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Abstract

Identifying and classifying underground utilities is an im-
portant task for efficient and effective urban planning and
infrastructure maintenance. We present OpenTrench3D, a
novel and comprehensive 3D Semantic Segmentation point
cloud dataset, designed to advance research and develop-
ment in underground utility surveying and mapping. Open-
Trench3D covers a completely novel domain for public 3D
point cloud datasets and is unique in its focus, scope, and
cost-effective capturing method. The dataset consists of 310
point clouds collected across 7 distinct areas. These include
5 water utility areas and 2 district heating utility areas. The
inclusion of different geographical areas and main utilities
(water and district heating utilities) makes OpenTrench3D
particularly valuable for inter-domain transfer learning ex-
periments. We provide benchmark results for the dataset
using three state-of-the-art semantic segmentation models,
PointNeXt, PointVector and PointMetaBase. Benchmarks are
conducted by training on data from water areas, fine-tuning
on district heating area 1 and evaluating on district heat-
ing area 2. The dataset is publicly available 1. With Open-
Trench3D, we seek to foster innovation and progress in the
field of 3D semantic segmentation in applications related to
detection and documentation of underground utilities as well
as in transfer learning methods in general.

1. Introduction
Motivated by an ongoing and escalating demand for infras-
tructure development both above and beneath the ground,
urban planners, engineers, and contractors depend on data
regarding the placement of hidden underground utilities
[32, 35]. Yet, a large portion of utility data is often inaccu-
rate in location, outdated, and incomplete [13, 33]. This lack
of accurate and current information becomes particularly

*Equal contribution
1https://github.com/SimonBuusJensen/OpenTrench3D

Figure 1. Point clouds from OpenTrench3D: (a) In the water project
areas the Main Utility class is made up of water utility pipes. (b)
In the district heating project areas the Main Utility class is made
up of district heating utility pipes. Find description of dataset and
classes in section 3.

critical when considering the financial impact of excavation
damage to underground infrastructure. Reports highlight that
such damages cost more than GBP 200 million in the UK
[4] and USD 30 billion in the US [1] alone in 2019. This
underscores the necessity for utility owners to recognize
the importance of consistently maintaining up-to-date and
accurate utility map data.

Innovation in utility surveying and mapping therefore
holds significant importance. The most common method
is known as open trench surveying, which occurs after the
installation of new utility lines or the replacement of ex-
isting ones, involving excavation on site. However, during
these surveys, only the utilities of interest to the owner are
documented, while other exposed utilities are frequently
overlooked, as utility owners lack short-term incentives to re-
survey, validate, and potentially report updates on the assets
of other utility owners [13].
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Following the recent trend in urban scene modeling, us-
ing affordable and accessible drone photogrammetry for 3D
reconstruction of urban environments [5, 6, 16, 21], the adop-
tion of close-range photogrammetric data capture via off-
the-shelf smartphones for utility surveying has gained popu-
larity [12, 38]. This is driven by the emergence of industry
solutions like Pix4D. Unlike conventional open trench meth-
ods, such as direct single point measurement with GNSS
receivers, this approach captures every piece of underground
infrastructure visible in the 3D reconstruction. However, both
the utilities of interest and other utilities must be digitized
as polylines for subsequent integration into utility network
systems such as GIS. The annotation process is manual and
laborious. Developing methods for the classification and
segmentation of utilities could not only greatly increase effi-
ciency but also open new possibilities for streamlining the
process of validating and updating the locations of existing
utilities.

We introduce OpenTrench3D, to our knowledge, the first
publicly available 3D point cloud dataset for the seman-
tic segmentation of underground utilities captured in open
trenches. The dataset was created from smartphone video
recordings and reconstructed using photogrammetry, making
it an accessible and affordable data acquisition method to
replicate. It comprises 310 fully annotated point clouds, total-
ing approximately 528 million points across 5 label classes,
following a utility owner-centric classification scheme. The
dataset includes point clouds from water and district heating
projects. One example of each is shown in Figure 1.

Since OpenTrench3D mainly consists of point clouds
from water projects, it offers an excellent opportunity to
study transfer learning to the smaller set of district heating
point clouds. We leverage water area point clouds to develop
a pretrained model, which is then fine-tuned and tested on
district heating areas. This method evaluates the potential of
transfer learning for semantic segmentation in open trenches
across diverse utility types. Hereby, we demonstrate to what
extent the amount of newly annotated point clouds of the
target main utility types affects performance. We summarize
the contributions of this paper as follows:

1. We present the first publicly available 3D point cloud
dataset of underground utilities, OpenTrench3D, featur-
ing 310 fully annotated point clouds and a utility owner-
centric classification scheme.

2. We benchmark state-of-the-art 3D semantic segmentation
deep learning methods. The results highlight the potential
and effectiveness of transfer learning across utility types
and evaluate the generalizability of SOTA methods.

3. We demonstrate that underground utility point clouds,
acquired through cost-effective photogrammetry tech-
niques, can be segmented using deep learning methods.
Thus, making this method more accessible to industry
and academia.

2. Related Work

2.1. 3D point cloud datasets

Compared to existing 3D point cloud datasets, Open-
Trench3D distinguishes itself as the first dataset specifically
focused on open trench underground utilities. Despite its
unique focus, we consider our dataset within the broader
spectrum of 3D datasets for urban and outdoor environments.
In this section, we offer a brief overview and comparison
of existing point cloud datasets for semantic segmentation
in this domain along with a comparative summary between
OpenTrench3D and other well-known datasets in Table 1.
Lastly, we briefly present current approaches for segmenting
underground utilities.

Urban 3D datasets can generally be categorized based on
their application area into two main groups: street-level and
aerial-level.

Street-level: Derived from Mobile Laser Scanning (MLS)
and Terrestrial Laser Scanning (TLS), these datasets cap-
ture detailed urban features such as buildings, vehicles, and
vegetation. MLS has been predominantly used in founda-
tional datasets like SemanticKITTI[3], Paris-Lille-3D[27],
and Toronto-3D[31], whereas Semantic3D [10] uses TLS.
Recent additions to this category, such as Urban SGPCM
[29] and SP3D [23], maintain the core attributes of their
predecessors while introducing variations in scale, class di-
versity and environmental context

Aerial-level: These datasets are obtained through Air-
borne Laser Scanning (ALS) and UAV-based photogramme-
try, offering a bird’s-eye view of urban structures on a large
scale. Early examples such as LASDU[37] and DALES[34]
use ALS, but UAV photogrammetry has since become the
preferred method, as exemplified by Campus3D[21] and
SensatUrban[16]. Similar to street-level datasets, newer
aerial datasets primarily expand upon previous offerings by
introducing variations in scale, class types, and specific ur-
ban environments (e.g., the HRHD-HK[20] dataset focuses
on high-rise buildings).

While there is a wealth of 3D datasets for above-ground
environments, there are no publicly available datasets for
underground settings, despite the critical value and impor-
tance in urban planning [32]. In the closest alternatives, we
find 2D datasets like Sewer-ML [15], which contains anno-
tations of defects in sewer inspection CCTV videos [14];
however, this data, captured from inside underground pipes,
is fundamentally different. OpenTrench3D addresses this
gap by offering widely different 3D scenes of urban envi-
ronments, specifically focusing on the infrastructure beneath
street level. Moreover, what distinguishes OpenTrench3D
from existing above-ground datasets is its method of data
capture. Utilizing close-range photogrammetry with every-
day smartphones sets it apart from the more commonly used
laser scanning techniques and UAV photogrammetry.
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Table 1. A comparative overview of key urban datasets for 3D point cloud semantic segmentation. MLS: Mobile Laser Scanning system,
TLS: Terrestrial Laser Scanning system, ALS: Aerial Laser Scanning system, UAV: Unmanned Aerial Vehicle and Ptgy: Photogrammetry.

Dataset Category Capture Method Points Area/Length Classes RGB

S3DIS[2] Indoor Scene-level RGB-D 273M 6,020 m2 13 Yes
ScanNet[8] Indoor Scene-level RGB-D 242M 34,453 m2 20 Yes
Semantic3D[10] Street-level TLS 4,009M 1 km 9 Yes
Paris-rue-Madame[28] Street-level MLS 20M 0.16 km 17 No
SemanticKITTI[3] Street-level MLS 4,549M 39.2 km 28 No
Toronto-3D[31] Street-level MLS 78M 1 km 9 Yes
DALES[34] Aerial-level ALS 505M 10 km2 9 No
Hessigheim 3D[19] Aerial-level ALS 126M 0.19 km2 11 No
SensatUrban[16] Aerial-level UAV Ptgy 2,847M 7.64 km2 31 Yes
Swiss3DCities[5] Aerial-level UAV Ptgy 226M 2.7 km2 5 Yes
STPLS3D[6] Aerial-level UAV Ptgy 150M 1.27 km2 6 Yes

OpenTrench3D (Ours) Underground Scene-Level Close-range Ptgy 528M 3.814 m2 5 Yes

2.2. Segmentation of underground utilities

Semantic segmentation of 3D point clouds using point-based
deep neural networks has gained traction following the pi-
oneering work of PointNet and PointNet++ by Qi et al.
[24, 25]. Despite these advancements, no prior work has
tackled the challenge of segmenting 3D point clouds of un-
derground utilities with deep learning methods, likely due to
the lack of available data.

A closely related and significant contribution is the work
of Stranner et al. [30]. They introduced a 3D fitting algo-
rithm designed to align synthetically generated 3D cylinders
with actual pipe structures, thereby updating the existing
utility line maps to reflect the as-planned versus as-built
states. Designed for on-site use, their system uses live 3D
reconstructions from LiDAR-equipped mobile devices but
requires user initiation via an Augmented Reality interface
[11], leaving classification to the user. This approach, while
innovative, underscores the need for more automated classi-
fication methods in 3D underground utility segmentation.

3. OpenTrench3D Dataset
3.1. Data Capture

The point clouds in this dataset were captured using an end-
to-end data capture and processing solution called SmartSur-
vey2. The solution uses close-range photogrammetry, more
specifically Structure from Motion (SfM) with Multi-View
Stereovision (MVS), employing video recordings from com-
mercially available smartphones. The utility companies car-
ried out the video capture process, while a surveying com-
pany assisted in geo-referencing the generated point clouds
by carefully surveyed spray markings. For an illustrative

2https://it34.com/en/services/smartsurvey-app-en/

example of the process, we refer to the supplementary ma-
terial. The point clouds are estimated to have an absolute
geographic accuracy within ±5 cm [12].

3.2. Dataset Description

The 3D point clouds, documenting newly installed pipes,
comprise 310 point clouds from 7 areas. Five areas relate
to water supply projects, while two are dedicated to district
heating projects, each associated with different utility com-
panies. These areas are named Water Area 1-5 and Heating
Area 1-2, all located in different urban regions of Denmark as
showed on the maps in Figure 2. The point clouds have under-
gone the following post-processing: voxel downsampling to
achieve a resolution of 4 mm, denoising using statistical out-
lier removal method, and manually removing noise artifacts
in specific instances. Additionally, the background environ-
ment around the trench was removed to reduce the size of
the point clouds. The point clouds were manually segmented,
with labels assigned to each point, using the CloudCompare
software [7]. The attributes for each point cloud PLY file
are as follows: column 1-3: x, y and z-coordinates in meters.
Column 4-6: r, g, b-color channels with values from 0-255.
Column 7: class id.

3.3. Utility Owner-centric classification scheme

When deciding on a classification scheme for our dataset, we
initially sought inspiration from existing standards and data
models focusing on underground utility networks. Notable
examples include the CityGML Utility Network ADE [18]
and UUDM [36], which on a high-level provide classifica-
tions based on the utility type such as water, gas, electricity,
sewage, telecommunications, etc. At first glance, adopting a
similar classification scheme based on utility types appears
logical. We discovered that accurately classifying utilities
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Figure 2. Map overview of the five water areas (top left and middle) and the two district heating areas (right), with zoom-in maps of selected
parts of some areas. Two point cloud samples are presented from the water and heating areas, respectively, and utilities from the Main Utility,
Other Utility, and Inactive Utility classes are highlighted for comparison.

based on appearance is challenging, especially for older
pipes, that are covered in dirt. This task is complex even for
experts, who also gathers utility records from all relevant util-
ity owners and carriers out on-site inspections. Gathering the
extensive information required for confident classification
exceeds the scope of this paper.

Given these insights, we propose a utility owner-centric
classification scheme that divides underground utilities into
three separate classes, as shown in figure 2, with two ad-
ditional classes for background and misc. objects. These
classes are naturally distinguishable from a utility owner’s
perspective and will be advantageous for subsequent utility
mapping tasks. The five classes are defined as follows:
Trench: The surrounding open excavation pit where the
utilities are laid. The class include everything not described
in the other classes.
Main Utility: Newly installed utilities, which is the main
utility of interest for surveying and mapping. In our dataset,
this class is representing two distinct types of utilities: wa-
ter and district heating. These utility types differ in both
appearance and shape. For example, newly installed water
pipes predominantly feature distinct blue colors, while dis-
trict heating pipes are colored black. However, within the
area of one utility owner, the newly installed utilities often
consist of the same materials and components, giving them
a recognisable look.
Other Utility: Existing utilities uncovered during excavation
belonging to other utility owners. This class represents a very

diverse set of utility structures but shares more similarities
across all areas in the dataset.

Inactive Utility: Out-of-service utilities belonging to the
utility owner. These are left installed in the ground when
replacing older counterparts of the utilities in the Main Util-
ity class. Due to the large time gap between installations,
these older utilities vary in appearance—from closely resem-
bling the newly installed utilities in the Main Utility class to
resembling structures in the Other Utility class. Labelling
this class proved challenging and was cross-referenced with
utility map data provided by the same utility owners that also
provided the point cloud data for the dataset.

Misc.: Misc. trench items such as pipe-like objects, work
equipment and left-over cut pipe segments. These items are
captured due to the messy nature of an excavation site and
are irrelevant to the utility owner.

Table 2 shows the distribution of points for each class
across all areas in the dataset. It shows a large class imbal-
ance with the Trench class being, by far, the most dominant
class. The Trench class is considered the background class.
In water areas the distribution among the three utility classes
is relatively balanced and the Main Utility class is consis-
tently represented across areas. A notable difference between
the water and heating areas is the higher number of points
in the Main Utility class in heating areas. This aligns with
the fact that district heating utilities are larger than water
utilities.
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Table 2. The number of point clouds in each area and the number of points per class and the average number of points per point cloud. All
numbers except point clouds are stated in thousands. The total number of points in the dataset is 528 million points.

Area Clouds Main Other Trench Inactive Misc Avg.
Utility Utility Utility Points

Water Area 1 68 2,566 (2.6%) 3,377 (3.5%) 90,578 (92.8%) 842 (0.9%) 195 (0.2%) 1,435
Water Area 2 35 1,183 (3.2%) 1,540 (4.1%) 33,735 (90.6%) 680 (1.8%) 80 (0.2%) 1,063
Water Area 3 65 3,380 (3.0%) 4,192 (3.8%) 101,970 (91.5%) 1,860 (1.7%) 64 (0.1%) 1,715
Water Area 4 42 1,946 (3.0%) 3,816 (5.9%) 58,237 (90.4%) 358 (0.6%) 57 (0.1%) 1,534
Water Area 5 50 1,606 (2.2%) 3,403 (4.7%) 66,937 (92.5%) 377 (0.5%) 22 (0.0%) 1,447

Water Total 260 10,682 (2.8%) 16,328 (4.3%) 351,456 (91.8%) 4,118 (1.1%) 418 (0.1%) 1,473

Heat Area 1 29 20,363 (21.3%) 1,605 (1.7%) 72,927 (76.1%) 576 (0.6%) 321 (0.3%) 3,303
Heat Area 2 21 5,191 (10.5%) 535 (1.1%) 43,252 (87.7%) 18 (0.0%) 326 (0.7%) 2,349

Heat Total 50 25,554 (17.6%) 2,140 (1.5%) 116,179 (80.1%) 594 (0.4%) 646 (0.4%) 2,902

4. Evaluation methods on OpenTrench3D

4.1. 3D Semantic Segmentation Methods

We benchmark three state-of-the-art neural networks for
semantic segmentation of point clouds: PointNeXt[26],
PointVector[9] and PointMetaBase[22] on OpenTrench3D.
These methods employ different feature extraction method-
ologies and achieve state-of-the-art performance on
S3DIS[2] and ScanNetV2[8], which are scene-level datasets
like OpenTrench3D:
PointNeXt[26]: modernises the highly influential
PointNet++[25] with improved training strategies e.g., data
augmentation and optimization techniques and introduces
the inverted residual bottleneck block which allows for
efficient and effective model scaling. We use the XL variant
of PointNeXt which has 41.5M parameters.
PointVector[9]: enhances the Point Set Abstraction blocks
of the PointNet series, which are responsible for aggregating
features of neighboring points. This is done by introducing
a Vector-oriented Point Set Abstraction block that can
aggregate neighboring features through higher-dimensional
vectors instead of simple scalars. We use the XL variant of
PointVector which has 24.1M parameters
PointMetaBase[22]: introduces the concept of a PointMeta-
building block, which is composed of a four sub-blocks: a
neighbor update function, a neighbor aggregation function,
a point update function and a position embedding function.
PointMetaBase experiements with various settings for each
sub-block to identify optimal feature-extraction capabilities
while allowing for efficient processing of points. We use
the XXL variant of PointMetaBase which has 19.7M
parameters.

4.2. Evaluation Metrics

We use two well-established metrics, mean intersection-over-
union (mIoU) and mean accuracy (mAcc), for evaluating
the 3D semantic segmentation performance of the methods.
Intersection-over-union for class i:

IoUi =
TPi

TPi + FPi + FNi
(1)

Mean intersection-over-union:

mIoU =
1

N

∑N

i=0
IoUi (2)

Accuracy for class i:

Acci =
TPi

TPi + FNi
(3)

Mean accuracy:

mAcc =
1

N

∑N

i=0
Acci (4)

4.3. OpenTrench3D Evaluation Description

5-fold cross-validation on water areas: We conduct a 5-
fold cross-validation on the water areas in two rounds. Ini-
tially, we include the Inactive Utility class during training
and evaluation and subsequently, we ignore it. This allows us
to assess the three methods’ effectiveness in distinguishing
among the three utility classes. Additionally, the Misc class
is ignored from both evaluations due to its lack of relevance
to the Utility Owner.
Fine-tuning evaluation on heating areas: We conduct a
fine-tuning evaluation to asses the transfer learning and fine-
tuning opportunities of the dataset and to investigate the
generalizability and performance of the three methods on the
entire dataset. Specifically, we first pre-train model weights
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Figure 3. An overview of the dataset sub-sets of OpenTrench3D used in the 5-fold cross-validation on water areas and fine-tuning evaluation
on heating areas as described in section 4.3.

by training on Water Area 1-4 while using Water Area 5
as a validation set for the pre-training. Secondly, we fine-
tune the model weights on 1, 5, 10, 20 and all (29) samples
from Heating Area 1. We conduct fine-tuning experiments in
which only weights of the segmentation head of each model
are fine-tuned as well as experiments in which the weights of
both the segmentation head and the decoder are fine-tuned,
simultaneously. Finally, the fine-tuned models are evaluated
on point clouds from Heating Area 2.

An overview of the dataset subsets is presented in figure 3.
In the fine-tuning evaluation, we ignore the Inactive Utility
class due to its minimal presence in heating area 2. The Misc
class is ignored in all experiments.

4.4. Training Environment

The experiments for the 5-fold evaluation on water areas
and fine-tuning evaluation on heating areas are run on a
high-performance computing cluster with Nvidia A40 GPUs
(48GB). In each experiment, the deep learning networks are
assigned 64GB RAM, 8 CPU Cores (AMD EPYC) and 1
Nvidia A40 GPU. For the development environment, we use
Ubuntu 20.04, python 3.10 and torch 1.10 with CUDA 11.3.

Pre-training experiments are run for 50 epochs with a
batch size of 8. For each epoch of training we loop over
the dataset 30 times similar to [26]. The voxel max, which
specifies the number of processed points per point cloud per
batch, is set to 24,000. We use an Adamw optimizer with
an initial learning rate of 0.01 and a minimum learning rate
of 0.0001. Fine-tuning experiments are run for 50 epochs
with a batch size of 1 when fine-tuning on 1 and 5 samples,
a batch of 4 when fine-tuning on 10 samples and a batch size
of 8 when fine-tuning on 20 and 29 samples. The learning

rate is set to 0.05 and minimum learning rate of 0.0001. We
universally down-sample point clouds using a voxel grid
size of 0.02m and set the query ball radius to 0.025m. These
settings are derived from using data-driven hyperparameter-
tuning [17] and an additional hyperparameter sweep.

Table 3. Results from 5-fold cross-validation on water areas as
described in 4.3. The mACC, mIoU and IoU score for each class.

Method

m
A

cc

m
Io

U

M
ai

n

O
th

er

Tr
en

ch

In
ac

tiv
e

PointNeXt 79.7 70.6 81.6 59.7 98.1 42.8
PointVector 84.1 76.5 83.1 77.7 98.6 46.4
PointMetabase 84.5 75.8 83.6 76.6 98.6 44.5

PointNeXt 91.9 88.5 87.8 79.1 98.7 -
PointVector 93.2 90.3 90.3 81.8 98.8 -
PointMetabase 93.8 90.5 90.4 82.2 98.8 -

5. Results and Discussion

5.1. 5-fold cross-validation on Water Areas

We present the outcomes of our 5-fold cross-validation in ta-
ble 3. The Inactive Utility class presents the most significant
challenge, as expected, likely due to its visual similarities
to Main Utility and Other Utility as visualized in zoomed in
class examples of figure 2. In our qualitative analysis, we
note that the Inactive class is often misclassified as either
Main or Other Utility. For illustrative examples of this, we
direct readers to the supplementary materials.
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Figure 4. Results from the fine-tuning experiments described in section 3.2. For comparison, we display results from pre-trained models (red
square) and results of models solely trained on samples from Heating Area 1 (Baseline).

Figure 5. Qualitative results of pre-trained PointNeXt model, PointNeXt models trained on 1 and 10 samples from Heat Area 1 and finally
pre-trained and fine-tuned PointNeXt models fine-tuned on 1 and 10 samples were only weights of the segmentation head are tuned. A set of
additional examples are seen in the supplementary material.

Other Utility emerges as the second most challenging
class, whereas Main Utility is the easiest to classify. Re-
markably, in the second evaluation where Inactive Utility is
ignored, the IoU score of Main Utility exceeds 90% for both
PointVector and PointMetabase, a level of performance that
is difficult to enhance further and inspire the possibilities
to build application upon for automating utility mapping.
Our qualitative findings reveal that errors predominantly oc-
cur in boundary areas between two classes. In our dataset,
this particularly happens in areas where one of the utility
classes merge into the soil e.g., the Trench class or when soil
partially covers the utilities.

Generally, we notice a better performance in PointVector
and PointMetabase compared to PointNeXt. This follows a
similar trend in benchmarks on S3DIS dataset[9, 22].

5.2. Fine-tuning evaluation on Heating Areas

We present the results from the fine-tuning evaluation on
heating areas in figure 4 and table 4. Generally, we observe
that fine-tuning of pre-trained weights proves effective across
all three methods evaluated, particularly when fine-tuning
with 1, 5 and 10 samples from Heating Area 1.

We find PointVector performs the best, achieving a mIoU
score of 76.6% when fine-tuning the weights of both the
segmentation head and the decoder with 10 samples from
Heating Area 1, closely followed by PointNeXt with a
mIoU score of 75.9%. Furthermore, PointVector consistently
achieves the highest mIoU scores when pre-trained only on
water areas. This supports the authors arguments that the
vector-oriented Point Set Abstraction design introduces less
inductive bias, which in returns improves generalization ca-
pabilities [9]. One noteable results, is the fact that for both
PointNeXt and PointVector, fine-tuning pre-trained weights
with just a single sample from Heating Area 1 achieves a
better performance compared to baseline version trained
on even all 29 samples from Heating Area 1. In contrast,
PointMetaBase ranks as the least effective, with its baseline
model trained on 20 and 29 samples even surpassing the
performance of its fine-tuned counterparts.

Unexpectedly, we observe a negative trend upon increas-
ing the number of fine-tuning samples to 20 and 29 for
all three methods. This prompts the hypothesis that further
experimental investigations into the optimization of hyper-
parameter settings for fine-tuning with 20 and 29 samples to
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Table 4. Results from fine-tuning evaluation on heating areas as
described in 4.3 for PointNeXt. The mACC, mIoU and IoU score
for each class is shown. We refer to the supplementary material for
corresponding tables for PointVector and PointMetaBase.

PointNeXt

Sa
m

pl
es

m
A

cc

m
Io

U

M
ai

n

O
th

er

Tr
en

ch

Baseline

1 68.3 59.8 65.1 20.4 93.8
5 72.8 65.6 78.7 21.3 96.9

10 72.7 67.1 75.8 29.2 96.3
20 76.2 68.1 75.9 32.1 96.4
29 75.5 69.6 79.5 32.2 96.9

Pre-trained 75.0 65.6 70.6 29.2 97.0

Fine-tuned
(Head)

1 80.4 72.2 76.4 43.9 96.5
5 79.8 73.8 81.2 43.0 97.2

10 83.7 75.9 83.6 46.5 97.6
20 79.9 72.3 83.0 36.4 97.6
29 84.5 74.4 81.4 44.2 97.5

Fine-tuned
(Decoder+Head)

1 80.8 73.9 80.2 44.4 97.2
5 78.9 74.0 81.3 43.4 97.2

10 82.0 75.1 83.8 43.9 97.6
20 83.9 74.1 82.4 42.4 97.5
29 82.3 72.7 80.0 40.6 97.5

effectively capitalize on the additional data.
Compared to the 5-fold cross-validation on water areas,

the mIoU score is significantly lower across all types of ex-
periments, suggesting that achieving such performance likely
requires more annotated data. However, this trend is less pro-
nounced for the IoU score of the Main Utility class, which
still manages to achieve impressively high performance in
the fine-tuning evaluation. PointVector emerges as the top
performer with an IoU score of 86.7%, closely followed by
PointNeXt with an IoU of 83.8%, as seen in Table 4. Both
scores are relatively close to their counterparts in table 3.
Figure 5 clearly illustrates the significant improvement that
fine-tuning brings to the Main Utility class. When comparing
models pre-trained solely on water areas to those fine-tuned
on just 1 and 10 samples, a clear improvement is evident.
The fine-tuning process drastically reduces the instances of
the Main Utility being incorrectly labeled as Other Utility,
achieving near-perfect results for both classes. The incorrect
classification of the Main Utility as Other is further observed
in our qualitative analysis and was expected, considering the
visual and dimensional differences between water utilities
and district heating pipes, as illustrated in Figure 2.

Moreover, our qualitative analysis reveals surprising clas-
sification errors, in which the Trench class is incorrectly
identified as the Main Utility class, particularly in our fine-
tuned and baseline models, and significantly less so in the

model pre-trained on water areas. While the exact cause is
uncertain, we hypothesize that the large difference in number
of points, percentage-wise, in Heating Area 1 compared to
other areas, may be a factor. Additionally, we observed that
many of the heating pipes in Heating Area 1 are partially,
and sometimes almost completely, covered with soil, which
might contribute to the confusion.

Upon examining the incorrect predictions, the error often
appears obvious to the human eye. For instance, where a
single continuous pipe is classified as both Main- and Other
Utiltiy classes at different segments of the pipe. We believe
this calls for post-processing, possibly integrated with some
prior knowledge about class appearances or human interac-
tion related to the work by Stranner et al. [30].

Finally, from the fine-tuning evaluation experiment, it has
been discerned that the batch size has a significant influence
on the methods’ performance, particularly when fine-tuning
with few samples e.g. 5 and 10. For example, upon fine-
tuning a pre-trained PointVector model on 10 samples with a
batch size of 1 over 50 epochs, a mIoU of 66.6% was attained,
whereas under identical conditions, when adjustment to a
batch size of 4, the mIoU score was 76.6%. A difference of
10.0 percentage points. Comparable trends were observed
for PointMetaBase and PointNeXt.

6. Conclusion
In this paper, we introduce OpenTrench3D, the first publicly
available point cloud dataset of underground utilities from
open trenches. It features 310 fully annotated point clouds
consisting of a total of 528 million points categorised into 5
unique classes following a utility owner-centric classification
scheme. The dataset is acquired through photogrammetric
techniques, offering an accessible and cost-effective method
for capturing underground utility data. Our experiments on
OpenTrench3D involve: (i) a 5-fold cross-validation on water
project areas, highlighting impressive performance for the
main utility classes using state-of-the-art deep learning se-
mantic segmentation methods and (ii) fine-tuning pre-trained
models on district heating utilities with minimal samples,
demonstrating the capability to learn segmenting entirely
new utility classes effectively from just a few examples. By
providing this dataset, we aim to catalyze innovation and
advance the research in the domain, ultimately contributing
to reducing excavation damages, optimizing urban planning
and improving underground utility surveying and mapping.
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Chappuis, and Alessandro Giusti. Semantic segmentation on
swiss3dcities: A benchmark study on aerial photogrammetric
3d pointcloud dataset. Pattern Recognition Letters, 150:108–
114, 2021. 2, 3

[6] Meida Chen, Qingyong Hu, Zifan Yu, Hugues Thomas, An-
drew Feng, Yu Hou, Kyle McCullough, Fengbo Ren, and
Lucio Soibelman. Stpls3d: A large-scale synthetic and real
aerial photogrammetry 3d point cloud dataset. In BMVC,
2022. 2, 3

[7] CloudCompare. CloudCompare (version 2.12). [GPL soft-
ware]. 3

[8] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
pages 2432–2443, 2017. 3, 5

[9] Xin Deng, WenYu Zhang, Qing Ding, and XinMing Zhang.
Pointvector: A vector representation in point cloud analysis.
In CVPR, pages 9455–9465, 2023. 5, 7

[10] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.
Schindler, and M. Pollefeys. Semantic3d.net: A new large-
scale point cloud classification benchmark. In ISPRS, pages
91–98, 2017. 2, 3

[11] Lasse H. Hansen, Philipp Fleck, Marco Stranner, Dieter
Schmalstieg, and Clemens Arth. Augmented reality for sub-
surface utility engineering, revisited. IEEE Transactions on
Visualization and Computer Graphics, 27(11):4119–4128,
2021. 3

[12] Lasse H. Hansen, T. M. Pedersen, E. Kjems, and S. Wyke.
Smartphone-based reality capture for subsurface utilities: Ex-
periences from water utility companies in denmark. ISPRS,
XLVI-4/W4:25–31, 2021. 2, 3

[13] L. H. Hansen, R. van Son, A. Wieser, and E. Kjems. Address-
ing the elephant in the underground: An argument for the
integration of heterogeneous data sources for reconciliation
of subsurface utility data. in ISPRS, XLVI-4/W4:43–48, 2021.
1

[14] Joakim B. Haurum and Thomas B. Moeslund. A survey on
image-based automation of CCTV and SSET sewer inspec-
tions. 111:103061, 2020. 2

[15] Joakim B. Haurum and Thomas B. Moeslund. Sewer-ML: A
multi-label sewer defect classification dataset and benchmark.
In CVPR, pages 13451–13462, 2021. 2

[16] Qingyong Hu, Bo Yang, Sheikh Khalid, Wen Xiao, Niki
Trigoni, and Andrew Markham. Towards semantic segmenta-
tion of urban-scale 3d point clouds: A dataset, benchmarks
and challenges. In CVPR, 2021. 2, 3

[17] Simon B. Jensen, Galadrielle H.-R., Andreas Møgelmose, and
Thomas B. Moeslund. Data-driven hyperparameter tuning
for point-based 3d semantic segmentation. In ICIPCW, pages
3696–3700, 2023. 6

[18] Tatjana Kutzner, Ihab Hijazi, and Thomas H. Kolbe. Semantic
modelling of 3d multi-utility networks for urban analyses and
simulations: The CityGML utility network ADE. Interna-
tional Journal of 3-D Information Modeling, 7(2):1–34, 2018.
3

[19] Michael Kölle, Dominik Laupheimer, Stefan Schmohl, Nor-
bert Haala, Franz Rottensteiner, Jan Dirk Wegner, and Hugo
Ledoux. The hessigheim 3d (h3d) benchmark on semantic
segmentation of high-resolution 3d point clouds and textured
meshes from uav lidar and multi-view-stereo. ISPRS, 1:11,
2021. 3

[20] Maosu Li, Yijie Wu, Anthony G.O. Yeh, and Fan Xue. Hrhd-
hk: A benchmark dataset of high-rise and high-density urban
scenes for 3d semantic segmentation of photogrammetric
point clouds. In ICIPCW, pages 3714–3718, 2023. 2

[21] Xinke Li, Chongshou Li, Zekun Tong, Andrew Lim, Junsong
Yuan, Yuwei Wu, Jing Tang, and Raymond Huang. Campus3d:
A photogrammetry point cloud benchmark for hierarchical
understanding of outdoor scene. In ACMMM. Association for
Computing Machinery, 2020. 2

[22] H. Lin, X. Zheng, L. Li, F. Chao, S. Wang, Y. Wang, Y. Tian,
and R. Ji. Meta architecture for point cloud analysis. In
CVPR, pages 17682–17691, 2023. 5, 7

[23] Sergey Lytkin, Vladimir Badenko, Alexander Fedotov, Kon-
stantin Vinogradov, Anton Chervak, Yevgeny Milanov, and
Dmitry Zotov. Saint petersburg 3d: Creating a large-scale
hybrid mobile lidar point cloud dataset for geospatial applica-
tions. Remote Sensing, 15(11), 2023. 2

[24] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In CVPR, pages 652–660, 2017. 3

[25] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. In NIPS, 2017. 3, 5

[26] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan
Abed Al Kader Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In NIPS, 2022. 5, 6

[27] Xavier Roynard, Jean-Emmanuel Deschaud, and François
Goulette. Paris-lille-3d: A large and high-quality ground-
truth urban point cloud dataset for automatic segmentation
and classification. The International Journal of Robotics
Research, 37(6):545–557, 2018. 2

[28] Andrés Serna, Beatriz Marcotegui, François Goulette, and
Jean-Emmanuel Deschaud. Paris-rue-Madame database: a
3D mobile laser scanner dataset for benchmarking urban de-

7654



tection, segmentation and classification methods. In Interna-
tional Conference on Pattern Recognition, Applications and
Methods, 2014. 3

[29] Hamin Song, Kichun Jo, Jieun Cho, Youngrok Son, Chansoo
Kim, and Kwangjin Han. A training dataset for semantic
segmentation of urban point cloud map for intelligent vehicles.
ISPRS, 187:159–170, 2022. 2

[30] Marco Stranner, Philipp Fleck, Dieter Schmalstieg, and
Clemens Arth. Instant segmentation and fitting of excavations
in subsurface utility engineering. TVCG, pages 1–11, 2024.
3, 8

[31] Weikai Tan, Nannan Qin, Lingfei Ma, Ying Li, Jing Du,
Guorong Cai, Ke Yang, and Jonathan Li. Toronto-3D: A
large-scale mobile lidar dataset for semantic segmentation of
urban roadways. In CVPRW, pages 202–203, 2020. 2, 3

[32] R. Van Son, S. W. Jaw, J. Yan, V. Khoo, R. Loo, S. Teo, and
G. Schrotter. A framework for reliable 3d underground utility
mapping for urban planning. ISPRS, XLII-4/W10:209–214,
2018. 1, 2

[33] R. Van Son, S. W. Jaw, and A. Wieser. A data capture frame-
work for improving the quality of subsurface utility informa-
tion. ISPRS, XLII-4/W15:97–104, 2019. 1

[34] Nina Varney, Vijayan K Asari, and Quinn Graehling. Dales:
A large-scale aerial lidar data set for semantic segmentation.
In CVPRW, pages 186–187, 2020. 2, 3

[35] Simon Quaade Vinther, Frida Dalbjerg Kunnerup, Lars Bo-
dum, Lasse H. Hansen, and Simon Wyke. Visualisation of 3d
uncertainties for subsurface infrastructure using augmented
reality. In International 3D GeoInfo Conference, pages 111–
128. Springer, 2023. 1

[36] Jingya Yan, Rob Van Son, and Kean Huat Soon. From un-
derground utility survey to land administration: An under-
ground utility 3d data model. Journal of Land Use Policy,
102:105267, 2021. 3

[37] Zhen Ye, Yusheng Xu, Rong Huang, Xiaohua Tong, Xin Li,
Xiangfeng Liu, Kuifeng Luan, Ludwig Hoegner, and Uwe
Stilla. Lasdu: A large-scale aerial lidar dataset for semantic
labeling in dense urban areas. ISPRS, 9(7), 2020. 2

[38] RZM Yuen and Jan Boehm. Potential of consumer-grade cam-
eras and photogrammetric guidelines for subsurface utility
mapping. ISPRS, 48:243–250, 2022. 2

7655


