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Abstract

Raindrops adhering to the lens of UAVs can obstruct vis-
ibility of the background scene and degrade image quality.
Despite recent progress in image deraining methods and
datasets, there is a lack of focus on raindrop removal from
UAV aerial imagery due to the unique challenges posed by
varying angles and rapid movement during drone flight. To
fill the gap in this research, we first construct a new bench-
mark dataset for removing raindrops from UAV images,
called UAV-Rain1k. In this paper, we provide a dataset gen-
eration pipeline, which includes modeling raindrop shapes
using Blender, collecting background images from vari-
ous UAV angles, random sampling of rain masks and etc.
Based on the proposed benchmark, we further present a
comprehensive evaluation of existing representative image
deraining algorithms, and reveal future research opportu-
nities worth exploring. The proposed dataset is publicly
available at https://github.com/cschenxiang/
UAV-Rain1k.

1. Introduction

As unmanned aerial vehicles (UAVs) are increasingly em-
ployed for tasks such as surveillance, mapping, and envi-
ronmental monitoring, the quality of captured imagery be-
comes paramount. Aerial images are susceptible to degra-
dation in clarity, color distortion, and loss of information
due to adverse weather conditions and other factors dur-
ing the acquisition process [20]. For example, during rainy
weather, raindrops adhering to the lens of UAVs can signif-
icantly degrade image quality, hindering visibility and af-
fecting the accuracy of downstream image processing tasks.
Thus, developing effective raindrop removal techniques tai-
lored to UAV imagery is essential for enhancing the relia-
bility and usability of UAV-based applications [2, 18, 21].

In recent years, notable progress has been made in image
deraining, propelled by the advent of effective image pri-
ors and deep learning networks [1, 4]. To better address the
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Figure 1. Classification diagram of publicly available datasets for
haze removal and rain removal. Our proposed UAV-Rain1k fills
the research gap.

problem of removing raindrops, Qian et al. [12] constructed
the first raindrop removal dataset, comprising 1,119 pairs
of images featuring raindrops against varied backgrounds.
These images are captured using a camera equipped with
two aligned pieces of glass, one sprayed with water while
the other remained clean. Later, Quan et al. [13] presented
a mixed rain dataset, namely RainDS, which contains syn-
thetic and real-world raindrops created by manually mim-
icking rainfall with a sprinkler.

Although the above mentioned datasets [12, 13] have
propelled research in raindrop removal, they are all tailored
for autonomous driving scenarios. When revisiting research
on UAV image processing under adverse weather condi-
tions, most existing studies focus on haze removal, with
little attention given to raindrop removal tasks. However,
the reality is that raindrop interference on UAV aerial im-
ages is also a common scenario in rainy conditions. Com-
pared to autonomous driving scenarios, raindrop effects on
UAV aerial imagery pose greater challenges. On one hand,
UAVs operate in dynamic environments, which can lead to
unpredictable raindrop patterns on lenses or sensors. On the
other hand, UAVs often capture images from varying dis-
tances and angles, resulting in inconsistent sizes and shapes
of raindrops within the images.

To fill the gap in this research, we present a new bench-
mark for raindrop removal from UAV aerial imagery, called
UAV-Rain1k. To the best of our knowledge, this is the first
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Figure 2. Illustration of the dataset generation pipeline.

dataset specifically curated for raindrop removal tasks in the
field of aerial image processing (see Figure 1). In addition,
we further conduct a comprehensive evaluation of several
state-of-the-art image deraining methods, which are quanti-
tatively and qualitatively evaluated on our new dataset. Our
evaluation and analysis demonstrate the performance and
limitations of existing approaches, providing promising in-
sights. The proposed UAV-Rain1k dataset is publicly avail-
able for research purposes, and we intend to periodically
update our benchmarking results for noticeable new algo-
rithms.

The rest of this paper is structured as follows. In Sec-
tion 2, we provide a detailed description of the pipeline used
to construct the dataset. We analyze the performance of ex-
isting algorithms on our benchmark in Section 3. Finally,
the concluding remarks will be given in Section 4.

2. Dataset Construction

In this section, we describe the process of dataset construc-
tion. Since obtaining paired real-world raindrop and rain-
free aerial images for the same scene and field of view is
not feasible, we synthesize a more diverse dataset of UAV
aerial images with raindrops. Due to the diverse scenes,
complex objects, and vast spatial coverage in aerial images,
the previous methods [9] for synthesizing rainy images are
not suitable for aerial imagery. For instance, in the previ-
ously synthesized data [12, 13], raindrops are consistently
simulated as being captured at a horizontal angle over land.
However, in reality, the distribution and size of raindrop
adhesions vary with different aerial angles. Therefore, we
construct a dataset that takes into account the realistic dis-
tribution of raindrops in aerial scenes. Figure 2 shows the
dataset generation pipeline. The details will be discussed
below.

2.1. Raindrop Generation

As a complex atmospheric process, rainfall can lead to var-
ious forms of visibility reduction due to environmental fac-
tors such as raindrop size, rain density, and wind speed. The
fidelity and intricacy of rain play a crucial role in the syn-
thesis of raindrops [14]. To achieve higher quality and more
realistic synthetic aerial images with raindrops, we employ
an open-source 3D graphics engine (Blender) to simulate
and generate images of raindrops within real aerial scenes
for training purposes. This 3D graphics engine is capable of
rendering raindrops using a physical motion model, allow-
ing us to set depth information and color values separately
in the RGB channels [7], which is facilitated by the Blender
plugin known as the Rain Generator.

Inspired by Garg [5], we model the generation of rain-
drop layers as a motion blur process. The instantaneous
shape of a water droplet at time t is represented by the func-
tion r[t, ϑ, ϕ], where r is the distance from a point on the
droplet’s surface to its center, θ is defined as the angle op-
posite to the direction of the droplet’s fall at that point, and
ϕ is defined as the angle between that point and the pro-
jection of the line of sight onto any plane perpendicular
to the direction of fall. As raindrops fall, the influence of
aerodynamics and surface tension acting on the raindrop
causes rapid shape distortion over time. Mathematically,
this motion process can be represented based on the oscilla-
tory characteristics of the falling raindrop:

r[t, ϑ, ϕ] = r0(1 +
∑
m

cos(mϕ)pm(θ)), (1)

where r0 is the undeformed radius, and the factor cos(mϕ)
depends on the droplet size r0. The function pm(θ) de-
scribes the time dependent variation of modal shape and
amplitude with respect to θ. The droplet’s shape at any
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Figure 3. Distribution of rain and scene of the proposed bench-
mark.

given moment is determined by the cumulative impact of
falling time on both modal shape and amplitude.

2.2. Background Collection

The quality of the clear background image, also known as
the ground-truth image, is equally crucial when construct-
ing a paired dataset [4, 6, 10]. These images should have
higher resolution and rich object details. Unfortunately, ex-
isting datasets have placed significant emphasis on rain sim-
ulation but have overlooked the need for high-quality back-
ground images. Regrettably, the realistic rainy weather im-
ages used in previous synthetic datasets were consistently
captured from a flat angle on the ground. In reality, there
is a significant disparity between the lighting conditions in
the air and those on the ground, especially in aerial im-
agery. Aerial images predominantly feature ground struc-
tures as the primary compositional elements in the back-
ground, which aligns with human visual perception of rainy
scenes. Obtaining rain-free background images that accu-
rately represent the human perception of real rainy con-
ditions is a challenging task, particularly when searching
for such images on the Internet. These images also suffer
from various issues, including compression artifacts, wa-
termarks, low resolution, defocused blurriness, absence of
objects, and etc. These challenges can present difficulties
for advanced vision-based remote sensing applications.

Our collection of background images encompasses a
wide range of scenes, including urban, natural, and rural en-
vironments. Furthermore, we deliberately sought variations
in aerial shooting angles during the photography process
to capture different scene effects in real scenarios. Con-
sequently, the complexity of these scenes and backgrounds
presents both challenges and value to our subset of real data.

Figure 4. User study results. The ratings given by all participants
on different raindrop datasets.

To generate synthetic data, we employ the SMRC-ct13
model unmanned aerial vehicle for on-site shooting. To
ensure that the subsequently synthesized rainy images are
more realistic and cohesive, we deliberately select overcast
and rainy weather conditions for capturing background ma-
terials. Additionally, during the shooting process, we di-
versify our approach by flying the drone in different di-
rections to cover scenes from various angles. Due to con-
straints in selecting actual shooting locations for aerial im-
ages, we complement our dataset by acquiring copyright-
free and non-commercial aerial images and videos through
Google searches to synthesize rainy weather images. In to-
tal, we capture and collect 327 aerial video sequences, com-
prising approximately 25,000 frames.

To maintain the richness and diversity of our dataset, we
carefully select frames from each video sequence that met
our criteria, filtering out low-quality images containing is-
sues such as low resolution, website watermarks, compres-
sion artifacts, and blurriness. We also exclude background
images with excessive lighting or high brightness to ensure
appropriate background composition. In summary, we cap-
ture and collect footage from over 12 typical scenes, includ-
ing parking lots, streets, alleys, playgrounds, courtyards,
and forests. The solar storm diagram as shown in Figure 3.

2.3. Image Composition

In [12], a method is employed where a piece of glass with
attached water droplets is inserted in front of the drone
camera lens to simulate the presence of raindrops. How-
ever, during the process of capturing aerial rain images,
due to the complexity and specificity of capturing scenes
with moving perspectives, we are unable to obtain per-
fectly consistent rainy and rain-free images through aerial
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Figure 5. Example images from previous representative datasets (Raindrop [12] and RainDS [13]) and our proposed more challenging
UAV-Rain1k.

Table 1. Quantitative comparisons on the UAV-Rain1k benchmark dataset. “#FLOPs” and “#Params” represent FLOPs (in G) and the
number of trainable parameters (in M), respectively.

Methods Input DSC [11] RCDNet [16] SPDNet [22] Restormer [23] IDT [19] DRSformer [3]
Category - Prior CNN CNN Transformer Transformer Transformer

PSNR 16.80 16.68 22.48 22.54 24.78 22.47 24.93
SSIM 0.7196 0.7142 0.8753 0.8594 0.9054 0.8957 0.9155

#Params - - 3.17 3.04 26.12 16.41 33.65
#FLOPs - - 21.2 89.3 174.7 61.9 242.9

images. This method also provides some insights for ver-
ifying the authenticity of synthetic datasets. We collect
real aerial images captured during rainy weather and gather
drone footage of raining scenes at different angles and mo-
tion states as a reference baseline for synthetic images. This
ensures that the collected images exhibit variations in rain-
drop density, size, and positions, allowing us to filter out
low-quality and misleading synthetic data.

Our goal is to achieve visual realism and consistency in
synthetic rainy images, with the aim of minimizing the do-
main gap between synthetic and real images. To achieve
this, we do not rely on simple copy-and-paste methods. In-
stead, we employ a random sampling approach for rain-
drop masks to ensure that each synthesized rainy image is

unique. To ensure the synthesized images exhibit visual
realism and reduce the domain gap between synthesized
and real images, inspired by Qian et al. [12], we model
the blurred or occluded effects D of raindrops in dispersed
small-sized locally coherent regions, combined with a clean
background image B, to form the degraded raindrop image
Rd. Mathematically, the synthesis process can be expressed
as follows:

Rd = (1−M)
⊙

B +D, (2)

where D represents the occlusion or blurring effects caused
by raindrops, and B is a binary mask. If M(x) = 1, then
the pixel x in the mask belongs to the raindrop region, oth-
erwise, it is part of the background image. As a result, we
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seamlessly integrate the raindrop mask with the background
image. Consequently, compared to other dataset generation
methods, our proposed dataset tends to be more complex
and diverse, enhancing its ability to generalize across vari-
ous scenarios.

2.4. Benchmark Statistics

As a result, we propose a new benchmark for raindrop re-
moval from UAV aerial imagery, called UAV-Rain1k. In
total, the training and testing set of the UAV-Rain1k con-
tains 800 and 220 synthetic images, respectively. The aver-
age resolution of all images is 1500 × 1000. Our dataset
comprises four rain density labels (e.g., light, moderate,
heavy, and irregular). In Figure 3, the inner ring displays
labels for each rain density, corresponding to a specific
quantity of synthesized images. Furthermore, we categorize
the background images according to aerial shooting angles
and aerial scenes. Consequently, our dataset demonstrates
greater diversity and a larger scale in terms of both rain con-
ditions and ground truth (GT) images. Our emphasis goes
beyond just the sequence number and total frames of real
rain. We also prioritize the diversity of real rain patterns
and the authenticity of background images. This focus has
a significant impact on the model’s ability to generalize to
real rain scenarios.

Based on the aforementioned work, we have summarized
three innovative aspects of the UAV-Rain1k dataset:

1) A more comprehensive and reliable background col-
lection effort. Encompassing a diverse range of scenes,
while simultaneously considering the complexity and
uniqueness of capturing scenes from dynamic perspec-
tives.

2) More authentic raindrop shapes. We model the gener-
ation of the raindrop layer as a motion blur process and
employed an open source 3D rendering engine for the
depiction of raindrops, achieving higher quality and
more realistic raindrop masks.

3) A more natural synthesis effect. Integrating authen-
tic and diverse raindrop masks seamlessly with back-
ground images covering various scenes to achieve a
more realistic visual effect. Figure 5 provides some
visual examples.

2.5. Subjective Assessment

We conduct an online user study to evaluate the quality of
the synthesis rainy images. Here, we prepare for 90 rainy
images, randomly chosen from 3 datasets (Raindrop [12],
RainDS [13] and UAV-Rain1k) with 30 samples from each
dataset. We recruit 40 participants, consisting of 20 males
and 20 females. Each participant is shown a random set
of 150 rainy images. Then, employing a 3-point Likert

scale (i.e., agree, neutral, disagree), all participants assess
the perceived realism of each image. In the end, each cate-
gory receives 600 ratings, which are used to assess the qual-
ity of the synthetic dataset. Subjective scores are shown
in Figure 4, where our UAV-Rain1k consistently outper-
forms the other two benchmarks. This also indicates that
our synthesized rain is assessed as more realistic compared
to previous datasets. Note that we do not standardize the
scores. Therefore, what matters here is the score ranking
rather than the absolute score values. Despite the relatively
small number of evaluators, we observe good consensus and
small inter-rater differences in the same paired comparison
results, making the scores reliable.

3. Algorithm Benchmarking
In this section, based on the proposed new benchmark,
we evaluate 6 representative image deraining algorithms:
DSC [11], RCDNet [16], SPDNet [22], Restormer [23],
IDT [19], and DRSformer [3]. To ensure fair compar-
isons, we utilize the officially released codes of these ap-
proaches. Each method undergoes retraining on the UAV-
Rain1k benchmark, conducted on servers equipped with
NVIDIA GeForce RTX 3090 GPUs.

3.1. Quantitative Evaluation

Table 1 presents the quantitative performance evaluation
results of various algorithms on the UAV-Rain1k dataset.
Here, we utilize two widely referenced image quality as-
sessment metrics, PSNR (Peak Signal-to-Noise Ratio) [8]
and SSIM (Structural Similarity Index) [17], to measure the
restoration quality of different methods. Additionally, we
assess the model efficiency of each approach by consider-
ing parameters and FLOPs (Floating Point Operations per
Second).

It is evident from the results that DRSformer [3] and
Restormer [23] achieve the top two quantitative outcomes
in rain removal performance. However, it is noteworthy
that their model complexity is comparatively higher than
traditional CNN methods [16, 22]. To comprehensively
evaluate the performance and efficiency of different algo-
rithms, future research endeavors could delve deeper into
strategies for maintaining high performance while reducing
model complexity. This would address the requirements of
speed and resource consumption in real-world remote sens-
ing applications [2].

3.2. Qualitative Evaluation

Figure 6 and Figure 7 illustrates the visual comparison
results of different baseline algorithms on our proposed
benchmark (In Figure 6, the effect corresponds to a com-
posite image taken from a horizontal angle, while Figure 7
represents a composite image captured from an downward
angle). In comparison to CNN-based methods (RCDNet
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Raindrop image RCDNetDSC SPDNet

Restormer IDTDRSformer Ground truth

Figure 6. Visual quality comparison on the UAV-Rain1k dataset (horizontal angle). Zooming in the figures offers a better view at the
deraining capability.

Raindrop image RCDNetDSC SPDNet

Restormer IDTDRSformer Ground truth

Figure 7. Visual quality comparison on the UAV-Rain1k dataset (downward angle). Zooming in the figures offers a better view at the
deraining capability.

[16] and SPDNet [22]), Transformer-based approaches ex-
hibit superior capability in removing undesired raindrop

and recovering clearer visual outcomes, it achieves remark-
able visual effects from any aerial perspective, eliminat-
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Figure 8. Visualization of the object detection results after applying different deraining algorithms.

ing raindrops and obscuring effects without rain residues
and pseudo artifacts. owing to the evident advantage of
Transformers in modeling non-local information. Addition-
ally, we observe grid artifacts in the restoration results of
IDT [19], indicating their limited capacity in handling high-
resolution UAV imagery. Furthermore, nearly all methods
exhibit poor performance in local detail regions, as they
tend to remove image details while removing raindrop, sug-
gesting that there are still rooms for improvement.

3.3. Application-Based Evaluation

To investigate whether the raindrop removal process bene-
fits downstream vision-based remote sensing applications,
we apply the popular object detection pre-trained model
(YOLOv8 [15]) to evaluate the deraining results. Fig-
ure 8 shows the visualization of the object detection re-
sults after applying different deraining methods. As one can
see, the detection precision of the deraining results by all
approaches demonstrates varying degrees of improvement
compared to the input raindrop images, especially in the
recognition of vehicles on the road. While removing the
raindrop regions, some existing methods may also remove
the semantic information, disturbing human understanding
and degrading high-level vision algorithms. Future works
could integrate low-level and high-level tasks to ensure the
former contributes to the latter.

4. Conclusion

In this paper, we have proposed a new benchmark dataset
for raindrop removal from UAV aerial imagery. We have
provided a detailed overview of the synthesis process for the
UAV-Rain1k dataset, covering background collection, rain-
drop modeling, image synthesis, results demonstration, and
subjective evaluation. Based on the proposed benchmark,
we further experimentally validated representative image
deraining algorithms in three aspects: quantitative evalua-
tion, qualitative evaluation, and application-based evalua-
tion. Experimental results shed light on the limitations of
existing methods and point towards promising future direc-
tions. This paper not only pioneers a new research direction
in UAV image processing but also advocates for the com-
munity to propose more effective algorithms.
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