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1. Temporal Additive Gaussian Noise
Algorithm 1 elaborates upon our proposed Temporal Addi-
tive Gaussian Noise (TAGN) strategy.

Algorithm 1 Temporal Additive Gaussian Noise (TAGN)
Input: Keypoints sequence x(t) 2 R|J |⇥2, temporal dis-

tortion ratio k%, joint distortion ratio p%, noise
variance �

2, set of frame indices T , set of joints in-
dices J

// Uniformly select k% of frames
T̃  Choice(T , k) // Set of distorted frames
x̃ x // Initialize
for t 2 T̃ do

// Uniformly select p% of joints
J̃t  Choice(J , p) // Set of distorted

joints at frame t
for j 2 J̃t do

// Add noise
x̃j(t) xj(t) + ", " ⇠ N (0,�2)

end
end
// Return distorted keypoints
Output: x̃

2. Implementation Details
2.1. Video Corruption Operators
Guided-patch Erasing (GPE): Given a video, the mask-
ing patch positions are selected such that they have the
most overlap with a selected keypoints’ trajectory. We per-
form K-means clustering (K is randomly selected from
{2, 3, 4}) over the set of all aggregated keypoint locations
throughout the input video to find the centroids of the K-
clusters. These centroids would then mark the center of the
masking patches. Finally, GPE deletes K square patches

with the fixed size of bmin (W,H)
10 c (W and H denoting the

width and height of a frame, respectively).
Cropping: We perform horizontal cropping over the orig-
inal video. The cut-off location is determined according
to the average of all keypoints’ horizontal positions (yavg).
However, to ensure the cut-off not making the aspect ratio
too small, we limit its value by min(yavg, 2H/3). Finally,
the cropped images are resized to the original resolution of
the dataset.
Gaussian & Impulse Noise: Following [3] and adhering
to their settings, we perturb the video frames using Gaussian
and impulse noise. We randomly inject zero-mean Gaussian
noise with � = 0.38 over all pixels at each frame in the
original video. For the impulse noise, we randomly add
impulse noise to 27% of the pixels at each frame.
Motion Blur: We utilize the motion blur kernel imple-
mented by [3]. This distortion emulates the blurring ef-
fect caused by a fast moving subject or camera, by ap-
plying a shifted Gaussian kernel specified by the angle of
the shifting operation (✓) and its standard deviation along
horizontal and vertical axes (�). In this paper, we chose
✓ ⇠ Uniform(�⇡/4,⇡/4) and � = [20, 15]T .

In Figure 1, we provide frame samples of the H36M-C
and HumanEva-I-C datasets, to better visualize the effect of
each video corruption operator.

2.2. Baseline Models
All baselines are optimized using Adam optimizer [6] with
a learning rate 0.001, step decay 0.95, and batch-size equal
to 1024, unless otherwise stated. We train Pose3D-RIE for
240 and the rest of the baselines for 80 epochs. All baselines
are implemented in PyTorch and trained on a single GPU
(except for PoseFormer [16] and Pose3D-RIE [12]).
VideoPose3D (VP3D) [10]: We trained VP3D models with
various receptive fields of 1, 3, 9 and 27. For the single
frame model (i.e. receptive field size of 1), we use B = 3
convolution blocks, each with kernel size K = 1. We keep
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Figure 1. Examples of H36M-C (first five columns from the left) and HumanEva-I-C (last three columns from the left) dataset. Each row
corresponds to samples obtained under different video corruption operators.

the number of intermediate channels as C = 1024. For
VP3D models with receptive field� 1, the kernel size of all
convolution blocks is K = 3. For models with a receptive
field of size 3m, m � 1, the number of convolution blocks
is m. We also set the dropout rate as 25%.
SRNet [15]: We used the proposed split-and-recombine
model. For better comparability, we select the same ar-
chitecture as VP3D, with B = 3 convolution blocks and
a receptive field of 27 frames.
PoseFormer [16]: We adopted a PoseFormer model with
27 frames receptive field. The spatial and temporal trans-
formers both consist of 4 blocks and the stochastic depth
rate [4] is set to 10% during training. Additionally, the to-
ken embedding size is set to 32 while the number of heads
is 8. We used 4⇥A100 GPUs for training in parallel with a
batch size of 256 on each single GPU.
Attention3DHP [9]: We employed an Attention3DHP
model with 243-frame receptive field and C = 1024 inter-
mediate channels. For this baseline, we chose a batch size
of 2048.
Pose3D-RIE [12]: Following [12], we use a 3-stage op-
timization pipeline, run for a total of 240 epochs to fully
exploit the positional and temporal information in human
keypoint groups. The encoder and the feature fusion mod-
ule (FFM) is trained in the first stage. In the second stage,

only the FFM and decoder are optimized. Finally, the pa-
rameters of the entire framework is fine-tuned with a small
learning rate in the third stage. For a fair comparison with
other single stage baselines, we used a receptive field size of
27 instead of 243 frames, as originally used by [12]. Mean-
while, we keep the latent feature dimension of 256 and use
a smaller learning rate of 0.0005 similar to [12]. We used
4⇥A100 GPUs for training in parallel, with an effective
batch size of 2048.

2.3. 2D Keypoint Detectors

We use HRNet [13] and LiteHRnet [14] for the 2D keypoint
detection. Both 2D pose estimators are top-down solutions
requiring a human detector. In our experiments with H36M-
C, we found that a simple Faster-RCNN [11] with a ResNet-
50 [2] and feature pyramid network backbone trained [7]
on COCO [8] performs well on the human detection task.
We used HRNet-W48 and LiteHRNet-18 both trained on
COCO with input image size of 256 ⇥ 192. The specific
configurations of the 2D keypoint detectors can be found in
the MMPose framework[1].
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Table 1. Comparison between various baselines trained with TAGN. The mean and standard deviation across 5 random runs are reported.

Model Gaussian
Noise

Impulse
Noise

Temporal-patch
Erasing

Guided-patch
Erasing Cropping Motion

Blur Average

VP3D[10]/H36M+TAGN (� = 0.05; p = k = 20%) 91.73± 0.30 94.12± 0.32 96.08± 0.38 112.72± 0.56 117.23± 1.09 76.54± 0.24 98.07± 0.48
VP3D[10]/H36M+TAGN (� = 0.1; p = k = 30%) 88.44± 0.35 90.69± 0.35 93.56± 0.13 108.95± 0.22 114.30± 0.68 75.38± 0.09 95.22± 0.30
VP3D[10]/H36M+TAGN (� = 0.3; p = k = 50%) 86.30± 0.27 88.46± 0.27 92.57± 0.33 106.74± 0.65 107.71± 0.54 75.89± 0.16 92.94± 0.37
PoseFormer[16]/H36M+TAGN (� = 0.3; p = k = 50%) 102.24± 4.03 104.78± 4.13 113.80± 3.67 129.33± 3.67 148.39± 7.11 88.70± 4.31 114.54± 4.49
SRNet[15]/H36M+TAGN (� = 0.3; p = k = 50%) 91.68± 1.32 94.04± 1.49 96.16± 0.82 111.94± 0.90 117.28± 3.18 78.70± 0.59 98.30± 1.38
Attention3DHP[9]/H36M+TAGN (� = 0.3; p = k = 50%) 92.05± 0.77 93.94± 0.90 100.48± 1.12 115.08± 1.13 112.80± 1.52 84.35± 0.81 99.78± 1.04
Pose3D-RIE[12]/H36M+TAGN (� = 0.3; p = k = 50%) 92.14± 1.15 101.34± 0.23 105.45± 1.13 115.31± 0.34 104.42± 0.12 92.40± 1.62 101.84± 0.68

Table 2. Effect of TAGN on MPJPE0.1 of VP3D [10] models trained/tested on 2D keypoints detected by HRNet[13] and Lite-HRNet
[14]. The mean and standard deviations across 5 random runs are reported.

Training
Keypoints

Testing
Keypoints Model Gaussian

Noise
Impulse

Noise
Temporal-patch

Erasing
Guided-patch

Erasing Cropping Motion
Blur Average

HRNet HRNet VP3D[10] 94.27 96.64 99.32 116.54 118.08 78.14 100.50
HRNet HRNet VP3D[10]+TAGN 86.30± 0.27 88.46± 0.27 92.57± 0.33 106.74± 0.65 107.71± 0.54 75.89± 0.16 92.94± 0.37

HRNet Lite-HRNet VP3D[10] 123.69 127.27 118.76 132.68 116.56 91.76 118.45
HRNet Lite-HRNet VP3D[10]+TAGN 121.78± 0.25 125.04± 0.28 110.21± 0.36 121.85± 0.73 107.11± 0.76 87.59± 0.16 112.26± 0.42

Lite-HRNet HRNet VP3D[10] 94.32 96.76 101.47 118.77 121.07 77.56 101.66
Lite-HRNet HRNet VP3D[10]+TAGN 91.73± 0.30 94.12± 0.32 96.08± 0.38 112.72± 0.56 117.23± 1.09 76.54± 0.24 98.07± 0.48

Lite-HRNet Lite-HRNet VP3D[10] 120.30 123.76 116.66 130.20 116.80 87.94 115.94
Lite-HRNet Lite-HRNet VP3D[10]+TAGN 85.82± 0.33 88.05± 0.33 95.73± 0.24 110.03± 0.30 109.13± 1.05 76.19± 0.17 94.16± 0.40

Table 3. Effect of CA-Conv block on MPJPE0.1 of VP3D[10] models trained/tested on 2D keypoints detected by HRNet [13] and
Lite-HRNet [14].

Training
Keypoints

Testing
Keypoints Model Gaussian

Noise
Impulse

Noise
Temporal-patch

Erasing
Guided-patch

Erasing Cropping Motion
Blur Average

HRNet HRNet VP3D[10] 73.11 74.03 81.65 90.56 79.76 68.40 77.92
HRNet HRNet VP3D[10]+CA-Conv 72.31 73.28 79.45 87.72 76.84 67.16 76.13

HRNet Lite-HRNet VP3D[10] 105.71 109.93 101.01 107.46 83.36 80.71 98.03
HRNet Lite-HRNet VP3D[10]+CA-Conv 107.72 111.27 101.56 107.20 83.92 84.17 99.31

Lite-HRNet HRNet VP3D[10] 78.21 80.34 87.56 97.35 89.27 71.77 84.08
Lite-HRNet HRNet VP3D[10]+CA-Conv 75.24 77.49 84.49 93.92 88.86 69.52 81.59

Lite-HRNet Lite-HRNet VP3D[10] 91.60 91.89 97.96 103.43 86.79 79.12 91.80
Lite-HRNet Lite-HRNet VP3D[10]+CA-Conv 88.24 88.31 95.35 100.66 84.97 76.51 89.01

Table 4. Effect of receptive field on MPJPE0.1 of VP3D models trained with and without TAGN. The mean and standard deviations
across 5 random runs are reported.

Receptive
Field Model Gaussian

Noise
Impulse

Noise
Temporal-patch

Erasing
Guided-patch

Erasing Cropping Motion
Blur Average

1 VP3D[10] 97.80 100.06 102.80 119.24 119.00 80.39 103.22
1 VP3D [10] + TAGN 94.98± 0.09 96.87± 0.10 94.95± 0.08 107.69± 0.14 102.16± 0.62 80.26± 0.14 96.15± 0.19
9 VP3D[10] 96.61 99.11 101.95 119.03 118.85 80.92 102.74
9 VP3D [10] + TAGN 93.08± 0.40 94.95± 0.45 96.69± 0.21 110.26± 0.37 107.86± 0.77 81.25± 0.23 97.35± 0.40

27 VP3D[10] 94.27 96.64 99.32 116.54 118.08 78.14 100.50
27 VP3D [10] + TAGN 86.30± 0.27 88.46± 0.27 92.57± 0.33 106.74± 0.65 107.71± 0.54 75.89± 0.16 92.94± 0.37
81 VP3D[10] 93.14 95.73 97.34 114.60 120.78 76.54 99.69
81 VP3D [10] + TAGN 84.61± 0.37 86.67± 0.41 91.36± 0.20 105.75± 0.38 106.92± 0.51 75.16± 0.16 91.74± 0.34

3. Experimental Results

In Figure 2, we evaluate the effect of the threshold ⌧ on the
number of joints considered when computing the MPJPE⌧

metric. As expected, with a larger threshold, more joints

are included in the computation of MPJPE⌧ . In our ex-
periments, we selected a default value of ⌧ = 0.1 which
captures 87% of the total joints.

To showcase the consistency of the performance of
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Table 5. Effect of VP3D [10]’s receptive field on MPJPE0.1 of VP3D models trained with CA-Conv

Receptive
Field Model Gaussian

Noise
Impulse

Noise
Temporal-patch

Erasing
Guided-patch

Erasing Cropping Motion
Blur Average

1 VP3D[10] 86.96 87.96 87.75 96.52 81.05 76.61 86.14
1 VP3D [10] + CA-Conv 85.21 86.16 84.16 92.16 77.14 74.85 83.28
9 VP3D[10] 78.11 79.27 85.68 94.57 83.53 71.92 82.18
9 VP3D [10] + CA-Conv 76.68 77.58 82.96 91.61 79.53 69.92 79.71

27 VP3D[10] 73.11 74.03 81.65 90.56 79.76 68.40 77.92
27 VP3D [10] + CA-Conv 72.31 73.28 79.45 87.72 76.84 67.16 76.13
81 VP3D[10] 70.85 71.82 79.55 87.83 77.94 66.78 75.80
81 VP3D [10] + CA-Conv 69.92 70.91 77.02 85.23 76.24 65.42 74.12
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Figure 2. Percentage of joints (per frame) involved in deriving
MPJPE⌧ as a function of the threshold ⌧ . The results are reported
on H36M-C test set.

Figure 3. Histogram of the standard deviation of the heatmaps
around 2D keypoint predictions of one subject (H36M dataset)
from HRNet [13] and Lite-HRNet [14]. The confidence score of
each detected 2D keypoint corresponds to the maximum of the as-
sociated heatmap.

TAGN, in Table 1, 2, and 4, we report the mean and standard
deviation across 5 random runs. Note that, in each run, we
have different noise realizations added by TAGN to the 2D
input pose. The small standard deviations affirm the stable
boost in performance, offered by TAGN.

In Figure 3, we provide the histogram of the standard de-
viation of output heatmaps around all 2D keypoint predic-

tions of one subject from HRNet [13] and Lite-HRNet [14].
We notice the difference between the two distributions pro-
duced by HRNet and Lite-HRNet. In general, HRNet pre-
dicts not only more accurate but also more confident key-
points than Lite-HRNet.

Furthermore, in Table 2 and 3, we study VP3D [10]
trained with TAGN or CA-Conv, with 2D pose output by
HRNet and LiteHRNet. Similarly, Table 4 and 5 summa-
rize the effect of receptive field size on VP3D’s [10] perfor-
mance. In all scenarios, our proposed TAGN and CA-Conv
solutions lead to improvements in MPJPE⌧ compared to
the upper and lower-bound benchmarks.

Lastly, in Figure 4, we visualize additional qualita-
tive comparisons between VP3D[10] and VP3D [10] +
TAGN models, both trained on the original Human3.6M [5]
dataset.
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