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Abstract

Deep learning-based approaches have achieved signif-
icant improvements on public video anomaly datasets, but
often do not perform well in real-world applications. This
paper addresses two issues: the lack of labeled data and
the difficulty of explaining the predictions of a neural net-
work. To this end, we present a framework called uTRAND,
that shifts the problem of anomalous trajectory prediction
from the pixel space to a semantic-topological domain. The
framework detects and tracks all types of traffic agents in
bird’s-eye-view videos of traffic cameras mounted at an in-
tersection. By conceptualizing the intersection as a patch-
based graph, it is shown that the framework learns and
models the normal behaviour of traffic agents without costly
manual labeling. Furthermore, uTRAND allows to formu-
late simple rules to classify anomalous trajectories in a way
suited for human interpretation. We show that uTRAND
outperforms other state-of-the-art approaches on a dataset
of anomalous trajectories collected in a real-world setting,
while producing explainable detection results.

1. Introduction

In the domain of traffic surveillance, the task of anomaly
detection has been subject to a progressive evolution. Ini-
tially, attempts have been made to devise expert systems
characterized by complex sets of rules, aiming at emulating
the intricacies of traffic dynamics. However, the implemen-
tation and scalability of such systems are impeded by the
inherent complexity and variability of traffic behavior, of-
ten necessitating a disproportional number of exceptions to
accommodate diverse scenarios. Recent advancements in
computer vision are bolstered by the proliferation of sen-
sor data from traffic monitoring infrastructure, which allow

for a paradigm shift in anomaly detection methodologies.
These modern approaches leverage the computational capa-
bilities of neural networks to analyze data streams obtained
from traffic cameras. While exhibiting promising perfor-
mance on standardized benchmarks, these methodologies
have concurrently shown critical aspects such as privacy
preservation, algorithmic biases, and false-positive mitiga-
tion.

This paper presents a methodological framework de-
signed to address the aforementioned challenges in anomaly
detection within traffic intersections called uTRAND (Un-
supervised TRajectory ANomaly Detector). Leveraging
neural network architectures, the proposed approach detects
and tracks moving traffic agents, by translating raw sen-
sor data into a structured semantic-topological space. This
framework allows to formulate simple anomaly detection
rules. To validate the efficacy of uTRAND in practical sce-
narios, we experiment on a real-world intersection environ-
ment, leveraging a three-camera setup to capture anoma-
lous traffic behavior. Comparative evaluations against exist-
ing approaches demonstrate the superior performance of the
proposed framework in terms of anomaly detection accu-
racy and false-positive mitigation, while adhering to strin-
gent deployment criteria delineated in this work.

2. Related Work

The field of traffic anomaly detection has seen significant
contributions, categorized in three main groups: unsuper-
vised (Section 2.1), weakly supervised (Section 2.2), and
supervised (Section 2.3) approaches.

2.1. Unsupervised Anomaly Detection

Unsupervised methods rely on the assumption that any
trajectory diverging from regular patterns indicates an
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Figure 1. Overview of uTRAND. At the first stage, the cameras are calibrated and the videos are warped, obtaining their BEV videos. At
the second stage, the traffic agents are detected and tracked in the camera video and translated to the BEV video. In the last stage, the
intersection is split in semantic patches (nodes). The previously detected agents are associated with the patch they occupy at each frame.
The links between the nodes and normal behavior of an agent in that node are learned by analyzing a few hours of camera videos through
the framework, modeling the dynamics of the intersection. An agent that deviates from the modeled behaviors is detected as anomalous.
The anomaly can further be classified by using simple rules that do not require domain knowledge.

anomaly. Common approaches to the anomaly detection
task [3, 21, 34] define the problem as a clustering task,
employing high-dimensional representations to distinguish
regular and anomalous trajectories. Despite varied im-
plementations and conceptual approaches, these methods
collectively encounter challenges related to computational
complexity. Notably, D’Acierno et al. [8] have addressed
these computational issues. Such methodologies find their
applications in both anomaly detection and classification
tasks.

Concerning unsupervised deep learning methodologies,
the Variational Auto-Encoder (VAE) proposed by Kingma
et al. [16, 17] is a prominent model for anomaly detection.
Approaches based on VAEs leverage unsupervised train-
ing to acquire latent representations of dataset distributions,
thereby enabling the identification of anomalies by detect-
ing deviations from learned representations [4, 20, 29, 44].
While some studies have applied these techniques to traffic
video analysis [18, 33, 35], privacy-related concerns arise
due to the utilization of visual features. More recently, this
has resulted in efforts to address such issues [12, 24, 25, 42].
Another avenue of research focuses on frame reconstruction
within videos, where anomalies are detected based on dis-
crepancies between generated and original frames [4, 12,
15]. However, these methods may fail when considering
subtle differences in trajectories.

2.2. Weakly-Supervised Anomaly Detection

In weakly-supervised anomaly detection methodologies,
the task of identifying anomalies within video data of-
ten adopts a Multiple Instance Learning (MIL) framework.

Each video instance is annotated with a label indicating the
presence of anomalies, while models are trained to pre-
dict the onset and duration of these anomalies, which en-
sures accurate classification based on both aspects. This
approach has been extensively explored in the literature,
as evidenced by studies [13, 38, 40, 43]. Despite lever-
aging the temporal dimension of videos in various ways,
these methods are frequently constrained by limitations in
visual representations. A common challenge encountered
in such approaches is the discrepancy between training and
deployment scenes, wherein background pixels may ham-
per model performance and generalization, even when not
directly implied from the detected anomalous behavior.

Recent advancements have witnessed the application of
transformer architectures to this domain. For instance,
in [19], attention mechanisms are employed to capture cor-
relations between video-level and snippet-level anomalies.
Similarly, [6] proposes to utilize transformer networks to
mitigate scene-inconsistencies, which demonstrates higher
efficacy on prevalent public datasets.

2.3. Supervised Anomaly Detection

Supervised anomaly detection frameworks typically in-
volve training classifier models with anomaly-level labels.
A common class of methods in this field are algorithms
such as Support Vector Machines (SVM) [2, 30], oper-
ating on the premise of discerning anomalous trajectories
from regular ones. However, these methods often lack the
required flexibility to effectively handle diverse anomaly
types, such as discrepancies in trajectory length. While
some approaches adopt direct supervision [36, 37], others

7639



Figure 2. The agents are initially detected in the camera view. YoloV8 estimates a bounding box for each agent, assigns to it an ID, and
tracks it across frames. Subsequently, the detected bounding boxes are projected in the BEV, where the three dimensional bounding boxes
are detected, carrying over the id assigned to the agent in the camera view.

explore semi-supervised or self-supervised learning strate-
gies [11, 14, 41]. However, the acquisition and labeling of a
sufficiently large dataset for effective model training can be
prohibitively expensive. Furthermore, the labeled classes in
the data define a specific set of classes which are detected by
the model, while the others require a general out-of-dataset
class or a dedicated fine-tuning to be detected. This aspect
is relevant to control the occurrence of false positives.

A significant limitation of neural networks is their inher-
ent lack of explainability [28, 41]. Recently, hybrid frame-
works have emerged to address this issue. For instance,
in [1, 27], neural networks are utilized for pattern and fea-
ture extraction from video data, while anomaly detection
is performed using more insightful methods like decision
trees. The framework introduced in this paper aligns with
this hybrid paradigm, offering both feature extraction ca-
pabilities and enhanced explainability, while preserving the
privacy of citizens when detecting an anomaly.

3. Methodology

The proposed trajectory-based anomaly detection frame-
work uTRAND is designed to meet the following criteria.

* Human-interpretable predictions: the system is designed
to produce predictions that are comprehensible to human
users.

* Reduced dependency on labeled data: the framework op-
erates autonomously without necessitating extensive col-
lections of labeled video data, facilitating its deployment
in real-world conditions.

To address the above criteria, we shift the detection of
anomalies in trajectories from the camera video domain to a

semantic graph representation derived from the bird’s-eye-
view (BEV) of the intersection. The framework learns reg-
ular behavioral patterns of agents traversing intersections
through unsupervised analysis of unlabeled data, thereby
enabling the detection of anomalous trajectories. Moreover,
this approach facilitates the formulation of straightforward
rules for classifying different anomaly types. The architec-
ture of uUTRAND is depicted in Figure 1 and comprises of
three primary components: automated camera calibration,
agent detection and tracking, and anomaly detection.

3.1. Automated Camera Calibration

The initial step in the framework involves the automated
calibration of cameras located within the intersection.
The calibration is performed by a Graph Neural Network
(GNN)-based technique, which is described in [9]. Subse-
quently, the BEV representation of the intersection is seg-
mented in three semantic regions: road, bicycle path, and
walkable terrain, as depicted in Figure 3. For the sequel
of this paper, we will refer to the semantically segmented
BEV of the intersection as the BEV intersection. To fa-
cilitate this segmentation, intrinsic and extrinsic parameters
of a Pan-Tilt-Zoom (PTZ) camera model are sampled. The
BEV is then warped using the homography transformations
obtained from the sampled parameters, to generate synthetic
images of different viewpoints of the same intersection.
The GNN is trained on these semantically-segmented
synthetic images to predict the homography matrices of
each camera, efficiently mapping pixels from the camera
views to the BEV. The homography projection operates un-
der the assumption that every pixel lies on a planar surface,
which is valid within the semantic domain and does not
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Figure 3. The intersection is split into patches according to the ITF map. The nodes can be of four different classes: road, bicycle lane,
curb and crosswalk. The framework establishes connections between the nodes in which traffic agents move more often.

compromise the method’s generality. Leveraging the esti-
mated homographies, the camera videos are warped to gen-
erate the BEV representations of each camera field-of-view,
thereby enabling comprehensive analysis and anomaly de-
tection within the intersection environment.

3.2. Agent Detection and Tracking

The second component detects and tracks traffic agents in
the camera videos and projects their bounding boxes in
the BEV videos obtained by warping the camera video, as
shown in Figure 2. The agents detected and tracked are ve-
hicles, pedestrians and bicyclists. To this end, the approach
proposed by [5] is updated to use the more efficient YoloV8
model [31]. Each agent detected in the camera videos is
assigned a unique ID and is tracked across frames. The
model leverages the estimated homography to warp the fea-
ture maps of the camera video produced by different layers
of the model. These feature maps are concatenated with the
feature maps obtained from the BEV video. As a result, the
model produces a bounding box for each agent in the BEV
video, representing the base of the 3D bounding box, and
an orientation angle indicating the direction of movement.
At the end of this stage, the agents are detected, tracked and
localized in the BEV of the intersection at each frame.

3.3. Anomaly Detection

In the final stage of the framework, the BEV intersection
undergoes an automated partitioning into patches utilizing
the Intersection Topology Format (ITF) maps [7], as shown
in Figure 3. The ITF map models the topological layout of

Figure 4. Semantically segmented bird’s-eye-view of the inter-
section (called BEV intersection). The fields-of-view of the three
cameras overlap at the center of the intersection.

the intersection, delineating features such as ingress and
exgress points of road lanes and bicycle paths, expressed
in world coordinates. It is also possible to perform an
intersection partitioning into patches by utilizing the
segmentation masks of the road markings [39]. Leveraging
the camera calibration parameters acquired in the initial
stage, these world coordinates are accurately projected
onto the BEV videos, thereby facilitating the mapping of
world coordinates to pixels. Subsequently, these pixels
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(a) Camera view of an improper turn anomaly.

(b) Camera view of an improper turn (donut) anomaly.

(c) Anomalous trajectory.

(d) Anomalous trajectory.

Figure 5. Camera views on the same intersection and the corresponding trajectory visualization. Top row: two frames of a vehicle
performing improper turns. In subfigure 5a, the car is turning right and then drives in the opposite lane, while in subfigure 5b the same
vehicle is driving in a circle in the intersection. Bottom row: the uTRAND’s visualization of the trajectories of the two actions. Both

trajectories are correctly detected and classified as anomalies.

are utilized to automatically partition the semantic regions
of the intersection into discrete patches. Each patch of
the BEV intersection corresponds to a segment of a lane,
bicycle path, or curb. Patches associated with crosswalks
constitute an additional type of a patch. Agent association
with patches is achieved by calculating the Intersection
over Union (IoU) between the BEV bounding box of an
agent and the patch itself. These patches are conceptualized
as nodes within a graph representing the entire intersection.
The relationships between nodes are learned through
observation of agent movements within the intersection,
establishing links between nodes, as an agent moves
from one to another. This enables the framework to learn
and model the agents behaviors within the intersection,
characterized by three attributes for each node:

* Snode; = {nodet™, ... nodelt'} the set of nodes to
which an agent normally proceeds at (video) frame time
t + 1 given node; at time ¢,

* Thvg is average time spent in a node,

¢ Ais a set that contains the types of agents allowed in the
node.

These attributes are learned by processing several hours
of camera videos, using the described pipeline. As illus-
trated in Figure 4, there is an overlap in the field of view
(FOV) of the cameras. Consequently, if the cameras are
synchronized, it becomes feasible to track an agent’s trajec-
tory, as it transitions between the FOVs of different cam-
eras. This capability enables the comprehensive analysis of
an agent’s complete trajectory within the intersection. In
this context, if the trajectory of an agent deviates from the
learned regular behavioral model, the trajectory is automat-
ically identified as anomalous in real time. In conclusion,
the framework facilitates the formulation of rules that cate-
gorize anomalous behavior in simple terms using the previ-
ously defined attributes. For example, an unlawful turn by
an agent from node; to nodes at time ¢ can be classified by
the rule:

nodes ¢ Shode, - (1)

Furthermore, an agent in an unlawful position, e.g. a bicycle
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on the road at nodey, can be classified in the following way:
bicycle ¢ Anodey,s (2)

where A,oqe, is the set of agent types allowed in nodey.
Finally, an agent that stays in node; from ¢; to ¢, can be
classified as unlawfully stopping via the rule:

card{t;, ..., t,} > Tmoder, (3)

avg

The previous examples provide a set of rules to classify
three types of anomalous trajectories. The formulation of
such rules defines the framework to detect and classify
anomalous trajectories of agents without explicitly labeling
videos of anomalous and normal trajectories. Consequently,
uTRAND is part of the unsupervised learning paradigm.

4. Experiments

The proposed framework is evaluated on video data col-
lected at a traffic intersection, of which the BEV intersec-
tion is shown in Figure 4. The BEV intersection presents
bicycle paths and curbs on the side of every road. Three
cameras were mounted on light poles and cover the ma-
jority of the intersection. The model is set to learn the
attributes of each node within the intersection, by observ-
ing the trajectories of traffic agents during a 12 hour tem-
poral interval, covering the afternoon and evening from 12
pm to 12 am. This interval encompasses a diverse range
of typical activities, including vehicular, cyclist and pedes-
trian moving in the intersection. Each node is connected to

Table 1. Amount of anomalous actions recorded. The anomalies
are split in three classes: agent in improper zone (i.e. pedestrians
and bicyclists on the road, vehicle parked on the curb), unlaw-
ful stop (i.e. car stopping at the center of the intersection) and
improper turn (vehicles turning in the wrong direction, changing
lanes, driving in a circle or doing U-turns).

Anomaly | Amount
Agent in improper zone 24
Unlawful stop 3
Improper turn 14
Total | 41

all neighboring nodes, meaning that each node is connected
to all adjacent patches in the intersection. The inter-node
links are uniformly initialized with unity weights. After
this initialization, each traversal of an agent between two
nodes contributes to a unity increment to the correspond-
ing link’s weight. Upon observation and learning of trajec-
tories within the 12-hour dataset, links characterized by a
weight falling below an empirically determined threshold
are pruned. This empirically established threshold is es-
sential for mitigating localization inaccuracies, encountered

Table 2. Comparison between uTRAND and previous works. The
baseline methods have been chosen based on their performances
on public datasets. The F} score is the chosen comparison metric.

Method | Pre-training | F1(%)
MONADI[10] | UCSD Ped2[26] 62.35
HF2VAD[23] | ShanghaiTech[22] | 69.62
AI-VAD[32] | ShanghaiTech[22] | 72.49
uTRAND | - | 82.89

Table 3. Performance of uTRAND on the classification task. The
accuracy of the framework is reported along with the False Positive
rates (FP) for each class.

Anomaly | Accuracy (%) | FP
Improper turn 71.43 0.46
Unlawful stop 66.67 0.28
Agent in improper zone 91.16 0.54

during the second stage of the framework. Specifically, in
crowded scenes the orientation of the estimated bounding
boxes can change across consecutive frames while the di-
rection of movement of an agent remains the same, result-
ing in an erroneous assignment during the third stage of the
framework.

To evaluate the efficacy of the framework, various
anomalous behaviors have been authorized, played and
recorded. The dataset comprising anomalous trajectories
contains 41 instances, as detailed in Table 1. The perfor-
mance of U TRAND is compared with three anomaly detec-
tion methods in Table 2. The selected benchmark methods
are also based on the unsupervised learning paradigm, as
mentioned in Section 2.

The uTRAND framework outperforms other approaches
by a significant F; score margin, showing a notable perfor-
mance improvement. Additionally, anomalous trajectories
are visually depicted, as illustrated in Figure 5. The visual-
ization produced by the framework portrays the logic of the
anomaly detection, therefore it is intuitive for a human to
understand why a trajectory is detected as anomalous. This
is an important advantage over other methods that are based
on estimation of an anomalous score computed by a neural
network. In fact, such scores can be influenced by a sig-
nificant amount of spurious correlations that the model may
infer from a training dataset, thereby reducing the interpre-
tation capability of the results.

Moreover, with the rules expressed in Section 3.3, the
uTRAND framework exhibits the capability to classify
anomalous actions. The performance of the proposed
method on the classification task is shown in Table 3. It
is important to note that the instances of false positive iden-
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tifications are heavily dependent upon the precision of the
camera calibration and agent detection stages. The straight-
forward formulation of the classification rules permits the
extension of the framework’s final stage to classify addi-
tional types of anomalous trajectories neither by re-training
the model from scratch nor employing any transfer learning
and fine-tuning techniques. This capability of the frame-
work represents a significant advantage over methods rely-
ing on neural networks to classify actions.

5. Conclusion

This study proposes a three-stage framework called
uTRAND, for detecting and classifying abnormal traffic
trajectories within an intersection. The framework lever-
ages on the intersection’s topological layout by transpos-
ing the problem domain onto a semantic graph structure.
We demonstrate that within this domain, accurate detec-
tion of abnormal trajectories is achievable, yielding in-
terpretable predictions. The classification of anomalies
relies on straightforward principles, rendering the frame-
work adaptive to real-world scenarios and being inter-
pretable for end-users. Further exploration in this field
could benefit from more accurate object detection and track-
ing algorithms. While uTRAND demonstrates efficacy in
detecting and classifying single-agent anomalous trajec-
tories, additional efforts are necessary to tailor this ap-
proach towards multi-agent trajectory analysis. One pos-
sible research direction entails the application of neuro-
symbolic or causality-based methodologies to address this
challenge.
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