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Abstract

Given the emergence of deep learning, digital pathology

has gained popularity for cancer diagnosis based on his-

tology images. Deep weakly supervised object localization

(WSOL) models can be trained to classify histology images

according to cancer grade and identify regions of interest

(ROIs) for interpretation, using inexpensive global image-

class annotations. A WSOL model initially trained on some

labeled source image data can be adapted using unlabeled

target data in cases of significant domain shifts caused by

variations in staining, scanners, and cancer type. In this pa-

per, we focus on source-free (unsupervised) domain adap-

tation (SFDA), a challenging problem where a pre-trained

source model is adapted to a new target domain without

using any source domain data for privacy and efficiency

reasons. SFDA of WSOL models raises several challenges

in histology, most notably because they are not intended to

adapt for both classification and localization tasks. In this

paper, 4 state-of-the-art SFDA methods, each one repre-

sentative of a main SFDA family, are compared for WSOL

in terms of classification and localization accuracy. They

are the SFDA-Distribution Estimation, Source HypOthesis

Transfer, Cross-Domain Contrastive Learning, and Adap-

tively Domain Statistics Alignment. Experimental results on

the challenging Glas (smaller, breast cancer) and Came-

lyon16 (larger, colon cancer) histology datasets indicate

that these SFDA methods typically perform poorly for local-

ization after adaptation when optimized for classification.

Code: github.com/AlexisGuichemerreCode/survey hist wsol sfda
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1. Introduction

Histology images obtained by microscopy of biopsy tissue

play a crucial role in cancer diagnosis. These images are

valuable resources for pathologists, allowing them to assess

tumour type and aggressiveness [1], and potentially adapt

the patient’s treatment. Identifying cellular features or tu-

mour markers remains a challenging and costly undertaking

because it relies on a pathologist’s expertise and experience

[27, 45, 50]. Given the intra- and inter-variability of di-

agnoses, this strong dependence on the pathologist makes

reproducibility of grading challenging [27].

Recent methods from the machine learning (ML) and

computer vision communities can assist the pathologist in

the diagnosis of cancers based on histology images [14].

Early image analysis methods for digital pathology rely

on ML models such as thresholding [46], edge detection

[13], post-processing[13], and clustering. The advent of

deep learning (DL) has enabled the development of more

robust models for classification, regression, segmentation,

and localization to handle the complexity and variability of

histology images. Despite the effectiveness of DL mod-

els like convolutional neural networks (CNNs) and vision

transformers (ViTs), they are often seen as ”black boxes”

[27, 45]. This is problematic for medical decision-making,

where understanding the model’s decision is crucial for sup-

porting the pathologist’s analysis.

In histology, whole slide images (WSIs) are captured at

a very high resolution (over 200 million pixels) [45]. Ex-

tracting pixel-level annotations for supervised training of a

segmentation model is costly and time-consuming. How-

ever, WSOL models can provide spatial visualization linked

to a classifier’s predictions after training on images sampled

from WSIs annotated with inexpensive image-class labels.

Given an input image, WSOL models can predict the cancer

grade and identify ROIs. However, these models should be

adapted using unlabeled target data when applied to histol-
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ogy images captured under different conditions (e.g., stain-

ing, scanners, and cancer type) to address domain shifts.

The performance of WSOL models typically declines

due to the shift in data distribution between the training

(source) and testing (target) domains [17, 28, 52]. Several

discrepancy-based and adversarial methods have been pro-

posed for unsupervised domain adaptation (UDA) of ML

and DL models, using labeled images from a source domain

and unlabeled images from the target domain [17, 28, 52].

Given the privacy, confidentiality, and logistical challenges,

source data may not be available for medical imaging ap-

plications. To overcome these limitations, source-free (un-

supervised) domain adaptation (SFDA) methods have been

proposed, where source data is not required during the adap-

tation process [16, 65, 68]. SFDA is challenging since la-

beled source data cannot be used during adaptation to align

source and target distributions.

This paper focuses on white-box SFDA methods, di-

vided into two main categories: data generation and fine-

tuning [16], as illustrated in Fig. 1). Regarding data

generation, some strategies employ style transfer to adjust

target images to imitate the source domain’s style [23].

Other methods aim to enrich the target domain with la-

beled images by generating content in the target style[29].

[11, 42, 51] aim to create features similar to those of the

source domain to align features between the target and

source domains. [53] propose using contrastive learning,

where positive samples are pulled close while negative ones

are pushed apart. In the absence of the source domain, the

classifier’s weights may be used as prototypes of each class

learned on the source domain. [62, 63] focus more on us-

ing the neighbours to guide the adaptation process for each

image. Finally, teacher-student models also exploit criteria

based on information maximization and entropy minimiza-

tion [8, 61]. Although SFDA methods have been applied

extensively for classification of natural images [16, 65, 68],

their performance for WSOL (classification and localiza-

tion) of histology images has not been established.

In this paper, state-of-the-art SFDA methods are empir-

ically evaluated for the adaptation of three WSOL models:

Deep MIL [35], GradCAM++ [2] and TS-CAM [20]. The

four SFDA methods we compare are representative of the

two main white-box SFDA families – SFDA-Distribution

Estimation (SFDA-DE) [11] based on domain distribution

generation, Source HypOthesis Transfer (SHOT) [61] based

on hidden structure mining, Cross-Domain Contrastive

Learning (CDCL) [53] based on contrastive learning, and

Adaptively Domain Statistics Alignment (AdaDSA) [15]

based on domain alignment via statistics. Experiments are

conducted on two challenging public datasets – GlaS (small

size, colon cancer) and Camelyon512 (large size breast can-

cer) – and SFDA methods are compared in terms of classi-

fication and localization accuracy.

2. Related Work

(a) Weakly Supervised Object Localization. WSOL

aims to localize object instances in an image by utilizing

only class-level labels. Class Activation Mapping (CAM)

is a widely used approach in WSOL, to extract the ROIs

of a particular object based on the spatial feature maps of

a CNN [71]. However, CAM-based methods focus on dis-

criminant image regions and produce low-resolution maps.

To overcome this issue, [35] proposes DeepMIL, which

uses a multi-instance learning framework to identify ob-

jects in images by first constructing instance representa-

tions, then computing a global representation of the bag

(image) using an attention mechanism that weights these

instances, with strong attention weights indicating regions

of interest (ROIs) and weak weights indicating background.

Also gradient-based methods have been proposed to high-

light resolution maps by fusing the upsampled CAMs with

the gradient of output class w.r.t. input image [7, 47].

Grad-CAM++ [2] builds on these methods by computing

weights from higher-order derivatives of the class output

for the feature maps, allowing for more accurate and class-

discriminating visualizations. This method refines the res-

olution maps by accounting for the pixel-wise impact on

classification decisions.

Since models used to obtain CAMs are only trained us-

ing image-class labels, they struggle to cover less discrimi-

native regions. This issue has been addressed by data aug-

mentation [10, 48, 55, 66, 69], where the network is en-

couraged to explore less discriminative regions of a par-

ticular object. For instance, the most popular method re-

moves the most discriminative regions and enables the net-

work to look beyond those regions through adversarial per-

turbation [48, 66] or using adversarial loss [10, 69]. Other

methods focus on directly producing localization maps in-

stead of post-processing spatial information obtained from

internal activations of network [43, 59, 67].

Despite substantial improvements, these methods may

still highlight background regions. To address this issue,

[56, 73] propose to suppress background regions so the

network can identify foreground regions corresponding to

a particular class with a high level of confidence. Sepa-

rate modules have been proposed to optimize localization

and classification accuracy by decomposing object parts for

classification and localization tasks, ensuring that the model

can retain comparable classification accuracy [36]. To reg-

ularize the internal CNN features for capturing different ob-

ject parts, [58] added encoder-decoder modules into dif-

ferent network layers, thereby preserving object details at

different levels. Additionally, [41, 70] are proposed to ex-

pand foreground maps to expand maps to the edges of the

concerned object. Despite significant advancements, these

models struggle to capture long-range within different ob-

ject parts, causing partial activation over different object
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Figure 1. Overall taxonomy of SFDA methods for classification as defined in [16].

parts. To overcome this issue, different transformer-based

methods have been proposed to expand activation over dif-

ferent object parts [5, 9, 20, 21, 30, 37, 49]. TS-CAM [20]

was the first method that employed a transformer for WSOL

by displacing the class head from the class token to the

patch token, and by combining activations presented in the

classification head with class tokens. However, this intro-

duces background noise into the maps. To address this is-

sue, [5] proposes a calibration module in the transformer for

producing smooth activation across different object parts.

Despite their impressive results, these methods are very

sensitive to threshold values. Recently, different methods

have been shown to generate fine-grained localization maps

while learning from noisy pseudo-labels harvested from

activations of different networks [6, 38–40]. A domain

adaptation-based technique has also been proposed to im-

prove localization accuracy [72].

(b) Source-Free Domain Adaptation. SFDA methods

can be categorized into white-box and black-box families

[16] (see Fig. 1). White-box methods access the infor-

mation contained in the source network, while black-box

methods only use the output of the source network for adap-

tation. White-box models can be further classified into two

categories: data generation and fine-tuning methods [16].

The data generation family of white-box SFDA meth-

ods is based on generating images in either the source style

[23, 60] or the target style [29, 31]. Concerning image gen-

eration in source style, [23] uses a generator to modify tar-

get images in the source style using the features of the orig-

inal and generated images. Style is transferred by matching

the mean and variance values of the features in each back-

bone layer to the mean and variance values contained in the

batch normalization layers of the source network. As a re-

sult, the source network should be able to process this image

to classify it correctly. This idea is also adopted in [60], us-

ing the same technique to generate images, but using these

images to obtain features that are close to those of the source

domain. These features are then used for domain alignment

between source and target.

[29, 31] consider generating images in the target style.

[29] train a conditional generator to produce images based

on the desired class. The source network is used to guar-

antee the class, and then a first discriminator receives the

generated image and an image from the target domain to

assure consistency of style and content of the generated im-

age wrt the target domain. The feature extractor of the target

network is trained such that another discriminator can gen-

erate similar features between the generated image and the

target domain images. The feature extractor is also trained

to produce the same output for the generated image.

The fine-tuning family of white-box SFDA methods

seeks to adapt the feature extractor such that it produces

features for the target domain that are similar to those of

the source. [12] considers using target images close to the

anchor in the feature space to create a surrogate source do-

main. Another possibility proposed by several authors is

to generate source-like features [11, 42, 51]. [42] propose

to generate features via a generator trained with the weight

of the classifier and contrastive learning. In [51], the au-

thors propose to model a virtual domain based on a Gaus-

sian Mixture Model (GMM) composed of a Gaussian den-

sity per class. The hypothesis of estimating the distribution

of the source by a Gaussian is also adopted by [11]. The

images of the target domain with the pseudo-labels clos-

est to the anchors (from the spherical k-means) are stored

and used to estimate the means and variances of each Gaus-

sian. With the Gaussian modeling and the ability to gener-

ate source-like features, alignment is achieved through Con-

trastive Domain Discrepancy (CDD) as introduced in [26].

In line with this idea of generating the same features for

each class, [3, 54, 57] propose methods based on contrastive

learning. The intention is to guide the network to learn

similar representations for the same class, close together

in the feature space while pushing away different samples.

In [54], the anchors used for the contrastive loss are the

weights of the source classifier. As a result, the loss func-

tion aligns features with the same pseudo-label obtained by

a clustering method with the anchors for the same class.

Instead of using data generation, some SFDA meth-

ods are based on the concept of knowledge distillation

[8, 32, 33, 61, 64]. These methods adapt using a teacher-

student architecture. Initially, both networks are initial-
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ized with the source model and the teacher model is used

to guide the student model through the learning process.

The teacher network is smoothly updated with the exponen-

tial moving average (EMA). Therefore, at each adaptation

stage, the teacher network incorporates more information

from the target domain. In [61], the teacher model is used

to guide the student network using the pseudo-labeling ob-

tained from the teacher features. In [64], the authors di-

vides the target domain images into two subgroups based

on the cross entropy loss function and use the teacher net-

work to guide the ”noisy” images. Also, other work extends

the approach with the use of multiple teachers and students

to build more robust models using information from each

source network.

An important part of fine-tuning methods is the pseudo-

labeling images. To mitigate misclassifications, some ap-

proaches rely on a Monte Carlo process that passes an

image through the network multiple times with various

dropouts. The purpose is to reduce the difference between

the prediction with and without dropouts. These methods

are usually used in addition to other loss functions to en-

hance the model. For example, in [22], a teacher-student

approach is used, and the Monte Carlo process is added to

the predictions of the teacher model to improve it.

Other SFDA methods focus on the relationships between

multiple images in the feature space, rather than on the im-

age itself. The idea is to assume that similar feature rep-

resentations must potentially belong to the same class. In

[63], the network is trained to encourage the predictions

of each image over its neighbours using stored predictions.

In [62], two sets are defined, containing feature representa-

tions and prediction scores to compute the k nearest neigh-

bours for each target image. They add an affinity parameter

for each determined neighbor to strengthen the relationship.

Another strategy for SFDA consists of using the infor-

mation contained in the batch normalization (BN) layers of

the source network. In [24], they use information maxi-

mization combined with a loss function that adjusts the dis-

tribution between the target feature output by the encoder

and the distribution contained in the classifier’s BN layer

using Kullback–Leibler divergence. [34] proposes a more

progressive adaptation of mean and variance information in

batch normalization layers. The scaling and shifting param-

eters are used such that they must remain close to those of

the source, as they are higher-order features. In [15], the im-

pact of the source is smoothly added during the adaptation

process through a weight.

3. Comparative Analysis of SFDA Methods

Initially, a neural network noted φsource = g.h is trained on

a source domain S = {xs, ys}
ns

i=1, where ys belongs to the

set of K classes and g : X → R
d is the feature extractor

and h : Rd → R
K is the classifier where wG ∈ R

m×K

denote the weights learned and wG
k ∈ R

m is the k-th weight

vector of wG. In SFDA, the source domain is only used for

pre-training the source network. Then, the goal is to train a

target network φtarget using only the unlabeled target data

T = {xt}, where xt ∈ Xt and t = 1, 2, ..., n.

This section provides additional details on the 4 white-

box SFDA methods compared in this paper to adapt WSOL

models for histology. Each SFDA method represents a fam-

ily of SFDA methods – either data generation or fine-tuning.

They are the SFDA-DE [11] based on domain distribution

generation, SHOT [61] based on hidden structure mining,

CDCL [53] based on contrastive learning, and AdaDSA

[15] based on domain alignment via statistics.

(A) SFDA-DE: [11] propose an approach to estimate the

source class distribution with a Gaussian distribution com-

bined with target features information. Firstly, pseudo-

labels ŷt are estimated by applying spherical k-means. Only

a subset of samples is preserved, based on distance crite-

rion to the corresponding anchor Aŷt

i

to avoid adding sam-

ples with incorrect pseudo-labels for the Gaussian estima-

tion. Given the restricted number of reliable features, it is

possible to estimate the parameters of each Gaussian more

accurately for each class k according to:

N sur
k (∥f̄ t

k∥2
w

G
k

∥wG
k ∥2

,
γ · f tk · f tk

⊤

∑
xt

i
∈D′

t

1(ŷti = k)
), k ∈ C, (1)

where ✶y=k is defined as the indicator function and f the tar-

get features. Consequently, for each class, it is possible to

estimate the distribution and thus generate source-like fea-

tures. The adaptation is achieved through Contrastive Do-

main Discrepancy (CDD) based on Maximum Mean Dis-

crepancy (MMD) and a subset of the class C′:

LCDD =

∑
k∈C′

Lk,k
MMD

|C′|
−

∑
k1∈C′

k1 ̸=k2∑
k2∈C′

Lk1,k2

MMD

|C′|(|C′| − 1)
, (2)

By estimating the source distribution, we gain a better

understanding of the distribution that our target features

should adopt, facilitating the efficient use of the classifier.

However, the method proposed the disadvantage that it re-

lies essentially on the pseudo-labels process. The accuracy

of these pseudo-labels will drastically impact the effective-

ness of the approach. A higher precision in the estimation of

those labels allows us to estimate the Gaussian distribution

more accurately and also push the corresponding feature to

the right direction in the feature space at the opposite high

level on the incorrect pseudo label will add to much error in

the estimation of the Gaussian and the target features will

not be pushed in a correct direction.

(B) CDCL: Contrastive learning methods are designed to

encourage the network to learn representations that make
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Figure 2. Illustration of SFDA process. (A) The SFDA-DE method is based on distribution estimation. It generates features in the style

of the source to perform alignment with target data. (B) CDCL is based on contrastive learning, where positive samples are pulled close

while negative ones are pushed apart. In the absence of the source domain, the classifier’s weights are used to define prototypes of each

class learned on source data. (C) SHOT is a hidden structure mining method based on information maximization. (D) AdaDSA focuses on

combining the statistics of the BN layers from the source to normalize target data.

similar samples (belonging to the same class) closer in the

feature space, while dissimilar samples are pushed away. As

with the SFDA-DE method [11], a clustering method based

on spherical k-means is achieved to obtain pseudo-labels

at the beginning of each epoch. The pseudo-labels are es-

sential as they allow creation of positive pairs and negative

pairs for the contrastive loss defined as follows:

LCDCL = −
K∑

k=1

1ŷi

t
=k log

exp(f i
t

⊤
w

k
s/τ)

K∑
j=1

exp(f i
t

⊤
w

j
s/τ)

. (3)

where τ is the temperature parameter. Unlike SFDA-DE,

CDCL presents the advantage of not estimating source

feature distribution, and only relying on using classifier

weights which reduces the impact of adding error in the

adaption process. Also, the contrastive loss helps to sep-

arate the features for each class in the feature space. How-

ever, like SFDA-DE, this approach relies on the accuracy of

pseudo-labels derived from spherical k-means.

(C) SHOT: The previous methods use pseudo-labels from

spherical k-means to guide the network. These techniques

can be limited in domain adaptation as they rely only on the

precision of the labels. In SHOT, they propose to use an

information maximization loss. This loss is composed of

an entropy and a diversity loss. This combination allows to

improve the confidence in its prediction but also encourages

the last one to consider all the classes.

Lent(φt;Xt) = −Ext∈Xt

∑K

k=1
δk(φt(xt)) log δk(φt(xt)), (4)

Ldiv(φt;Xt) =
∑K

k=1
p̂k log p̂k = DKL(p̂,

1

K
1K)− logK, (5)

Where p̂k is the mean output embedding of the whole tar-

get domain The information maximization loss plays a cru-

cial role in SHOT since it allows a clear separation between

classes in the feature space. This aspect is important be-

cause SHOT also relies on a cross-entropy loss based on

pseudo-labels ŷt obtained with a self-supervised pseudo-

labeling strategy inspired by k-means:

Lself = E(xt,ŷt)∈Xt×Ŷt

∑K

k=1
1[k=ŷt] log δk(φt(xt)),

(6)

Eq. 6 encourages the network to focus on more than its

prediction with the Lent. SHOT has the advantage of not

depending primarily on pseudo-labels. Information maxi-

mization is composed of entropy and divergence loss. En-

tropy loss can be beneficial if the source model produces

correct outputs in the early stage and the divergence loss

allows for the separation of the classes which is helpful

for the self-supervising pseudo-label strategy. Nevertheless,

the entropy loss is ineffective if it forces the network to be

more confident in its predictions, even if they are incorrect,

while the pseudo labels may be more accurate.

(D) AdaDSA: The latest method we’ve explored is based

on Batch Normalization information. The statistics from

each Batch Normalization (BN) layer are used to estimate

the distribution of source data and use this information to

perform cross-domain adaptation by smoothly updating the

values of the mean and variance of each BN layer. This

moment of the cross-domain adaptation is done as follows:

µts = αµt + (1− α)µs

σts = α(σ2
t + (µt − µs

t )
2) + (1− α)(σ2

s + (µs − µs
t )

2)
(7)

where µt, µs,σt and σs are the first and second moment

of each BN layer on Target and Source. α is a parameter

that controls the influence of the weights of each domain in

the cross-domain adaptation. Note that the model is trained

using a classic entropy loss to ensure confidence in model

predictions. A cross-entropy loss was also used to avoid

forgetting information contained in the source network by

using the label y′t defined as:

y′t = argmax
y

{(1− λ)φs(xt)[y] + λφt(α;xt)[y]} (8)
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4. Results and Discussion

4.1. Experimental Methodology:

GlaS dataset. This dataset is used for colon cancer di-

agnosis. The dataset is composed of 165 images from 16

Hematoxylin and Eosin (H&E) and contains labels at both

pixel-level and image-level (benign or malign). The dataset

consists of 67 images for training, 18 for validation and 80

for testing. We use the same protocol as in [45], i.e. 3 ex-

amples per class fully supervised for B-LOC selection.

CAMELYON dataset. A patch-based benchmark is de-

rived from the Camelyon16 dataset that contains 399 Whole

slide images with two classes (normal and metastasic) for

the detection of metastases in H&E-stained tissue sections

of sentinel lymph nodes (SLNs) from women with breast

cancer. Patch extraction of size 512× 512 follows a proto-

col established by [45] to obtain patches with annotations

at image and pixel level. The benchmark contains a total of

48870 images, including 24348 for training, 8850 for vali-

dation and 15664 for testing. From the validation dataset, 6

examples per class are randomly selected to be fully super-

vised to determine B-LOC as defined in [45].

Implementation details. For pretraining on the source

domain, we use the same setup as defined in [45]. We use

the pretrained source network to initialize the target net-

work. For SFDA-DE, CDCL, and SHOT, the classifier is

frozen during the SFDA stage. The hyperparameters for the

different WSOL models and all SFDA methods are defined

in the supplementary materials.

Experimental measures. To compare different models,

we use two measures: standard classification accuracy to as-

sess classifier performance and localization accuracy, mea-

sured by PxAP, to generate localization masks from activa-

tion maps. We apply various thresholds, normalizing the

activation maps via min-max normalization to identify the

thresholds that optimize performance, with a precise math-

ematical definition of the average accuracy per pixel as de-

fined in [25, 45]. The true positive, false negative, false

positive, and true negative rates are defined in [18].

4.2. Impact of SFDA on Localization:

In Table 2, we observe improvements in classification accu-

racy for the methods DeepMil, GradCAM++, and TS-CAM

when applied to the SFDA approaches SFDA-DE, SHOT,

and CDCL. However, AdaDSA encounters challenges in

model adaptation. The results presented in Table 2 show

a clear mismatch between the accuracy of localization and

classification in the context of SFDA. When selecting mod-

els based on B-CL for DeepMIL on the GlaS dataset, the

results underscore the challenges of enhancing both local-

ization and classification simultaneously. However, when

B-LOC is used as the criterion after adapting models on

GlaS, improvements are observed in both localization and

classification for methods like GradCAM++ and TS-CAM.

Despite these improvements, it is important to note that us-

ing B-LOC as the selection criterion after adaptation results

in slightly lower classification accuracy compared to B-CL.

This reduction in classification accuracy can be attributed

to the conflicting demands of localization and classifica-

tion tasks, as discussed in [45]. Although choosing B-LOC

over B-CL leads to a minor decrease in classification accu-

racy, it significantly enhances the performance of localiza-

tion tasks, highlighting a trade-off between optimizing for

one task over the other.

In contrast to the GLAS dataset, applying the CAME-

LYON dataset showcases the challenges in balancing local-

ization and classification tasks, particularly when B-LOC

is selected. This selection underlines SFDA methods’ dif-

ficulties in optimizing classification. Most models, includ-

ing DeepMil, GradCam++, and TS-CAM, did not show im-

provement in classification accuracy with B-LOC, except

in two instances: AdaDSA for GradCam++ and CDCL for

TS-CAM, as shown in Table 2.

This is also observed in Tab. 3 when selecting B-CL

for the source model on CAMELYON. Based on our find-

ings, choosing B-LOC instead of B-CL after the adapta-

tion led to an important degradation in classification accu-

racy (-37% by using SHOT with GradCAM++, -25% us-

ing SFDA-DE with TS-CAM and -27.5% using SFDA-DE

with DeepMIL). Tab. 3 shows that while classification ac-

curacy decreases, localization accuracy increases, indicat-

ing a trade-off between these tasks. This difference should

be an important consideration for SFDA for histology. As

illustrated in Tab. 1 when GlaS is the target, the true pos-

itive and true negative rates are significantly improved by

selecting B-LOC for GradCAM++ with SHOT as an exam-

ple (+29.9% tpr, -34.4% fnr, -15.1% fpr, +15.1% tnr) and

for DeepMIL with SFDA-DE (+8.8% tpr, -8.8% fnr, -4.1%

fpr, 4.1% tnr).

4.3. B-LOC or B-CL Selection for Source Networks:

In WSOL, early stopping is performed to select the best lo-

calization or classification models on validation data. The

two models obtained after training are antagonistic, mean-

ing that the best localization model is obtained in the first

training epochs, while the best classification model is ob-

tained in the last [45]. A consequence of this property is that

the model obtained for the best localization is less reliable

for the classification. We can observe this analysis in Tab. 2

(fine-tuning: ImageNet). For the CAMELYON dataset, it is

important to highlight the significant improvement in clas-

sification accuracy for GradCAM++ and TS-CAM, with in-

creases of +36% and +37%, respectively.

In SFDA, the process of model selection is important.
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Table 1. Performance of SFDA methods on CAMELYON16→ GlaS and GlaS→ CAMELYON16 test set. Performance measures are the

true positive, false negative, false positive, and true negative rates. Model selection is performed on B-LOC for the source model.

CAMELYON16→ GlaS GlaS→ CAMELYON16

Methods tpr fnr fpr tnr tpr fnr fpr tnr tpr fnr fpr tnr tpr fnr fpr tnr
D

ee
p

M
IL

[3
5
]

Source only 60.4 39.5 62.9 37.0 60.4 39.5 62.9 37.0 23.9 76.0 84.5 15.4 23.9 76.0 84 5 15.4

SFDA

SFDA-DE [11] (cvpr,2022) 60.4 39.5 62.9 37.0 51.6 48.3 67.0 32.9 48.6 51.3 83.7 16.2 23.9 76.0 84.5 15.4
SHOT [61](icml,2020) 60.4 39.5 62.9 37.0 41.8 58.1 61.0 38.9 68.5 31.4 75.8 24.1 0.0 99.9 99.9 0.0
CDCL [53] (tmm,2022) 68.5 31.4 54.2 45.7 68.5 31.4 54.2 45.7 50.9 49.0 86.6 13.3 10.21 89.7 88.5 11.4

AdaDSA [15] (tsnre,2022) 29.6 70.3 74.8 25.1 58.9 41.0 35.1 64.8 25.7 74.2 80.1 19.8 24.8 75.1 83.5 16.4

Fine-tuning

Image-Net [4] (neurips,2012) 63.3 36.6 76.3 23.6 58.1 41.8 65.4 34.5 66.9 33.0 89.5 10.42 66.1 33.3 90.3 9.6

Source only 61.0 38.9 35.9 64.0 61.0 38.9 35.9 64.0 45.1 54.8 82.9 17.0 45.1 54.8 82.9 17.0

G
ra

d
C

A
M

+
+

[2
]

SFDA

SFDA-DE [11] (cvpr,2022) 61.08 38.9 35.9 64.0 40.4 59.53 56.3 43.6 65.0 34.9 84.9 15.0 37.9 62.0 80.8 19.1
SHOT [61] (icml,2020) 82.7 17.2 36.6 63.3 52.8 47.1 51.7 48.2 82.7 17.2 36.6 63.3 0.7 99.2 99.1 0.8
CDCL [53] (tmm,2022) 67.7 32.2 41.7 58.2 56.3 43.6 56.9 43.0 68.9 31.0 80.9 19.0 45.1 54.8 82.9 17.0

AdaDSA [15] (tsnre,2022) 29.7 70.2 82.9 17.0 28.5 71.4 77.3 22.6 48.2 51.7 84.3 15.6 47.3 52.6 84.4 15.5

Fine-tuning

Image-Net [4] (neurips,2012) 62.0 37.9 79.8 20.1 59.3 40.6 84 15.9 42.1 57.8 89.4 10.5 11.3 88.6 91.5 8.43

Source only 42.2 57.7 52.7 47.2 42.2 57.7 52.7 47.2 0.0 100.0 100.0 0.0 0.0 100.0 100.0 0

T
S

-C
A

M
[1

9
]

SFDA

SFDA-DE [11] (cvpr,2022) 69.9 30.0 40.7 59.2 67.6 32.8 43.2 56.7 74.1 25.8 75.2 24.7 0.0 100.0 100.0 0.0
SHOT [61](icml,2020) 69.8 30.1 42.4 57.5 68.5 31.4 41.1 58.8 30.7 69.2 89.6 10.3 50.0 49.9 73.0 26.9
CDCL [53] (tmm,2022) 52.3 47.6 55.7 44.2 71.6 28.3 42.3 57.6 44.5 55.4 81.0 18.9 0.0 100.0 100.0 0.0

AdaDSA [15](tsnre,2022) 42.2 57.7 52.7 47.2 42.2 57.7 52.7 47.2 0.0 100.0 100.0 0.0 0.0 100.0 100.0 0.0

Fine-tuning

Image-Net [4] (neurips,2012) 67.7 32.3 62.2 37.7 69.4 30.5 58.5 41.6 70.2 29.7 73.2 26.7 53.3 46.6 76.5 23.4

Fully supervised

U-net [44](miccai,2015) 88.9 11.0 89.7 10.2 n/a n/a n/a n/a 68.0 31.9 94.5 5.4 n/a n/a n/a n/a

Table 2. Localization (PxAP) and classification (CL) accu-

racy with model selection methods: B-LOC/B-CL on GlaS and

CAMELYON16 test sets. B-LOC selection for the source network.

CAMELYON16→ GlaS GlaS→ CAMELYON16

Methods PxAP CL PxAP CL

Source only 65.5 67.5 29.0 55.2

D
ee

p
M

IL
[3

5
]

SFDA

SFDA-DE [11](cvpr,2022) 66.3 / 64.7 81.2 / 87.5 46.1 / 29.0 51.8 / 55.2
SHOT [61](icml,2020) 65.5 / 52.1 67.5 / 76.2 45.6 / 25.3 51.3 / 67.5
CDCL [53](tmm,2022) 66.3 / 66.3 81.2 / 81.2 53.2 / 22.8 53.0 / 60.9

AdaDSA [15] (tsnre,2022) 56.1 / 47.6 46.2 / 46.2 27.3 / 29.0 54.3 / 57.9

Fine-tuning

Image-Net [4] 79.9 / 50.0 100.0 / 100.0 71.3 / 60.6 85.0 / 89.9

G
ra

d
C

A
M

+
+

[2
]

Source only 52.9 53.7 39.7 52.4

SFDA

SFDA-DE [11](cvpr,2022) 54.6 / 51.1 53.7 / 63.7 55.4 / 33.0 49.7 / 56.4
SHOT [61](icml,2020) 59.8 / 54.6 58.7 / 85.0 47.1 / 18.8 50.5 / 65.5
CDCL [53](tmm,2022) 54.6 / 56.3 53.7 / 62.5 53.1 / 39.7 51.5 / 52.4

AdaDSA [15](tsnre,2022) 59.9 / 53.7 46.2 / 46.2 44.1 / 43.8 53.1 / 53.2

Fine-tuning

Image-Net [4] (neurips,2012) 76.8 / 77.9 100.0 / 100.0 49.1 / 21.6 63.4 / 89.4

T
S

-C
A

M
[1

9
]

Source only 48.3 47.5 15.0 50.7

SFDA

SFDA-DE [11](cvpr,2022) 53.4/ 52.8 66.2 / 68.7 47.8 / 15.8 50.0 / 52.7
SHOT [61](icml,2020) 54.8 / 52.7 56.2 / 68.7 32.7 / 32.7 48.3 / 58.6
CDCL [53] (tmm,2022) 55.4 / 54.0 51.2 / 55.0 36.7 / 20.4 52.4 / 52.8

AdaDSA [15](tsnre,2022) 48.3 / 48.3 47.5 / 47.5 15.0 / 15.0 50.7 / 50.7

Fine-tuning

Image-Net [4] (neurips,2012) 65.4 / 63.5 97.5 / 97.5 41.6 / 35.1 51.4 / 88.4

U-net [44](miccai,2015) 95.8 n/a 81.6 n/a

Specifically, methods like SFDA-DE, SHOT, and CDCL

depend on generating pseudo-labels through k-means or

Spherical k-means clustering. This generated information is

then utilized to steer the network’s learning process. There-

fore, selecting B-CL or B-LOC for the source is an im-

portant criterion to consider for the adaptation. In Tabs. 2

and 3, it is possible to compare the results obtained using

B-LOC or B-CL on CAMELYON for the source and ana-

lyze the impact on the final models obtained using GLAS. It

is observed that before adaptation, the source model chosen

based on B-CL consistently achieves better performance on

the target domain (GLAS). This is expected, as B-CL is

designed with a stronger focus on classification tasks com-

pared to B-LOC, thereby outperforming it as a source model

selection requirement.

As mentioned, several methods rely on clustering tech-

niques at the beginning of each epoch to obtain pseudo-

labels and guide the network during the adaptation process.

If the source model is more efficient at classifying target

images, the clustering task will be easier and the adaptation

will be less challenging. We observe the effect of B-LOC

and B-CL in the adaptation process as shown in Table 2

and 3 for GradCAM++ and TS-CAM with a gain for each

SFDA methods ( GradCAM++ : + 33.8%, +12.5%, +32.5%

+0.0% ; TS-CAM : +2.5%, +21.3%, +15%, + 13.7%).

We did not perform the adaptation from GlaS to CAME-

LYON using the B-CL method on GlaS, as the initial per-

formance of GlaS as the source dataset already reaches a

100% accuracy. Technically, using this model is the best we

can get considering GlaS as source (100 % accuracy). How-

ever, the results obtained without any adaptation are limited.

The classification accuracy is 55.2%, 52.4% and 50.7% for
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Table 3. Localization (PxAP) and classification (CL) accuracy

with model selection methods: B-LOC/ B-CL on GlaS test sets.

B-CL selection for the source network.

CAMELYON16→ GlaS

Methods PxAP CL

Source only 64.5 81.2

D
ee

p
M

IL
[3

5
]

SFDA

SFDA-DE [11] (cvpr,2022) 65.9 / 64.5 53.7 / 81.2

SHOT [61](icml,2020) 64.5 / 55.7 81.2 / 86.2

CDCL [53](tmm,2022) 65.9 / 64.5 70.0 / 81.2

AdaDSA [15](tsnre,2022) 49.4 / 48.9 46.2 / 46.2

Fine-tuning

Image-Net [4] (neurips,2012) 79.9 / 50.0 100.0 / 100.0

G
ra

d
C

A
M

+
+

[2
]

Source only 56.1 75.0

SFDA

SFDA-DE[11] (cvpr,2022) 70.0 / 55.1 82.5 / 97.5

SHOT [61](icml,2020) 68.5 / 51.3 60.0 / 97.5

CDCL [53](tmm,2022) 67.8 / 54.7 85.0 / 95.0

AdaDSA [15](tsnre,2022) 50.6 / 49.1 46.2 / 46.2

Fine-tuning

Image-Net [4] (neurips,2012) 76.8 / 77.9 100.0 / 100.0

T
S

-C
A

M
[1

9
]

Source only 48.7 61.2

SFDA

SFDA-DE [11](cvpr,2022) 53.9 / 53.9 46.2 / 71.2

SHOT [61](icml,2020) 53.8 / 51.1 66.2 / 90.0

CDCL [53] (tmm,2022) 48.7 / 55.9 53.7 / 70.0

AdaDSA [15] (tsnre,2022) 48.7 / 48.7 61.2 / 61.2

Fine-tuning

Image-Net [4] (neurips,2012) 65.4 / 63.5 97.5 / 97.5

U-net [44](miccai,2015) 95.8 n/a

DeepMil, GradCAM++ and TS-CAM, respectively. There-

fore, especially for challenging data like CAMELYON, the

starting point of the fitting model is not ideal. Since the

classification accuracy is low on the target domain (CAME-

LYON) highlights the difficulty for a source model trained

on a not challenging to correctly classify new images. A

larger source domain size tends to greatly improve the adap-

tation process when B-CL is favoured over B-LOC, result-

ing in a positive overall impact on performance.

4.4. Impact of Source Network Training:

The selection of the source model is a key component for

the success of SFDA. We analyzed that the best setup to

consider when adapting to GlaS is to use B-CL as the

source model for CAMELYON. The performance for Grad-

CAM++ and TS-CAM are high that when using B-LOC on

GlaS as illustrated in Table 2 and 3. Nevertheless, this is not

established for DeepMIL as we can state. The classification

accuracy is not necessarily improved by using B-CL for

Figure 3. Visualisation on target (GLAS) dataset with TS-CAM

with best localization source model trained with CAMELYON

with source’s best classification. Extended visualizations are pre-

sented in supplementary material for different methods.

the source and B-CL after the adaptation with SFDA-DE,

CDCL and AdaDSA (-6.3%, +0.0%, +0.0%) but increases

for SHOT (+10%). The results obtained for DeepMil can be

explained by the strategy of the different approaches. Meth-

ods such as SFDA-DE and CDCL are essentially based on

the pseudo-labels obtained by a clustering method. Indeed,

once the pseudo-labels are determined, they are pushed near

the anchor (CDCL) or estimated source features (SFDA-

DE). The ability of the clustering method to produce accu-

rate pseudo-labels is essential to make these methods effi-

cient. However, by using the B-CL model on CAMELYON

for the source produced at the first epoch an accuracy of

37% on GlaS. As a result, the pseudo-labels obtained at

the beginning are not reliable. Too much error is added

in the early step of the process. This problem is also in-

volved in SHOT but reduced by the use of an entropy loss

function. This loss is a key element to consider in this con-

text. Clustering methods can perform poorly but it does not

necessarily mean that the source model is unable to pro-

duce correct output as observed in Table 3 with Deep MIL.

Consequently, the error added in the adaptation process is

smoothly resolved in SHOT by ensuring the same output of

the method in the early stage of the training.

5. Conclusions

In this paper, we analyze the effectiveness of 4 repre-

sentative SFDA methods for WSOL in histology images.

Results indicate that SFDA can be very challenging and

limited for a large dataset such as CAMELYON. More-

over, localization performance remains a challenge since

SFDA methods are designed to optimize for discriminant

classification. Selecting B-LOC instead of B-CL can lead

to improvement in localization, but this incurs a decline

in classification. Selecting B-LOC for the source model

doesn’t imply a better localization after adaptation.
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