Appendix

Table of Contents

A Further Experimental Details
A.1l Faithfulness Evaluation Metrics . . . . . . . . . . . . . o i i e e e e e e e
A2 True Token Masking . . . . . . . . . o o o i i e e e e e e e

B Is SkipPLUS’s Choice of Skipping the First Half of the Network Optimal?
C Composing PLUS and SkipPLUS With Other Methods

D Qualitative Results
D.1 ViT Base (Patch Size 8) . . . . . . . . . . e e e
D.2 EVA Large (Patch Size 14) . . . . . . . o e e e e e

E Related Work

E.1. Gradient-Based Methods . . . . . . . . . e e
Vanilla Gradients. . . . . . . . . . . . . e e e e e e e e e
InputxGradient (IXG). . . . . . . . . e e e e e

E.1.1 CAMMethods . . . . . . . . e e e
GradCAM. . . . . e e

AtCAM. . L L e e e

XGradCAM. . . . . e e

E.1.2 Gradient-Based Rollout Methods . . . . . . . . . . .. ...
TransAtl. . . . . o L e e e e

GenALL. . . . o e e e

E.1.3  Special Cases of PLUS . . . . . . . . . . e
GradSAM. . . . . e

CAT. . e

7

LayerCAM. . . . . . . e e

E.2. Forward Attention-Based Token Attribution Methods . . . . . . . .. ... ... ... .. ...
AttentionxInput_Norm (AttIN). . . . . . . . . . . e

GlobEnc & ALTL . . . . . . o e e

DecompX. . . . . o e e

E.3. Black-Box Methods . . . . . . . . . . e e e e

14
14
14

15

16

19
19
24

35
35
35

36




A. Further Experimental Details
A.1. Faithfulness Evaluation Metrics

Modern literature favors evaluations for input attribution methods that are collectively called faithfulness, which intuitively
measures how well the attribution scores reflect the true contribution of each input feature to the target output. Although
several metrics have been proposed to quantify faithfulness, we adopt the most comprehensive approach, which involves
computing the area under the curve (AUC) for the deletion and insertion operations, considering the changes in accuracy and
the target probability [13, 26, 46, 49].

The deletion accuracy curve is obtained by progressively removing input features in order of decreasing attribution scores
and measuring the model’s accuracy at each step. A faithful attribution method should result in a steep drop in performance
as the most important features are removed first. The deletion accuracy scores are normalized using the formula 100 — z,
where z is the original score, so that higher scores always indicate better performance.

Similarly, the deletion AOPC curve is generated by gradually removing input features in order of decreasing attribution
scores and evaluating the change in the target output probability at each step. A faithful attribution method should lead to a
rapid decrease in the target probability as the most important features are removed first.

Using the input images x;, the perturbed input X% is created by deleting k% of the most significant patches from x;.
Subsequently, Area Over the Perturbation Curve [18, AOPC] evaluates the mean alteration in the predicted class probability
across the entire validation dataset using the following formula:

N
AOPC(k) = % Zp (9xi) — p (91%7) -

Here, N represents the total number of instances, ¢ stands for the predicted class, and p(g|-) denotes the probability of the
predicted class.

Conversely, the insertion accuracy curve is generated by gradually adding input features in order of decreasing attribution
scores and evaluating the model’s performance at each step. A faithful attribution method should lead to a rapid increase in
performance as the most important features are added first.

Likewise, the insertion AOPC curve is obtained by progressively adding input features in order of decreasing attribution
scores and measuring the change in the target output probability at each step. A faithful attribution method should result in a
steep increase in the target probability as the most important features are added first. Similar to deletion accuracy, the insertion
AOPC scores are also normalized using 100 — x, ensuring that higher scores consistently represent better performance.

A.2. True Token Masking

Instead of simply overlaying a color mask, we choose to completely exclude the masked patches from the model’s input [15].

At the same time, we preserve accurate positional encodings for the unmasked patches. We term this strategy True Token

Masking. The conventional method of using the color black (or simply zeroing the tokens in text-based Transformers) for

patch masking encounters several issues:

* If a patch is predominantly black, painting it black does not effectively eliminate its informational content. For instance, a
black drawing on a white background would remain mostly unchanged.

» Patches might serve computational functions, such as acting as a scratchpad for the model’s internal processes. Masking
these with black does not prevent the model from using them for such purposes.

* Introducing a black mask can create artifacts in the image, potentially leading to out-of-distribution data, which affects the
model’s performance.



B. Is SkipPLUS’s Choice of Skipping the First Half of the Network Optimal?
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Figure 7. Either PLUS (starting the attribution method from all layers and aggregating information) or SkipPLUS (starting the atribution
method from layers in the latter half of the network and aggregating information) are always near the optimal selection of the cutoff layer.



C. Composing PLUS and SkipPLUS With Other Methods
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Figure 8. Evaluating the composition of PLUS and SkipPLUS with the Vanilla Gradients of tokens and attention weights.
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Figure 9. GenAtt, the previous state-of-the-art baseline, is not enhanced by our proposed PLUS or SkipPLUS methods, but it is also not

harmed.
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Figure 10. Evaluating the composition of PLUS and SkipPLUS with FullGrad.
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Figure 11. Evaluating the composition of PLUS and SkipPLUS with InputxGradient (IxG) and an attention-enhanced variant, AttIxG. The

PLUS compositions of these methods are also known as CAT and AttCAT, respectively.
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Figure 12. Evaluating the composition of PLUS and SkipPLUS with CAM methods from CNNss.



D. Qualitative Results
D.1. ViT Base (Patch Size 8)
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Figure 13. Additional qualitative examples demonstrating the application of SkipPLUS on ViT Base (Patch Size 8). The images presented
were selected at random.
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Figure 14. Additional qualitative examples demonstrating the application of SkipPLUS on ViT Base (Patch Size 8). The images presented
were selected at random.
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Figure 15. Additional qualitative examples demonstrating the application of SkipPLUS on ViT Base (Patch Size 8). The images presented
were selected at random.
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Figure 16. Additional qualitative examples demonstrating the application of SkipPLUS on ViT Base (Patch Size 8). The images presented
were selected at random.
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Figure 17. Additional qualitative examples demonstrating the application of SkipPLUS on ViT Base (Patch Size 8). The images presented
were selected at random.
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Figure 18. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 19. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 20. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 21. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
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Figure 22. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 23. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 24. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 25. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 26. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.
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Figure 27. Additional qualitative examples demonstrating the application of SkipPLUS on EVA Large (Patch Size 14). The images
presented were selected at random.




E. Related Work

Input attribution methods are techniques designed to quan-
tify the influence of individual input features, or groups of
them, on a model’s output [5, 37, 42, 43, 60, 65, 66, 77].
Input attribution methods can assist in understanding a
model’s decision locally for a single input considered in
isolation. They also act as foundational elements for more
advanced explanation techniques. For instance, in concept-
based explanation methods like CRAFT [24], attribution
methods are employed for two main purposes: to quantify
the impact of each activated concept and to identify the spe-
cific input features responsible for activating these concepts.

Attribution methods have a wide array of applications
beyond merely explaining model outputs to humans [21,
62, 69, 71]. They are useful for enhancing the robustness
of models against out-of-distribution data, spurious corre-
lations, and adversarial inputs [2, 11, 50, 76]. Addition-
ally, attribution methods have been employed to improve
the performance of text-to-image models [12, 36, 53]. Fur-
thermore, adapting forward-mode attribution methods has
been explored for on-the-fly feature pruning [23, 45] and
model quantization [4]. Attribution methods have been uti-
lized to construct more effective adversarial attacks against
models [32, 74, 78].

E.1. Gradient-Based Methods

Gradient-based methods compute the gradient of the
model’s output y. w.r.t. the input features x; which can be
pixels, regions, or tokens of the whole input z. The general
idea is that larger gradients indicate higher importance of
the input features x; on the prediction y..

Vanilla Gradients. The most straightforward approach to
these methods is to use the gradient as the exact importance
score [65].

e
VanillaGrad; = E .
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VanillaGrad:Norm?2; = H Oy .
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Inputx Gradient (IxG). IxG [37] multiplies the input
values by their corresponding gradients. Let x; be a spatial
feature of the input, where x; ; represents the j-th channel
of x;. The Inputx Gradient attribution for the spatial feature
x; with respect to the target class c is computed as follows,
where y. is the output of the model for the target class c:
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E.1.1 CAM Methods

CAM methods, popularized by GradCAM [61], usually
start from the very last layer of the network. In this, their
intuition has certain similarities with SkipPLUS; they both
recognize the noisy nature of the first layers of the network.

GradCAM.

» A¥: the k-th channel of the feature map in the final layer

* c: the class w.r.t. which the attribution map is computed

* y°: the class score (logit)

* Gradients are averaged over the width and height dimen-
sions (indexed by i and j respectively) to obtain the neuron
(channel) importance weights of;:

global average pooling

(&
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gradients via backprop

AttCAM. The method introduces a Transformer-specific
adaptation of GradCAM [61], and reuses the name Grad-
CAM for it [10]. We term this modified method AttCAM.

XGradCAM. It weights the gradients by their corre-
sponding activation value when computing the spatial av-
erage [28]. XGradCAM was proposed on ReLU CNNs
where the activations were always positive, hence they did
not specify using the absolute value of the activations in the
above computation, as is more intuitive. We name the vari-
ant with absolute activations XGradCAM+, and test both
of them. Other CAM methods include GradCAM++ [8],
HiResCAM [20], and GradCAMElementWise [30].

E.1.2 Gradient-Based Rollout Methods

TransAtt. TransAtt [10] employs the Deep Taylor De-
composition technique [48] to attribute local relevance and
subsequently propagates these relevance scores through the
entire architecture of a Transformer model. This process
effectively enables the backward propagation of informa-
tion across all layers, starting from the output and extending
back to the input. Additionally, this method incorporates
gradients of attention weights. The method’s functioning
can be summarized as follows:

Rollout (E o Heads [(R ® AttnGrad)*D ,

where R stands for the relevancy scores of attention weights.
The Rollout technique is a method to aggregate the layer-
wise attribution maps. We refer the reader to [1] for a de-
tailed overview.



GenAtt. The dependence of TransAtt on specific rules
for the propagation of relevance scores imposes limitations
on its capacity to furnish explanations for various types of
Transformer architectures. To cope with this issue, GenAtt
[9] attempts to explain predictions for any Transformer-
based architecture by using the attention weights in each
block to update the relevancy maps, as demonstrated by the
following expression:

Rollout (EH::Heads [(Attn ® AttnGrad)“‘D .

The notation ()* denotes a filtering through the ReLU
function. [9] show that GenAtt is at least as effective as
TransAtt, if not better.

E.1.3 Special Cases of PLUS

The methods described below can be viewed as special
cases of PLUS, where PLUS is composed with a previously
existing method.

GradSAM. GradSAM [3] is equivalent to composing
GenAtt [9] with PLUS, instead of using Rollout. (cf. Fig. 9
in the appendices)

CAT. C(lass Activation Tokens [55] is equivalent to
IxGoPLUS. (cf. Fig. 11 in the appendices)

AttCAT. We can define an attention-enhanced variant of
IxG, AttIxG, by multiplying IxG with AttnFrom:

H:=Heads N :=Tokens

1
AttnFromjzm Z Z RawAttny, ; ;
h=1 i=1

Note that attention weights have three dimensions:
heads, to, from.

Attentive Class Activation Tokens [55, AttCAT] would
then be equivalent to AttIxGoPLUS. (cf. Fig. 11 in the ap-
pendices)

LayerCAM. LayerCAM [35] was introduced for ReLU
CNN networks, where it is equivalent to applying a normal-
ization process on the layer-wise attribution maps obtained
from GradCAMElementWise [30], followed by the PLUS
aggregation method. The normalization step is proposed
because earlier layers tend to have smaller attribution maps
compared to later layers. By normalizing the maps, Lay-
erCAM ensures that each layer contributes more equally to
the final attribution map. However, this approach is not suit-
able for ViTs, as we explicitly want to avoid giving earlier
layers the same impact on the final attribution map as later
layers (cf. Fig. 2, also supported by our preliminary quanti-
tative evaluations).

E.2. Forward Attention-Based Token Attribution
Methods

Although we have mathematically detailed most of the
previous methods, the complexity of the subsequent ap-
proaches surpasses the scope of this paper. Therefore, we
will provide a succinct overview of their core concepts. For
a more thorough understanding, we recommend readers re-
fer to the original papers.

AttentionxInput_ Norm (AttIN). Kobayashi et al. [38]
multiply the attention weights by the norms of the vectors
corresponding to each attention weight. Kobayashi et al.
[39] extends AttIN to also incorporate the residual connec-
tions.

GlobEnc & ALTI. AttIN assumes that tokens retain their
original identity. As each self-attention module mixes all
the tokens, this assumption might not necessarily hold. Us-
ing gradient-based techniques, Brunner et al. [6] studies
contextual information aggregation across the model. Fol-
lowing Brunner et al. [6] work, the global token attribu-
tion analysis method [44, GlobEnc] further extends AttIN
by including the Transformer block’s second normalization
layer in its analysis. In parallel with GlobEnc, the Aggre-
gation of Layer-Wise Token-to-Token Interactions method
[26, ALTI] was introduced. ALTI shares core concepts
with GlobEnc, but the two differ in certain mathematical
specifics.

DecompX. DecompX [46] enhances GlobEnc by inte-
grating the one element previously overlooked by GlobEnc:
the MLP module in the Encoder Transformer layer. This in-
clusion enables DecompX to generate a set of decomposed
vectors that collectively sum up to the actual output vector.
Unlike GlobEnc and ALTI, which require computing and
aggregating layer-wise attribution maps using techniques
like Rollout, DecompX facilitates the direct propagation of
these decomposed vectors across layers. This capability al-
lows for the direct computation of attribution maps from
any layer to any other layer.

In this paper, unless specified otherwise, we utilize the
DecompX variation that omits biases, referred to as De-
compX W/O Bias in [46]. Our decision stems from our
preliminary tests where no significant differences were ob-
served across various methods of handling biases. To
sidestep the complexities and hyperparameters introduced
by distributing bias attributions among tokens, we opted for
the simplest approach. A detailed evaluation of different
methods for bias attribution distribution is reserved for fu-
ture research.



E.3. Black-Box Methods

Black-box attribution methods treat the model as an opaque
entity, (partially) disregarding its internal structure and gra-
dients. These methods typically involve perturbing the in-
put and observing the corresponding changes in the model’s
output to infer the importance of each input feature. How-
ever, this approach often comes with significant computa-
tional costs due to the need for multiple model evaluations.
In contrast, white-box methods leverage the internal struc-
ture and gradients of the model, providing a more efficient
and fine-grained understanding of the model’s behavior.

In this paper, we focus on white-box methods for sev-
eral reasons. Firstly, they offer a more computationally effi-
cient approach compared to black-box methods. Secondly,
and more importantly, black-box methods can be seen as
directly optimizing the faithfulness metrics on which we
evaluate the attribution methods. This raises concerns re-
lated to Goodhart’s law, which states that when a measure
becomes a target, it ceases to be a good measure. In other
words, the faithfulness metrics we use are merely proxies
for the ultimate desirable properties we seek in attribution
methods. By directly optimizing these metrics, black-box
methods may inadvertently introduce biases or artifacts that
undermine the true faithfulness of the attributions. There-
fore, to avoid this potential pitfall and maintain a more ob-
jective evaluation, we refrain from including comparisons
with black-box methods in this study, acknowledging that
they have different trade-offs and use cases.

LIME [58] explains the predictions of any classifier by
learning a local interpretable model around the prediction.

RISE [54] is a black-box approach that generates an im-
portance map indicating the saliency of each pixel for the
model’s prediction by probing the model with randomly
masked versions of the input image and obtaining the cor-
responding outputs.

PAMI [64] masks the majority of the input and uses the
corresponding model output as the relative contribution of
the preserved input part to the original model prediction.

ScoreCAM [70] is a post-hoc visual explanation method
based on class activation mapping that eliminates the de-
pendence on gradients by obtaining the weight of each ac-
tivation map through its forward passing score on the target
class.

ViT-CX [75] adapts ScoreCAM for ViTs.

AtMan [16] is a perturbation method that manipulates the
attention mechanisms of transformers to produce relevance
maps for the input with respect to the output prediction.

HSIC [51] is a black-box attribution method based on
the Hilbert-Schmidt Independence Criterion, measuring the
dependence between regions of an input image and the
model’s output using kernel embeddings of distributions.



