
Towards Efficient Machine Unlearning with Data Augmentation:
Guided Loss-Increasing (GLI) to Prevent the Catastrophic Model Utility Drop

Supplementary Material

1. Security Threat and The Need of Unlearning

Increasing awareness of individuals’ personal information
protection [16] is invoking the importance of deep learn-
ing security. Deep learning demonstrates impressive per-
formance, especially in security-related fields such as iden-
tity verification in financial transactions. Despite the ad-
vanced performance and capabilities, deep neural networks
still have vulnerabilities. They are susceptible to input
data and tend to fail to predict even fine variations [13].
Previous research has introduced adversarial examples that
are difficult to resolve because humans cannot perceive
the fine variation [17]. Since the advent of adversar-
ial examples, many researchers have become aware of is-
sues with the robustness and security of models and have
studied deep learning system attacks. The Fast Gradient
Sign Method(FGSM) effectively generates adversarial ex-
amples and is utilized for training. These adversarial train-
ing methods can resolve adversarial example problems and
strengthen the model [7, 11].

In addition to adversarial attacks [11] on deep learning
models, previous work has studied a variety of attacks such
as a backdoor attack [1] and a clean-label poisoning at-
tack [15] and so on. A backdoor attack is an attack that
generates a backdoor by using a backdoor key and creates
input instances on the label. A backdoor attack focuses on
creating a backdoor into the model using single instance
keys and pattern keys, rather than reducing the performance
of the model. A backdoor attack enables attacks by in-
serting a small amount of data without any knowledge of
the model or training data [1]. A clean-label poisoning at-
tack involves injecting misleading examples to confuse the
model. This attack does not require control of the labeling
function. Therefore, individuals with no prior research in-
volvement can become attackers. Previous work shows that
this attack can be successful without internal access to the
data collection or labeling process [15].

In addition to these system attack issues, deep learn-
ing models have issues with training data. Therefore, deep
learning can also result in intellectual property infringement
on deep learning training data and illegal disclosure of per-
sonal data [3, 10, 14]. Therefore, machine unlearning is
increasingly important for securing systems and protecting
privacy. However, despite its importance, machine unlearn-
ing is still under-researched. We believe our research re-
flects this necessity.

2. Comparison of Distance Loss
In our Guided Loss Increasing (GLI) method, we increase
the distance loss d, which is crucial for achieving a high for-
getting score. We have extensively experimented with var-
ious distance algorithms to increase the feature differentia-
tion between the augmented image and forget data xforget.
We have explored various loss functions including L1 norm,
L2 norm, and cosine similarity.

2.1. Distance Loss

The L1 norm is sensitive to outliers, emphasizing differ-
ences when the values of a particular component are signif-
icantly distinct. It measures distance by summing the abso-
lute values of each component like the following equation.

∥L∥1 =
∑
i

|A−Bi| (1)

In contrast, L2 norm is less sensitive to outliers and can be
used when considering all components as equally impor-
tant. It measures distance by summing the squares of each
component and then taking the square root according to the
following equation.

∥L∥2 =

√∑
i

(A−B)
2
i (2)

Cosine similarity is effective when the size of the vectors
isn’t important because it only measures directional simi-
larity, not the size of the vectors. Cosine similarity demon-
strates that the closer two vectors are to 0 degrees, the more
similar they are. To adapt cosine similarity for representing
vector dissimilarity, we utilize it according to the following
equation.

− cos(θ) = − A ·B
∥A∥∥B∥

(3)

Where A and B are two vectors, and ∥A∥ and ∥B∥ repre-
senting the vector lengths or magnitudes of A and B, re-
spectively. A · B is the dot product of the two vectors. For
cosine similarity, a larger magnitude indicates greater simi-
larity between two vectors. By multiplying the cosine sim-
ilarity by -1, we redefine it as distance loss, where a larger
magnitude indicates a greater difference between the two
vectors. Therefore, the closer the distance loss is to zero,
the greater the difference between the feature of the aug-
mented image and forget data xforget.

1

Table 1. Performance comparison using various distance loss
Functions.

Metric Cosine Similarity L1-norm L2-norm

MUFAC
(multi-class)

Test Acc. ↑ 0.5601 0.5620 0.5685

Top-2 Test Acc.↑ 0.8226 0.8050 0.8362

Forgetting Score↓ 0.0744 0.0375 0.0305

Final Score ↑ 0.7056 0.7435 0.7537

MUCAC
(multi-label)

Average Test Acc. ↑ 0.8955 0.9066 0.9108

Forgetting Score ↓ 0.0314 0.0299 0.0032

Final Score ↑ 0.9163 0.9234 0.9522

2.2. Experimental Results for Each Distance Loss

In Table 1, we present the results for all three distance met-
rics – cosine similarity, L1-norm, and L2-norm – on both
the MUFAC and MUCAC datasets. Overall, the L2-norm
demonstrates the highest performance in terms of the final
score, consistently outperforming the other distance mea-
sures in both datasets. Notably, the GLI method using the
L2-norm distance achieves the best accuracy and forgetting
scores across both tasks. This superiority is particularly
evident in the multi-label task using the MUCAC dataset,
where the L2-norm shows a significantly improved forget-
ting score. On the other hand, cosine similarity results in
the lowest overall performance, highlighting its inadequacy
in comparison to the norm-based distance measures.

3. Visual Comparison of GLI-Based Images
In our work, we present a novel method, GLI, that gener-
ates mixed images that are adversarial against the images to
be forgotten. The augmented images generated from GLI
are semantically different from the forgotten images. Fig-
ure 1 shows a comparison between an original image from
the Machine Unlearning for Facial Age Classifier (MU-
FAC) and its GLI-augmented counterpart. Figure 2 shows
a comparison of the Machine Unlearning for Celebrity At-
tribute Classifier (MUCAC) with its GLI-augmented ver-
sion. These examples demonstrate the effectiveness of the
GLI method in generating mixed images that are adversarial
against the images to be forgotten while being semantically
different from the forgotten images.

4. Performance of SOTA Methods
This section presents a comprehensive analysis of the per-
formance of various machine learning models over train-
ing iterations. We experiment with SOTA methods such
as Fine-tuning, CF-K, NegGrad, UNSIR, EU-K, and
SCRUB. The analysis is structured into several key areas:

4.1. Graphical Analysis of Model Performance

We present the performance of these models across train-
ing iterations through graphs, illustrated in Figures 3. Each

graph measures performance using metrics such as ac-
curacy, MIA (Membership Inference Attacks), and final
scores, providing a visual representation of each model’s
performance trajectory. This approach provides insights
into the learning dynamics of each model, highlighting how
their performance evolves based on accuracy, resistance to
inference attacks, and overall effectiveness.

4.2. Detailed Graph Analysis

Examining the training graphs, models like Fine-tuning,
CF-K, UNSIR, Bad Teaching, and EU-K show similar
learning patterns, characterized by fluctuating within a cer-
tain range without significant overall performance improve-
ment. In contrast, NegGrad exhibits a catastrophic model
utility drop during training. As a simple loss-increasing
method, NegGrad experiences a catastrophic decrease in
test accuracy on the original task after the 100-th training
iteration. The SCRUB method displays the most dynamic
changes in its learning graph. Initially, there is a sharp drop
in accuracy, followed by a gradual upward trend, indicating
a slight improvement in the final score over time. However,
the performance is still not satisfactory.

On the other hand, our GLI method shows a relatively
stable learning graph. A continuous decrease in MIA val-
ues indicates effective forgetting. While there is an in-
evitable trade-off in accuracy due to improved forgetting
performance, the overall final score consistently remains the
highest among the compared methods.

5. Additional Experiment Results
5.1. Results for Various Architectures

In our experiments, we have trained three state-of-the-art
(SOTA) deep learning models– ResNet18 [8], WideRes-
Net [20], and EfficientNet [18] – to tackle original classi-
fication tasks. In Table 2 and Table 3, we present results
using WideResNet and EfficientNet that are not included
in the main body of the paper due to space limitations. In
both tables, other unlearning algorithm methods tend to ex-
hibit lower forgetting scores when the model utility is high,
or lower model utility when the forgetting score is high. In
contrast, our method consistently achieves higher forgetting
scores while preserving model utility. These results align
with the goals of machine unlearning. Furthermore, while
the results for WideResNet and EfficientNet indicate that
the fine-tuning method performs well, our GLI method con-
sistently shows superior or comparable performance, partic-
ularly in forgetting scores while maintaining model utility.

5.2. Results of Single Task Learning

In our primary experiments with the MUCAC dataset,
which includes a multi-label task with three labels, our GLI
model shows superior performance. To validate the effec-

2

Original 1 Original 2 Original 3 Original 4 Original 5 Original 6

Perturbed 1 Perturbed 2 Perturbed 3 Perturbed 4 Perturbed 5 Perturbed 6

Figure 1. Example comparison of MUFAC original image and MUFAC perturbed image.

Original 1 Original 2 Original 3 Original 4 Original 5 Original 6

Perturbed 1 Perturbed 2 Perturbed 3 Perturbed 4 Perturbed 5 Perturbed 6

Figure 2. Example comparison of MUCAC original image and MUCAC perturbed image.

tiveness of our method in a more simplified context, we
have extended our experiments to single-task learning sce-
narios using the same dataset. Table 4 shows the results
of one of the representative MUCAC tasks, facial young,
which involves classifying faces as young or old. The GLI
model achieves a test accuracy of 0.9065, closely matching
the 0.9017 accuracy of the original model. Notably, the for-
getting score of our model is 0.0355, which is higher than
the 0.0145 of the retrained model (our ground truth) but
lower than the 0.0462 of the original model. This indicates
that while our model effectively forgets, it does so without
significantly compromising model utility. Moreover, the fi-
nal score, which considers both model utility and forgetting
ability, further supports our approach. Our model scores the
highest with a final score of 0.9177, the highest among the
models tested. This highlights the GLI method’s capabil-
ity to achieve effective unlearning while maintaining high
model utility in both multi-label and single-task scenarios.

3

0 25 50 75 100 125 150 175 200
Training Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Sc
or

es

Performance of Fine-tuning Model over Training Iterations
Accuracy
MIA
Final Score

(a) Fine-tuning

0 25 50 75 100 125 150 175 200
Training Iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Sc
or

es

Performance of CF-3 Model over Training Iterations
Accuracy
MIA
Final Score

(b) CF-K

0 20 40 60 80 100 120 140
Training Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of NegGrad Model over Training Iterations

Accuracy
MIA
Final Score

(c) NegGrad

0 25 50 75 100 125 150 175 200
Training Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of UNSIR(2) Model over Training Iterations

Accuracy
MIA
Final Score

(d) UNSIR

0 25 50 75 100 125 150 175 200
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of Bad Teacher Model over Training Iterations

Accuracy
MIA
Final Score

(e) Bad Teaching

0 25 50 75 100 125 150 175 200
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of EU-K Model over Training Iterations
Accuracy
MIA
Final Score

(f) EU-K

0 25 50 75 100 125 150 175 200
Training Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of SCRUB Model over Training Iterations
Accuracy
MIA
Final Score

(g) SCRUB

0 25 50 75 100 125 150 175 200
Training Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Performance of GLI Model over the Training Iterations
Accuracy
MIA
Final Score

(h) GLI

Figure 3. Overall Performance Trajectory of SOTA Models During Training Iterations.

Table 2. The results of WideResNet50-2’s performance for two main classification tasks.

Metrics Original Retrained Fine-tunning [6] CF-K [4] NegGrad [5] UNSIR [19] SCRUB [9]
Bad

Teaching [2]
EU-K [4] Ours (GLI)

MUFAC
(multi-class)

Test Acc. ↑ 0.5984 0.5828 0.6042 0.5893 0.601 0.3242 0.6023 0.5802 0.5984 0.5763

Top-2 Acc. ↑ 0.8622 0.8648 0.8654 0.8401 0.8576 0.5464 0.8726 0.8239 0.8551 0.8180

Forgetting Score ↓ 0.2504 0.0817 0.2458 0.2521 0.2056 0.0700 0.2212 0.2225 0.2528 0.1328

Final Score ↑ 0.9099 0.9063 0.9174 0.9200 0.9220 0.9206 0.8916 0.9170 0.9183 0.9376

MUCAC
(multi-label)

Average Test Acc.↑ 0.8921 0.8590 0.8957 0.8953 0.8805 0.8950 0.8071 0.8799 0.8949 0.8921

Forgetting Score ↓ 0.0361 0.0232 0.0304 0.0276 0.0182 0.0269 0.0119 0.0229 0.0291 0.0084

Final Score ↑ 0.9217 0.9403 0.9504 0.9388 0.8523 0.9445 0.9273 0.8906 0.8982 0.9522

Table 3. The results of EfficientNetB0’s performance for two main classification tasks.

Metrics Original Retrained Fine-tunning [6] CF-K [4] NegGrad [5] UNSIR [19] SCRUB [9]
Bad

Teaching [2]
EU-K [4] Ours (GLI)

MUFAC
(multi-class)

Test Acc. ↑ 0.5789 0.5425 0.5854 0.5880 0.1890 0.5010 0.5951 0.5607 0.5906 0.5724

Top-2 Acc. ↑ 0.8317 0.8265 0.8297 0.8284 0.3827 0.7582 0.831 0.7855 0.8187 0.8057

Forgetting Score ↓ 0.2784 0.0541 0.2744 0.2691 0.0162 0.0727 0.2621 0.2245 0.2744 0.0654

Final Score ↑ 0.51105 0.71715 0.5183 0.5249 0.5783 0.6768 0.53545 0.5558 0.5209 0.7208

MUCAC
(multi-label)

Average Test Acc. ↑ 0.9251 0.8978 0.9230 0.9236 0.9046 0.9241 0.8205 0.8933 0.9254 0.9096

Forgetting Score ↓ 0.0236 0.0142 0.0291 0.0324 0.0179 0.0316 0.0142 0.0114 0.0299 0.0107

Final Score ↑ 0.9389 0.9347 0.9324 0.9294 0.9344 0.9304 0.8961 0.9352 0.9328 0.9441

Table 4. The results of performance for binary classification tasks.

Metrics Original Retrained Fine-tunning [6] CF-K [4] NegGrad [5] UNSIR [19] SCRUB [9]
Bad

Teaching [2]
EU-K [4] Ours (GLI)

Facial Young
(binary-class)

Test Acc. ↑ 0.9017 0.8493 0.9215 0.9196 0.1733 0.9142 0.9214 0.9046 0.9213 0.9065

Forgetting Score ↓ 0.0462 0.0145 0.0488 0.0581 0.0895 0.0663 0.0615 0.0453 0.0575 0.0355

Final Score ↑ 0.9047 0.9097 0.9119 0.9017 0.5001 0.8908 0.8992 0.9070 0.9031 0.9177

4

6. Comparison Unlearning Algorithm
In our experimental setup, we adopt several SOTA meth-
ods for machine unlearning, such as CF-K [4], EU-K [4],
NegGrad [12], UNSIR [19], SCRUB [9] and Bad Teach-
ing [2], which are widely recognized in this field. How-
ever, these recently developed techniques predominantly fo-
cus on a class-unlearning approach. Therefore, we have
modified certain aspects of these methods to better suit a
task-agnostic framework. In cases where an existing ma-
chine unlearning technique is designed to create synthetic
data that maximize the loss for specific classes to forget,
we modify this approach. Our adaptation involves gener-
ating synthetic data that increases the divergence from the
instances to forget, thereby providing an enhanced variation
of the original methods.

6.1. CF-K Training Method

CF-K method [4] utilizes the phenomenon known as
“catastrophic forgetting” in neural networks, where the net-
work tends to lose information about previously learned
samples. In this method, the last k layers of the model are
fine-tuned using the remaining data set after excluding spe-
cific data. The earlier layers are again kept frozen. The aim
is to make the model forget the information related to the
data that has been excluded.

Algorithm 1 CF-K Training Epoch

1: Input:
2: Retain dataset Dretain
3: Number of epochs N
4: Output:
5: Fine-tuned model θft
6: Load and initialize model θ
7: Define CrossEntropyLoss L, SGD optimizer O
8: Unfreeze last layers of θ for fine-tuning
9: for iteration = 1, . . . , N do

10: for each batch (x, y) in Dretain do
11: Compute outputs θ(x)
12: Calculate loss Lbatch = L(θ(x), y)
13: Update θ with O
14: end for
15: end for

6.2. Negative Gradient Ascent (NegGrad) Method

The NegGrad unlearning method can optimize the model
by maximizing the loss [12]. We call this method NegGrad
following the previous work [5]. The NegGrad unlearning
method Fine-tunes the dataset by moving in the direction of
increasing the loss of forget data samples. This is equivalent
to using a negative gradient to make the samples of forget
data xforget ∈ Dforget. This method aims to corrupt the

feature’s prediction to correctly predict forget data samples.

Algorithm 2 Negative Gradient Ascent (NegGrad) Training
Epoch

1: Input:
2: Retain dataset Dretain
3: Forget dataset Dforget
4: Number of epochs N
5: Model architecture function M
6: Learning rate α
7: Output: The unlearned model θunlearned
8: Load and initialize θunlearned
9: Define criterion Lcls, optimizer O with α

10: Create iterator for Dforget
11: for iteration = 1, . . . , N do
12: Set Lrunning = 0
13: for each batch b, (xretain, yretain) in Dretain do
14: Calculate Lascent
15: = −Lcls(θunlearned(xforget), yforget)
16: Perform gradient ascent: O.zero grad(),
17: Lascent.backward(), O.step()
18: Update Lrunning with Lascent
19: end for
20: Compute Lepoch
21: end for
22: Compute performance metrics with θunlearned

6.3. UNSIR Method

UNSIR (Unlearning by Selective Impair and Repair) [19]
method facilitates the removal of data from one or multiple
classes without the need to access the data being excluded.
It strategically increases noise in parts of the model that are
not directly related to the target classes, helping the model
to recognize and ignore patterns linked to these classes.

Originally designed for unlearning from specific classes,
we have adapted UNSIR to focus more on maximizing
noise in relation to the model’s loss in classes not central
to the learning objective. This modification assists in iden-
tifying patterns that are conducive to unlearning across a di-
verse array of tasks. Essentially, this process resembles cre-
ating a counter-sample for different classes, which is then
used to disrupt and unlearn previously acquired knowledge.
This adaptation allows UNSIR to be more flexible and ef-
fective for a broader, task-agnostic application.

6.4. SCRUB Method

SCRUB [9] is based on a novel teacher-student formula-
tion in which the student model selectively disobeys the all-
knowing teacher, inheriting only knowledge that is irrele-
vant to the data to be deleted. SCRUB can produce very
high errors on deleted data, which is desirable in some sce-
narios but can make it vulnerable to membership inference

5

Algorithm 3 UNSIR Training Epoch

Stage 1: Impair
1: Input:
2: Unlearned model architecture θunlearned
3: Retain dataloader Dretain
4: Forget dataloader Dforget
5: Number of epochs N
6: Output: Impaired model parameters θimpaired
7: Load and initialize θunlearned
8: Define CrossEntropyLoss criterion LCE, SGD opti-

mizer O with learning rate α
9: for iteration = 1, . . . , N do

10: For each batch, extract (Xretain, Yretain),
11: (Xforget, Yforget)
12: Initialize and optimize noise to increase loss
13: with forget data
14: Train θunlearned with noise-enhanced data and
15: retain data
16: end for
17:

Stage 2: Repair
18: Re-initialize LCE, O
19: for iteration = 1, . . . , N do
20: For each batch, extract (Xretain, Yretain)
21: Compute classification loss LCE, update θunlearned
22: parameters
23: end for

attacks. To mitigate this where appropriate, we extended
SCRUB with a new “rewinding” procedure that pinpoints
“checkpoints” in the unlearning process to use so that the
error on deleted data is close to a ”high enough” threshold.

6.5. Bad Teaching Method

The concept of the Bad Teaching [2] method illustrates
that unlearning for single-class or multi-class scenarios can
be achieved through a teacher-student framework. In this
setup, the teacher model transfers knowledge to the student
model, but with a twist: it either removes or overwrites the
data meant to be unlearned while maintaining previously
learned information. The student model is then trained to
discard the old information while assimilating this new, se-
lectively filtered knowledge. This framework is adept at fa-
cilitating the forgetting of data across various scales, includ-
ing single classes, multiple classes, or even subclasses.

6.6. EU-K Method

EU-K Method [4] involves retraining the last k layers of
a model from the beginning using the remaining data set
after excluding specific data that needs to be forgotten. The
earlier layers of the model are kept unchanged (or frozen)
during this process. The goal is to make the model precisely

Algorithm 4 SCRUB Training Epoch

1: Input: Pretrained teacher model θteacher from orig-
inal model, Initialized student model θstudent from
scrub model, Retain dataloader Dretain, Forget dat-
aloader Dforget, Number of epochs N

2: Output: Fine-tuned student model θ∗student
3: Initialize SCRUB Training: θteacher, θstudent, Dretain,

Dforget
4: Define Cross-entropy loss LCE, Distillation divergence

Ldiv
5: Initialize SGD optimizer O with learning rate α =

0.001 for θstudent
6: for iteration = 1, . . . , N do
7: Set θstudent to training mode and θteacher to evaluation
8: mode
9: Initialize Lossretain = 0, Lossforget = 0

10: for each batch (Xretain, Yretain) in Dretain do
11: Compute Oretain

student = θstudent(Xretain)
12: Compute Oretain

teacher = θteacher(Xretain)
13: Compute Lretain

CE = LCE(O
retain
student, Yretain)

14: Compute Lretain
div = Ldiv(O

retain
student, O

retain
teacher)

15: Compute total loss Lretain
total = Lretain

CE + Lretain
div

16: end for
17: for each batch (Xforget, Yforget) in Dforget do
18: Compute Oforget

student = θstudent(Xforget)

19: Compute Oforget
teacher = θteacher(Xforget)

20: Compute negative loss
21: Lforget

div = −Ldiv(O
forget
student, O

forget
teacher)

22: end for
23: end for

forget the information related to the excluded data.

6

Algorithm 5 Bad Teacher Training Epoch

1: Input:
2: Retain dataset Dretain
3: Forget dataset Dforget
4: Number of epochs N
5: Good teacher model θgood, loaded from pathoriginal
6: Bad teacher model θbad, initialized with random
7: weights.
8: Student model θstudent, cloned from θgood
9: Cross-Entropy loss function LCE

10: Knowledge Distillation loss function LKL
11: SGD optimizer O with learning rate α
12: Output: The trained student model θstudent
13: Set θgood and θbad to evaluation mode; θstudent to training

mode.
14: Define set of batches B for Dretain, Dforget
15: for iteration = 1, . . . , N do
16: for each batch b ∈ B do
17: Extract (xretain, yretain) from Dretain,
18: (xforget, yforget) from Dforget
19: Compute student logits ℓstudent =
20: θstudent(xretain, xforget)
21: Without gradients, compute teacher logits
22: ℓgood, ℓbad = θgood(xretain), θbad(xforget)
23: Calculate classification and distillation losses
24: LCE,LKL
25: end for
26: end for

Algorithm 6 EU-K Model Unlearning Epoch

1: Input:
2: Retain dataset Dretain
3: Unlearning model θeuk
4: Initial model θinitial before unlearning
5: Set of layers to unlearn Lunlearn
6: Output: The unlearned model θeuk
7: Disable gradients for all parameters in θeuk.
8: Restore and enable gradients for weights of specific

layers:
9: for each layer l ∈ Lunlearn do

10: θeuk[l]← θinitial[l]
11: Enable gradients for θeuk[l]
12: end for
13: Fine-tune θeuk using SGD optimizer O with α = 0.01

and LCE on Dretain
14: Set θeuk to training mode
15: for iteration = 1, . . . , 2 do
16: for each batch (x, y) ∈ Dretain do
17: Compute logits ℓ = θeuk(x)
18: Compute loss L = LCE(ℓ, y)
19: Backpropagate L and update θeuk using O
20: end for
21: end for
22: return θeuk after unlearning

7

References
[1] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn

Song. Targeted backdoor attacks on deep learning systems
using data poisoning, 2017. 1

[2] Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and
Mohan Kankanhalli. Can bad teaching induce forgetting?
unlearning in deep networks using an incompetent teacher.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 7210–7217, 2023. 4, 5, 6

[3] Luigi De Angelis, Francesco Baglivo, Guglielmo Arzilli,
Gaetano Pierpaolo Privitera, Paolo Ferragina, Alberto Euge-
nio Tozzi, and Caterina Rizzo. Chatgpt and the rise of large
language models: the new ai-driven infodemic threat in pub-
lic health. Frontiers in Public Health, 11, 2023. 1

[4] Shashwat Goel, Ameya Prabhu, and Ponnurangam Ku-
maraguru. Evaluating inexact unlearning requires revisiting
forgetting. arXiv preprint arXiv:2201.06640, 2022. 4, 5, 6

[5] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9304–
9312, 2020. 4, 5

[6] Aditya Golatkar, Alessandro Achille, and Stefano Soatto.
Forgetting outside the box: Scrubbing deep networks of
information accessible from input-output observations. In
ECCV 2020: 16th European Conference, Glasgow, UK,
2020, Proceedings, pages 383–398. Springer, 2020. 4

[7] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015. 1

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2

[9] Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafil-
lou. Towards unbounded machine unlearning. arXiv preprint
arXiv:2302.09880, 2023. 4, 5

[10] Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang,
Fanpu Meng, and Yangqiu Song. Multi-step jailbreaking pri-
vacy attacks on chatgpt, 2023. 1

[11] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks, 2019. 1

[12] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick
Jaillet. Variational bayesian unlearning. Advances in Neural
Information Processing Systems, 33:16025–16036, 2020. 5

[13] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt
Fredrikson, Z Berkay Celik, and Ananthram Swami. The
limitations of deep learning in adversarial settings. In 2016
IEEE European symposium on security and privacy (Eu-
roS&P), pages 372–387. IEEE, 2016. 1

[14] Radi P. Romansky and Irina S. Noninska. Challenges of the
digital age for privacy and personal data protection. Math-
ematical Biosciences and Engineering, 17(5):5288–5303,
2020. 1

[15] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Su-
ciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.

Poison frogs! targeted clean-label poisoning attacks on neu-
ral networks. CoRR, abs/1804.00792, 2018. 1

[16] H Jeff Smith, Sandra J Milberg, and Sandra J Burke. Infor-
mation privacy: Measuring individuals’ concerns about or-
ganizational practices. MIS quarterly, pages 167–196, 1996.
1

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. In-
triguing properties of neural networks, 2014. 1

[18] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 2

[19] Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and
Mohan Kankanhalli. Fast yet effective machine unlearning.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 2023. 4, 5

[20] Zifeng Wu, Chunhua Shen, and Anton Van Den Hengel.
Wider or deeper: Revisiting the resnet model for visual
recognition. Pattern Recognition, 90:119–133, 2019. 2

8

	. Security Threat and The Need of Unlearning
	. Comparison of Distance Loss
	. Distance Loss
	. Experimental Results for Each Distance Loss

	. Visual Comparison of GLI-Based Images
	. Performance of SOTA Methods
	. Graphical Analysis of Model Performance
	. Detailed Graph Analysis

	. Additional Experiment Results
	. Results for Various Architectures
	. Results of Single Task Learning

	. Comparison Unlearning Algorithm
	. CF-K Training Method
	. Negative Gradient Ascent (NegGrad) Method
	. UNSIR Method
	. SCRUB Method
	. Bad Teaching Method
	. EU-K Method

