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1. Ablation on coefficient selection strategy

In our method DBMA, we select only a limited number of
coefficients(i.e., k% coefficients) to obtain a decent tradeoff
between the adversarial and clean performance. As shown
in Fig 1 (A) in the main paper, the least affected approxi-
mate coefficients have a high magnitude. Thus, we select
the essential detail coefficients as the top-k high magnitude.
As they are likely to be less affected by the adversarial at-
tack (Fig 1 (B)) (main paper), they can yield better perfor-
mance. In this section, we perform an ablation to assess the
effectiveness of selecting top-k coefficients over the other
possible choices. For comparative analysis, we perform
the experiments using the bottom-k and random-% coeffi-
cients. Table 1 shows the adversarial and clean performance
for the different coefficient selection strategies. The top-k
coefficient selection strategy, selecting the most important
coefficient in terms of magnitude, improves both the clean
and adversarial performance. On the other hand bottom-k
coefficient selection strategy, selecting the least significant
coefficients shows the least performance as they primarily
consist of contaminated high-frequency content. Although,
randomly selecting k% coefficients showed improved per-
formance than the bottom-£, it still performs poorly com-
pared to top-k coefficient selection strategy.

Table 1. Performance comparison when k% detail coefficients
are selected in wavelet coefficient selection module (WCSM) us-
ing different methods. Selection of top-k coefficients yields better
clean and adversarial accuracy than other strategies.

Surrogate | coefficient Black Box Model : Alexnet

model selection Surrogate Model (defense): Resnet-18
(attacker) strategy clean | BIM | PGD | Auto Attack

Alexnet- bottom-k 31.25 | 859 | 7.32 12.57

half random-k | 42.58 | 13.13 | 11.74 19.77

top-k (ours) | 77.92 | 26.66 | 24.55 34.02

bottom-k 31.25 | 6.14 | 4.84 10.92

Alexnet random-k 4292 | 8.61 7.52 14.29

top-k (ours) | 77.92 | 15.98 | 14.04 21.34
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2. Performance of our method (DBMA) using
different wavelets

The experiments in the main draft, have used Daubechies
wavelets [4] in wavelet noise remover (WNR). Along with
Daubechies, several other wavelets are available in the lit-
erature that varies in time, frequency, and rate of decay.
This section analyzes the effect of different wavelets on
the performance of proposed data-free black box defense
(DBMA). We perform experiments with Coiflets [2] and
Biorthogonal wavelets [3]. Table 2 summarizes the results
obtained with Resnet18 as the defender’s surrogate model
and Alexnet-half as the attacker’s surrogate model. We
observe a similar performance trend over the adversarial
and clean samples on using the different wavelet functions
when compared to the Daubechies. This confirms DBMA
yields consistent performance irrespective of the choice of
the wavelet function used.

Table 2. Ablation over different choices of wavelets that are used
in wavelet noise remover (WNR). The performance of DBMA re-
mains consistent across different choices of wavelet functions.

Surrogate Surrogate Black Box Model : Alexnet
model model Surrogate Model (defender): Resnet-18
(Attacker) (Defender) clean | BIM | PGD | Auto Attack
Alexnel- Biorthogqnal 73.27 | 42.51 | 41.72 51.11
half Daubechies | 73.77 | 42.71 | 42.71 50.63
Coiflets 73.14 | 42.51 | 44.22 51.94

3. Defense against different data-free black box
attacks

In all the previous experiments we assume that both de-
fender and attacker use the same model stealing tech-
nique [I] for creating a surrogate model. To prove our
data-free black box defense (DBMA) is robust to different
model stealing strategies, we evaluate our method against
two different approaches: a) Data-free model extraction
(DFME) [7] and b) Data-free model stealing in hard label
setting (DFMS-HL) [6] that are used by attacker to obtain
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Figure 1. Performance of our approach DBMA for different model
stealing methods used to get the attacker’s surrogate model for
data-free black box attacks. DBMA consistently improves perfor-
mance against different attacks across all model stealing methods.

a surrogate model (Alexnet-Half) for crafting adversarial
samples. As shown in Fig. 1, our method yields a con-
sistent boost in adversarial accuracy on different data-free
model stealing methods. In the case of DFME, we observe
a massive improvement of ~36%, ~40% and ~21% on
BIM , PGD and Auto Attack respectively. On the other
hand, in case of DFMS-HL the performance against the
three attacks improves by ~28%, ~29%, and ~31%. Over-
all across different model stealing methods, our method
(DBMA) yields significant improvement in adversarial ac-
curacy (i.e. = 29 —42% in PGD, ~ 28 — 38% in BIM , and
~ 25 — 31% in state-of-the-art Auto Attack).

Further, we check our defense in a more tougher sce-
nario, where attacker is aware of the black box model B,,,’s
architecture (i.e., Alexnet), and uses the same for attacker’s
surrogate model (S2,). The results for this setup are re-
ported in Table 3. Compared to baseline, we observe an
improvement of ~ 29 — 32%, ~ 38 —40% and ~ 22 —25%
in adversarial accuracy across attacks using the Black box
ripper, DFME and DFMS-HL methods, respectively. This
indicates that even if the attacker is aware of the black box
model’s architecture, our method DBMA can provide data-
free black-box adversarial defense irrespective of the differ-
ent model stealing methods.

Hence, our proposed method DBMA provides strong
robustness even when the attacker uses a different model
stealing strategy compared to the defender. Refer to next
section for adversarial robustness results when the defender
uses different model stealing methods to obtain the surro-
gate model.

4. DBMA using different model stealing meth-
ods

In all the experiments in the main draft, we used the Black
Box Ripper (BBR) model stealing method to obtain surro-

gate model for defense. To demonstrate that our method
DBMA can work across different model stealing techniques
also, we obtain the defender’s surrogate model using a dif-
ferent model stealing method (DFMS-HL). To get better in-
sights, we analyze the performance of DBMA by varying
the model stealing techniques for both attack and defense.

In Table 4 we observe the clean accuracy is not affected
on using different model stealing techniques. DBMA ob-
tains the best performance when the attacker uses BBR to
attack while the defense is performed using model stealing
DFMS-HL (third row). However, when the attacker uses
the DFMS-HL method to create a surrogate model (sec-
ond and fourth row), the adversarial accuracy decreases by
~ 7 — 11% across attacks compared to the performance
with BBR method used by attacker. For attacks crafted us-
ing BBR, the defender’s performance with DFMS-HL re-
mains almost similar to BBR (first and third rows). These
results suggest that the adversarial samples created using
the DFMS-HL are stronger than the ones created using BBR
method. This aligns with the Sec. 5.6 in the main draft,
where we observed a similar trend indicating that the at-
tacks crafted using DFMS-HL are powerful than BBR. Fur-
ther, we observe that the choice of the defender’s model
stealing method does not significantly affect the adversarial
and clean accuracy.

Overall, for different model stealing methods, DBMA
ensures good clean performance with decent adversarial
performance.

5. Architecture details of Regenerator Network

The Regenerator network consists of U-net-based [5] gen-
erator with five downsampling and upsampling layers. Each
it" downsampling layer has a skip connection to (n — i)!"
upsampling layer that concatenates channels of i* layer
with those at layer n — 4, n represents number of upsam-
pling and downsampling layers (i.e. n = 5). The number
of channels in the network’s input and output are the same
as the image channels in the training dataset (surrogate data
Sq in our case). Each Downsampling layer first filters input
through Leaky relu with negative slope = 0.2, followed by
convolution operation with kernelsize = 4, stride = 2,
and padding = 1. The number of output channels for lay-
ers 1 to 5 are 64,128,256,512,512 respectively. Upsampling
layers start with a Relu layer. Followed by transposed con-
volution. Each transposed convolution has kernelsize = 4
, padding = 1 and stride = 2. The number of output
channels for layers 1 to 5 are 1024, 512, 256, 128, and 3
respectively.The output of convolution and deconvolution
layers is normalized using instance normalization to avoid
’instance-specific mean and covariance shifts’. The output
of the last upsampling layer is normalized using Tanh nor-
malization to ensure output values lie in the range [—1, 1].



Table 3. Performance of DBMA across several data-free black box attacks that are constructed using the surrogate model having same
architecture as the black box model. We observe consistent significant improvements in adversarial performance using proposed DBMA

across different adversarial attacks and model stealing techniques.

Surrogate Model stealing Black Box Model : Alexnet
model Method (Attacker) Surrogate Model (defense): Resnet-18

(attacker) clean BIM PGD Auto Attack
Without DBMA Black Box Ripper | 82.58 | 4.17 2.19 8.55
With DBMA (Ours) | Black Box Ripper | 73.77 | 33.31 (1 29.14) | 31.72 (1 29.53) | 40.56 (1 32.01)

Alexnet Without DBMA DFME 82.58 | 4.21 1.99 16.93

With DBMA (Ours) DFME 73.77 | 42.84 (1 38.63) | 42.49 (140.5) | 55.04 (1 38.11)
Without DBMA DFMS-HL 82.58 | 3.30 1.82 7.84
With DBMA (Ours) DFMS-HL 73.77 | 26.0 (T 22.7) 24.94 (1 23.12) | 32.57 (1 24.73)

Table 4. Performance of DBMA across different model stealing methods used by defender and attacker. DBMA obtains respectable
performance irrespective of the model stealing technique used by either the defender or attacker.

Surrogate Model Model Black Box Model : Alexnet
model stealing stealing Surrogate Model (defense): Resnet-18
(attacker) | (defender) | (attacker) clean | BIM | PGD | Auto Attack
BBR BBR 73.77 | 42.71 | 42.71 | 50.63
Alexnet- | BBR DFMS-HL | 73.77 | 35.4 | 34.58 | 43.05
half DFMS-HL | BBR 7245 | 42.75 | 43.08 | 51.0
DFMS-HL | DEMS-HL | 72.45 | 32.85 | 31.86 | 40.6
6. Importance of Regenerator Network our method DBMA.

To evaluate the effectiveness of proposed Regenerator net-
work R,, in our approach DBMA, we analyze the perfor-
mance of DBMA with and without R,, for different values
of k (i.e. k=1, 2, 4, 8, 16 (ours), 50). In Table 5, we observe
that across different k, appending R,, to the WNR improves
the adversarial accuracy against various attacks crafted us-
ing Alexnet-half and Alexnet by ~ 13 — 18%. Further, we
observe a similar trend for clean accuracy, which also im-
proves on adding R,, to WNR. However, the improvement
margin for clean accuracy gradually drops on increasing the
value of coefficient percent k. For higher £’s (e.g., 16,
50), there is a small drop in clean performance using R,,
compared to the performance with only WNR but leads to
significant increase in adversarial accuracy. This implies re-
generator network enhances the output image of WNR to in-
crease the adversarial accuracy. In this process, for smaller
values of k, it increases clean accuracy too, but for a large
value of k, the decrease in clean accuracy is compensated
by the increase in adversarial accuracy to achieve the best
trade-off. Combining WNR with the regenerator network at
our k (i.e., k = 16) produces the best adversarial accuracy.

From Table 6, we observe that DBMA with only WNR
improves adversarial accuracy with a small drop in clean ac-
curacy compared to baseline. Similarly, with only regener-
ator network R,,, adversarial accuracy increases compared
to the baseline. Also, R, performs better than WNR. How-
ever, using WNR and R,, together in DBMA gives the best
adversarial accuracy. Hence this demonstrates the impor-
tance of both the defense components (WNR and R,,) in

7. Ablation on choice of surrogate architecture

To better analyze the performance of DBMA against dif-
ferent combinations of defender surrogate (S¢) and at-
tacker surrogate models (S¢,), we perform experiments with
different choices of surrogate models (i.e., Alexnet-half,
Alexnet, and Resnet18). For all the experiments, Alexnet
is used as the black box model. For Resnet18 as S, the
wavelet coefficient selection module (WCSM) yields opti-
mal k (l%) as 16. Similarly, for other choices of Sf,ll (.e.,
Alexnet and Alexnet-half), we obtain k as 15. This shows
that the value of & is not much sensitive to the choice of
architecture of the defender’s surrogate model S¢,. The re-
sults are reported in Table 7.

We obtain the best performance for Resnet-18 as S¢,
and Alexnet-half as S7, (1% row), whereas the lowest for
Alexnet-half as S?, and Resnet18 as S%, (6! row). Fur-
ther, on carefully observing the results, we deduce some
key insights. Clean accuracy remains similar across differ-
ent choices of surrogate models, but adversarial accuracy
depends on the surrogate model of defender (S<,) and at-
tacker (Sp).

We observe that the bigger the network size, the more ac-
curate the surrogate models. With accurate surrogate mod-
els, the gradients with respect to the input are better esti-
mated. Thus better black-box attacks and defenses can be
obtained using the bigger architectures for surrogate mod-
els. For better defense, S? should have a relatively higher
capacity than S% . This can be confirmed by rows 1, 4,



Table 5. Performance of DBMA with and without regenerator network across different values of k. For low values, regenerator network
improves both clean and adversarial accuracy. For k=16, small decrease in clean accuracy, but adversarial accuracy increases significantly.

Surrogate Coefficients Black Box Model : Alexnet
model (k%) Method Surrogate Model (defense): Resnet-18
(attacker) clean BIM PGD Auto Attack
| WNR 42.75 | 14.89 13.79 21.41
WNR + R,, | 56.08 | 30.58 (1 15.69) | 30.14 (1 16.35) | 37.04 (1 15.63)
) WNR 50.17 | 17.34 16.38 25.36
WNR + R,, | 60.35 | 34.94 (11 17.60) | 34.61 (T 18.23) | 41.61 (1 16.25)
4 WNR 59.14 | 21.99 20.77 29.43
WNR + R,, | 65.82 | 39.65 (1 17.66) | 39.62 (1 18.85) | 46.94 (1 17.51)
Alexnet-half ) WNR 69.89 | 249 2354 33.04
WNR + R,, | 70.37 | 41.89 (1 16.99) | 42.21 (1 18.67) | 49.88 (1 16.84)
16 WNR 77.92 | 26.66 24.55 34.02
WNR + R, | 73.77 | 42.71 (1 16.05) | 42.71 (1 18.16) | 50.63 (1 16.61)
50 WNR 82.58 | 11.36 8.23 17.34
WNR + R,, | 75.19 | 33.12 (1 21.76) | 31.60 (1 23.37) | 40.11 (1 22.77)
| WNR 42.75 | 10.20 8.72 15.80
WNR + R,, | 56.08 | 24.02 (1 14.82) | 23.13 (T 14.41) | 30.55 (1 14.75)
) WNR 50.17 | 15.37 14.14 21.92
Alexnet WNR + R,, | 60.34 | 32.89 (1 17.52) | 32.24 (1 18.10) | 40.50 (1 18.58)
4 WNR 59.14 | 17.54 16.03 25.08
WNR + R,, | 65.82 | 31.00 (1 13.46) | 30.85 (1 14.82) | 38.26 (1 13.18)
3 WNR 69.89 | 19.65 18.30 27.73
WNR + R,, | 70.37 | 34.13 (1 14.48) | 33.61 (1T 15.31) | 41.08 (1 13.35)
16 WNR 77.92 | 15.98 14.04 21.34
WNR + R, | 73.77 | 33.31 (1 17.33) | 31.72 (1 17.68) | 40.56 (1 19.22)
50 WNR 82.58 | 5.58 3.33 10.44
WNR + R,, | 75.19 | 19.65 (1 14.07) | 18.38(1 15.04) | 25.41 (1 14.97)

Table 6. Ablation on defense components of proposed DBMA and comparison with baseline. Both the components individually provide

better defense than baseline. DBMA yields best performance when WNR and R,, are used together.

Surrogate Defense Black Box Model : Alexnet
model Components Surrogate Model (defense): Resnet-18
(attacker) clean BIM PGD Auto Attack
Alexnet- | Baseline 82.58 | 7.02 4.53 11.65
half WNR 77.92 | 26.66 (1 19.69) | 24.55 (120.02) | 34.02 (1 22.37)
R, 77.03 | 29.40 (122.38) | 28.32 (123.79) | 37.16 (1 25.51)
WNR + R,, | 73.77 | 42.71 (1 35.69) | 42.71 (1 38.18) | 50.63 (1 38.98)
Alexnet Baseline 82.58 | 4.17 2.19 8.55
WNR 77.92 | 1598 (1 11.81) | 14.04 (1 11.85) | 21.34 (1 12.79)
R, 77.03 | 16.52 (1 12.35) | 15.09 (1 12.9) | 22.40 (1 13.85)
WNR + R,, | 73.77 | 33.31 (1 29.14) | 31.72 (1 29.53) | 40.56 (1 32.01)

and 7, where the defense becomes more effective on in-
creasing the S¢’s capacity against various attacks using
Alexnet-half as S3%,. A similar trend is observed against
the attacks crafted using Alexnet and Resnetl8. For the
other way around, i.e., when S% has relatively higher ca-
pacity than S, more powerful attacks can be crafted. This
is evident from rows 1, 2, and 3, where stronger adversar-
ial samples are obtained on increasing the capacity of S%,
for a given an. For instance, for Resnet18 as S,‘,in, stronger
attacks (lower adversarial accuracy) are obtained by using
Resnet18 as S¢,, followed by Alexnet and Alexnet-half. A

similar pattern is observed on other choices of S¢,.

8. Our defense (DBMA) on larger black box
model

Throughout all our experiments, we used Alexnet as the
black-box model B,, . To check the consistency of our
approach DBMA across different architecture, especially
for bigger and high-capacity networks, we perform experi-
ments using Resnet34 as black-box model and report corre-
sponding results in Table 8. With Resnet18 and Alexnet as
the defender’s and attacker’s surrogate model (S¢, and S2)



Table 7. Investigating the effect of surrogate model’s architecture (for both defender and attacker) on the performance of our proposed
approach (DBMA). Given defender’s surrogate model, the attack is stronger if larger surrogate model is used by the attacker.

Surrogate model | Surrogate model Black Box Model : Alexnet
(defender) (attacker) clean | BIM | PGD | Auto Attack
Resnet-18 Alexnet-half 73.77 | 42.71 | 42.71 50.63
Resnet-18 Alexnet 73.77 | 33.31 | 31.72 40.56
Resnet-18 Resnet-18 73.77 | 22.48 | 21.93 29.48

Alexnet-half Alexnet-half 74.94 | 3898 | 39.3 47.83
Alexnet-half Alexnet 74.94 | 29.04 | 27.58 35.37
Alexnet-half Resnet-18 7494 | 20.72 | 19.11 26.79
Alexnet Alexnet-half 74.67 | 40.08 | 39.6 48.5
Alexnet Alexnet 74.67 | 29.49 | 28.63 36.93
Alexnet Resnet-18 74.67 | 21.51 | 20.24 28.44

Table 8. Performance of our approach DBMA in defending the larger black-box network (i.e., Resnet34). Across various combinations,
DBMA shows a consistent improvement against the different attacks with a small drop in the clean accuracy.

Method Slll\f[roo(;g;te Slf\f[rooé(;;te Black Box Model : Resnet34
(Defender) | (Attacker) | Clean | BIM | PGD | Auto-Attack
Baseline - Resnetl8 | 95.66 | 3.11 1.23 11.82
DBMA (Ours) | Alexnet Resnetl8 | 87.06 | 20.76 | 17.33 | 25.11
Baseline - Alexnet 95.66 | 21.36 | 12.83 | 27.85
DBMA (Ours) | Resnetl8 Alexnet 88.40 | 48.16 | 44.80 | 56.65

Table 9. Performance of our approach DBMA with fourier transform and wavelet transform based noise removal technique (FNR and
WNR, respectively). WNR defense outperforms the FNR across different attacks. Also, WNR-based DBMA (WNR + R,) yields more
significant gains in performance on CIFAR10.

Surrogate Method Black Box Model : Alexnet
model Surrogate Model (defense): Resnet-18
(attacker) clean BIM PGD Auto Attack
Baseline 82.58 | 7.02 4.53 11.65
Alexnet- FNR 79.14 | 13.30 (T 6.28) 10.86 (1 6.33) | 20.47 (1 8.82)
half FNR+ R, 74.13 | 28.38 (1 21.36) | 27.05 (1 22.52) | 35.47 (1 23.82)
WNR 77.92 | 26.66 (1 19.64) | 24.55 (1 20.02) | 34.02 (1 22.37)
WNR + R,
(Ours) 73.77 | 42.71 (1 35.69) | 42.71 (1 38.18) | 50.63 (1 38.98)
Baseline 82.58 | 4.17 2.19 8.55
FNR 79.14 | 5.87 (1 1.70) 4.03 (1 1.84) 10.97 (1 2.42)
Alexnet | FNR+ R, 74.13 | 19.24 (1 15.07) | 17.88 (1 15.69) | 24.55 (1 16.00)
WNR 77.92 | 1598 (T 11.81) | 14.04 (1 11.85) | 21.34 (1 12.79)
?gfs)* Bn | 7377 | 3331 (129.14) | 3172 (1 29.53) | 40.56 (1 32.01)

respectively, we observe the improvement of ~ 27 — 32%
in adversarial accuracy across attacks compared to baseline
(rows 37 and 4'"). With Alexnet as the defender’s surro-
gate and Resnet18 as the attacker’s surrogate model, we get
an improvement of ~ 17 — 23% across attacks (rows 1!
and 2"%). As observed in previous experiments, compared
to baseline, clean accuracy drops by ~ 7 — 8%. Overall,
across different black box models, our proposed defense
DBMA has obtained decent performance. Hence we con-
clude, DBMA is even effective on bigger black box archi-
tectures.

9. Comparison with Fourier Transform based
Noise removal

Apart from the wavelet transformations, some recent works
utilised the fourier transformations to remove the adversar-
ial noise from the adversarial images, and further found it to
be effective in denoising [8]. In this section, we do an abla-
tion on our choice of Wavelet-based Noise Remover (WNR)
over the other possible choice of fourier-based Noise Re-
mover (FNR).

As observed in recent works [8], adversarial attack
affects the high-frequency components more than low-



frequency components. Therefore, In FNR we apply a low
pass filter on an image with threshold radius 7. Similar
to WCSM, we compute LCRc , LCR4, LCR and ROC
for different values of r. The optimal value of r (i.e., 7)
is selected at which ROC starts saturating (+ = 11). In
Table 9, we observe, compared to baseline, Fourier-based
DBMA gives an improvement of = 21 — 34% in adver-
sarial accuracy across attacks for Alexnet half (rows 1 and
3).Compared to Fourier-based DBMA, the results using our
wavelet-based DBMA are significantly better in terms of
adversarial accuracy (rows 1 and 5) with similar clean per-
formance. Similarly, for Alexnet, Wavelet-based DBMA
gives ~ 16 — 24% better adversarial accuracy compared
to Fourier based DBMA across all attacks (rows 8 and 10).
Hence, our wavelet-based DBMA is more robust across dif-
ferent adversarial attacks than Fourier-based DBMA.

10. Visualization

Output of WNR

Predicted class : Cat

Output of (WNR +R,))

Original Image

"
r.i.

Predicted class : Cat

Clean

Predicted class : Cat

Adversarial

Predicted class : Dog Predicted class : Dog Predicted class : Cat
Figure 2. Visualization of images: The top row indicates input
as clean image and bottom row corresponds to adversarial image.
The predictions obtained by the black-box network on inputs: (a)
Original clean image (b) Output of wavelet noise remover on clean
image (c) Output of WNR with regenerator network (R,) on clean
image (d) Original adversarial image (e) Output of wavelet noise
remover (WNR) on adversarial image (f) Output of WNR with
regenerator network (R,) on adversarial Image. Here, the ground
truth class is Cat. Our method (DBMA) produces correct output
using regenerated image as input.

11. Algorithm

Algorithm 1 Algorithm for our proposed method (DBMA)

Require: ]31ack box model B,,, max coefficients k¥
Ensure: B,,
Step 1: Model Stealing

1: Surrogate model S,,,, Synthetic data .S; <— Model Steal-
ing on B,,

Step 2: Wavelet Coefficient Selection Module

2: Obtain adversarial samples (Sy,) corresponding to Sy
using adversarial attack on S,,

3: fork=1:k™"":do

4 Sk < WNR(S4q.k)

5: Nflips =0

6 fori=1:(|Sk ) do

7

8

9

zl, « Sk [i] {it" element of S% }

xt <« Sy[i] {i" element of Sz}
: if label (B, (7%,)) # label(B,,(z")) then
10: Nitips = Nypips +1
11: end if
12:  end for
13: LFRk = Nflips/|Sd|
14: end for

15: k = argmin LFRF
k

Step 3: Training Regenerator network(R,)

16: Sk < WNR(Sg.k)

17: Sk« WNR(Syq.k)

18: Initialize R?

19: for epoch < MaxEpoch do
200 fori=1:(]Sy) do

21: xl < Sg[i] {i" element of Sz}

22: zl «+ Skli] {ith element of S}

23: zl, < Sk ] {ith element of S% }

24: Les = OS(Sm (R (7)), S (2t)) {CS is cosine
similarity}

25 Ly = KL(s0ft(Sm(Ru(,))), 50ft(Sp (R (3
{K L is KL divergence}

26: Lye = ||Ru (k) — @], + || Ru(ZL,) — 2,

27: L(RZ) = —ALes + Mol + A3Lg,

28: Update RY by minimizing L(RY) using Adam
Optimizer

29:  end for

30: end for

31: By, « concatenate(WNR(., k), RS, B,,) {The
black box model By, is used by attacker}
32: return B,,




Table 10. Attack parameters for different adversarial attacks: BIM, PGD and Auto Attack

Dataset Attack Parameters Adversarial Attacks
BIM PGD | Auto Attack
€ 8/255 8/255 8/255
CIFAR-10 0.00156
Estep (e/no of iterations) 21255 B
no of iterations 20 20 -
€ 4/255 4/255 4/255
SVHN Estep 2/255 2/255 -
no of iterations 20 20 -

12. Adversarial Attack Parameters and Train-
ing Details

We evaluate the performance of black box model (B,,) on
three adversarial attacks, PGD, BIM and Auto Attack. Pa-
rameters used for each attack are summarized in Table 10.

Training details of Regenerator Network (R,): The
regenerator network is trained with Adam optimizer with
learning rate of 0.0002 for 300 epochs. Learning rate is
decayed using linear scheduler, where we keep the learning
rate fixed for 100 epochs and then linearly decay the rate to
zero. Batch size is set to 128.
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