67.3  95.0/87.3  94.8/88.0
macaroni2 93.9/69.4  83.4/60.9 86.9/58.3 71.5/54.9  92.7/754  95.5/76.2
pebl 92.5/64.9  88.1/49.7 89.9/77.8 87.5/7144  95.6/18.0 92.3/144
peb2 85.7/68.5  76.7/54.4 83.7/78.9 77.6/78.8  90.4/67.2  85.3/33.7
peb3 79.6/42.1 73.5/64.9 80.4/78.5 70.6/80.7  91.0/88.4  89.6/77.1
pcb4 89.0/30.6  86.2/42.8 84.6/44.1 79.1/52.6  88.1/75.7  89.7/66.1
pipe_fryum 86.1/78.0  92.9/87.0 93.4/78.5 90.5/79.2  95.0/88.9  93.7/88.9
Model AVG 86.2/62.5  85.2/60.9 85.6/65.9 80.7/61.0  90.9/65.7  91.0/63.5

Table 6. VisA AUPRO. Each cell carries the results for Ima-
geNet/Fractals.

5.1. Learned weights

Fig. 2 shows the filters from the first layer of ResNet pre-
trained using different methods. We can see that the weight
learned by us (Fractals) shows simple patterns, such as solid
vertical or horizontal lines. This could mean that the model
has learned more basic features in the input data. In the
purple box, we show the weights visualization taken from

For MVTec the 15 sub-dataset can be divided into textures
(carpet, grid, leather, tile, wood) and objects (bottle, cable,
capsule, hazelnut, metal_nut, pill, screw, toothbrush, tran-
sistor, zipper). For VisA the 12 sub-classes are divided into
pcb (pebl, peb2, peb3, pcb4), images with multi-instance
in a view multi-in (candle, capsules, macaronil, macaroni2)
and image with single-instance in a view single-in (cashew,
chewinggum, fryum, pipe_fryum). In Fig. 3 we can see a
qualitative visualization of the image-level AUROC accu-
racy group by object categories. Focusing on Fig. 3a Ima-
geNet leads to good performance for both zextures in blue
and objects in red for all the methods. The larger blue area
shows a higher performance for the fexture category. Also
with Fractals, we have the same behaviour except for RD
and PANDA with objects having respectively +1.9% and
+0.7% compared to textures. The bigger difference between
textures and objects can be seen for flow-based methods
with +7.2% and +6% for FastFlow and C-Flow. Fig. 3b
shows the results for VisA where it is clear that for both Im-
ageNet and Fractals all the methods underperform for multi-
in. Our intuition is that this behaviour is more method-
related rather than weight-related. The proposed methods
are specialised to perform well on MVTec which is com-
posed of images with single objects in a view. For ImageNet
pcb and sinle-in have comparable performance, while for
Fractals the results are quite variable. Overall is clear that
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Fractals

-

Improving Fractal Pre-training

Multi-class Multi-instance

J

Figure 2. Comparison of the filters from the first layer of ResNet18 pre-trained with Fractals (left) and ImageNet (right). In the purple
box, we can find two images taken from [2] showing the first layer of ResNet50 learned using fractals with multi-class and multi-instance

prediction.

ImageNet is the winning dataset, however, Fractals’ results
are quite promising considering that we are training on com-
pletely abstract images without any fine-tuning.

ImageNet Fractals

8= textures
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PatchCore PatchCore
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Figure 3. Spider chart representing average image-level AUROC

grouping MVTec Ad and VisA classes into different object cate-
gories.

5.3. Impact of feature hierarchy

Feature maps from ResNet-like architectures, which play
an important role, can be divided into hierarchy-level j €
{1,2,3,4}. For example, using the last level for feature
representation introduces two problems (i) the loss of more
localized nominal information, as the last layers of the net-
work extract more high-level features, (ii) and feature bias
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Figure 4. Comparison between ImageNet (blue) and Fractals (red)

of the average image-level AUROC when using different feature
hierarchies.
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Figure 5. Comparison between ImageNet (blue) and Fractals (red)
of the average pixel-level AUROC when using different feature
hierarchies.
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Figure 6. Comparison between ImageNet (blue) and Fractals (red)
of the average AUPRO when using different feature hierarchies.
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towards the task of natural image classification which has
only little overlap with industrial anomaly detection ([21]).
As pointed out by [12] and [2], models pre-trained on frac-
tal images are unbiased when compared to ImageNet, so
we studied the impact of features hierarchy when using
Fractals. We use PatchCore and PaDiM which rely on
j € {2,3} and j € {1,2,3} for feature representation.
Fig. 4 shows the average image-level accuracy on MVTec
when considering different j. Focusing on ImageNet (blue),
the results with different hierarchies are quite stable for both
methods. Nevertheless, there is not a huge bust in perfor-
mance when combining three hierarchies instead of two for
both ImageNet and Fractals. This outcome is significant as
memory-based methods necessitate a large amount of mem-
ory during initialization, which increases with the number
of features involved. The pixel-level AUROC is reported in
Fig. 5; for both ImageNet and Fractals there is a clear drop
in performance with j € {3,4}. When using Fractals the
best results are obtained with j € {2, 3} for PatchCore and
j € {1,2} and j € {1,2,3} for PaDiM. We can see that
the difference between the results using ImageNet and the
results using Fractals is relatively small. This difference in-
creases when considering the AUPRO metrics, see Fig. 6.
When using layers j € {3,4} with Fractals we reach an
accuracy of 49.9% for PatchCore and 51.7% for PaDiM.

For all the cases the best performance is obtained when
using low-level features j € {1,2} meaning that low-level
features from fractals can help more than high-level features
in solving the AD task. This could be related to the fact that
fractal structures cover more real-world patterns than Ima-
geNet ([27]) our intuition is that low-level features capture
these simpler patterns, that can be found in nature, rather
than high-level features which are correlated more to the
complex geometric structure of the attractor Ag.

5.4. Qualitative results

In Fig. 7 we can see some qualitative results on MVTec’s
classes: bottle, cable, carpet, hazelnut and wood. In the red
box, we have the anomaly score and predicted segmenta-
tion mask for ImageNet pre-training and in the blue box for
Fractals. It is interesting to notice that for cable the anomaly
type is called cable_swap so rather than a structural defect
such as scratches, dents, colour spots or cracks, we are fac-
ing a misplacement, a violation of the position of an object
which can be seen as a logical anomaly. We can see from
the figure that none of the methods both using ImageNet or
Fractals can predict the correct segmentation mask. We also
observe that Fractals tend to fail when localizing anomalies
with low contrast with the background like for carpet.

6. Discussion

We chose to focus on industrial defect detection because it
is a specialized area that is limited by the scarcity of data,

mainly due to stringent privacy regulations and the high cost
of labelling. Large datasets have the potential to violate
ethical or privacy standards. In such cases, these datasets
may be suspended from functionality, face ownership shifts,
or be abruptly withdrawn. Such scenarios can complicate
the tracking of lineages, raise concerns regarding privacy
and data integrity, and make it difficult to assign credit to
data sources. In industrial defect detection with limited ac-
cess to quality labelled data, relying solely on supervised
methods becomes increasingly impractical due to the data-
hungry nature of deep learning models. Our work deviates
from existing literature by focusing on utilizing abstract im-
ages, such as fractals, for pre-training without altering ex-
isting methodologies. Our study is a preliminary exami-
nation of how generated data impacts established methods,
shedding light on the potential of fractals in anomaly detec-
tion. While conventional approaches rely on fractals trans-
fer learning ability, we deliberately omit this step to main-
tain consistency with the original methods (only CutPaste
includes fine-tuning by default) showcasing the effective-
ness of fractals in anomaly detection.

7. Conclusions

This paper investigated the potential utility of using ab-
stract, computer-generated fractal images to pre-train fea-
ture extractors in unsupervised visual anomaly detection
systems. We conducted a systematic analysis of 8 state-
of-the-art AD methods and tested their performance on 27
object classes each having different types of anomalies.
Experiments reveal that memory-based methods and Cut-
Paste seem statistically better than others and their results
vary depending on the type of objects’ class, emphasizing
the importance of anomaly type selection when considering
fractal images. Although pre-training with ImageNet re-
mains a clear winner on this task, the fact that we were able
to achieve relatively good performance by learning weight
from completely abstract images is quite stunning.

In future work, our studies may be continued in a vari-
ety of ways. First, as the learned weights exhibit simple
patterns, such as solid vertical or horizontal lines, multi-
instance training should be taken into consideration since
it has proven to learn weights more similar to ImageNet
obtaining models that better generalize to the downstream
tasks. Second, we observe that in the literature little ef-
fort has been put into synthesizing abnormal samples via
data augmentation which is a difficult but important task.
More attention should be given to self-supervised methods
like CutPaste since they involve fine-tuning, in line with the
fractals literature. Third, exploring fractals’ performance
under few-shot learning should be investigated. Fractal pre-
trained weights could reduce data needed for fine-tuning
benefiting fields affected by limited data like medicine.
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FastFlow PatchCore RD FastFlow PatchCore RD

Figure 7. Qualitative visualization for the MVTec’s classes: bottle, cable, carpet, hazelnut and wood. In the first column, we have the
original image and the ground-truth. In the red box we have the anomaly score and predicted segmentation mask for ImageNet pre-training
and in the blue box for Fractals.
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