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Abstract

Large benchmarking datasets, such as ImageNet,

COCO, Cityscapes, or ScanNet, have enormously promoted

research in computer vision. For the domain of crack seg-

mentation, no such large and well-maintained benchmark

exists. Crack segmentation is characterized by the decen-

tralized creation of datasets, almost all of which have their

specific right to existence. Each dataset covers a differ-

ent aspect of the surprisingly complex landscape of materi-

als, acquisition conditions, and appearances linked to crack

segmentation. The OMNICRACK30K dataset forms the first

large-scale, systematic, and thorough approach to provide

a sustainable basis for tracking methodical progress in the

field of crack segmentation. It contains 30k samples from

over 20 datasets summing up to 9 billion pixels in total.

Featuring materials as diverse as asphalt, ceramic, con-

crete, masonry, and steel, it paves the road towards univer-

sal crack segmentation, a currently under-explored topic.

Experiments indicate the effectiveness of transfer learning

for crack segmentation: nnU-Net achieves a mean clIoU4px

of 64% outperforming all other approaches by at least 10%

points.

1. Introduction

The societal impact of crack detection cannot be underesti-

mated. Recurring bridge collapses underline the importance

of regular and thorough structural inspection. Inspection

campaigns, however, consume a significant amount of re-

sources: they lead to route closure, require special technical

equipment, and put human lives at risk. The technologi-

cal state of emerging imaging platforms (e.g., drones) has

reached a maturity which renders large-scale image acqui-

sition at structures possible.

The multitude and complexity of the captured images

exceed the temporal and cognitive capacities of human ex-

perts. Automation approaches can, thus, productively sup-

port the experts in deriving valuable information from the

data and thereby facilitating the inspection process. Cracks

are among the most relevant defects to provide substantial

insights into the conditional state of a structure. As a conse-

quence image-based crack detection forms a key ingredient

in enhancing the process of structural inspection.

Even though other approaches have been proposed, se-

mantic segmentation is the prevailing paradigm for crack

detection. It is commonly referred to as crack segmenta-

tion. Crack segmentation is an unsolved problem and comes

with a number of challenges including robustness and uni-

versality. By no means is the relevance of crack segmenta-

tion restricted to the domain of civil engineering: computer

vision has investigated line-like features usually as object

boundaries, but rarely as objects themselves. Road detec-

tion in satellite imagery and the recognition of blood vessels

in medical imaging are arguably the most analogous tasks

to crack segmentation in that sense.

The contributions of this work are threefold: (1) the

systematic and thorough review and analysis of avail-

able datasets for crack segmentation. (2) The composi-

tion and provision of the large-scale benchmarking OMNI-

CRACK30K dataset for universal crack segmentation based

on this analysis. (3) The detailed investigation and bench-

marking of transfer learning for crack segmentation.

2. Related Work

[36] provide a survey on crack detection before artificial

neural networks (ANN) became the dominant approach.

Edge detection, morphological operations, filtering, and

thresholding were among the most frequently used tech-

niques [1, 30, 37, 41, 45, 48, 56]. The CrackTree approach

[59] constructs a minimum spanning tree over previously

identified crack seeds. An ensemble of decision trees called

CrackForest is used by [42] for crack classification.

Since 2017, artificial neural networks (ANN) have

emerged as the dominant approach for crack detection. [18]

conducted a study comparing different training configura-
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tions of AlexNet [26] with six edge detectors, including So-

bel, LoG, and Butterworth. Experiments on the SDNET

dataset [19] indicated the superiority of ANN and the ef-

fectiveness of transfer learning. Other approaches, pro-

posed by [11, 12, 57], involve using a classification CNN

combined with a sliding window to process larger images

and/or improve localization. [54] popularized the transi-

tion to fully-convolutional networks (FCN) [34] for crack

segmentation. Based on SegNet [3], DeepCrackZ was de-

signed [60]: a separate fusion logic with individual, scale-

wise losses supports preserving thin structures. The concep-

tually similar approach DeepCrackL1 is suggested by [32].

In the style of deeply-supervised nets (DSN) [28], losses are

computed for intermediate side-outputs to make use of fine

details and anti-noise capabilities alike. The outputs un-

dergo post-processing with guided filtering (GF) [23] and

conditional random fields (CRF) [58]. A U-Net [40] with

focal loss [29] is reported to perform superiorly compared

to a simpler FCN design [33]. [52] propose the feature pyra-

mid and hierarchical boosting network (FPHBN). It extends

holistically-nested edge detection (HED) [51] by a feature

pyramid module to incorporate and propagate context infor-

mation to lower levels. The hierarchical boosting supports

the inter-level communication within the FPHBN. [31] de-

velop CrackFormer, which is a transformer-based approach

to crack segmentation. For that purpose, the convolutional

layers of VGG [44] are replaced by a self-attention logic.

To increase the crack sharpness, a scaling-attention block

is suggested. [6] propose a re-trained version of the hier-

archical multi-scale attention network by [49] called HMA,

which mitigates the scale sensitivity of cracks. The results

are aggregated based on the attention to cracks on differ-

ent levels of scales. In order to preserve the continuity

of cracks, [38] suggest TOPO loss, which uses maximin

paths to mitigate discontinuities between cracks. An ori-

ented bounding box approach, named CrackDet, has re-

cently been proposed by [15]. [8] and [27] emphasize

the usefulness of transfer learning and compose smaller

crack datasets into larger ones, Conglo, and CrackSeg9k.

[27] compare a number of approaches, including Pix2Pix,

SWIN, and MaskRCNN. DeepLabV3+ [14] with a ResNet-

101 backbone outperformed the other methods. [8] confirm

that DeepLabV3+ is an effective method for crack segmen-

tation.

3. OMNICRACK30K DATASET

The data culture in computer vision, as typically practiced

in top-tier conferences, is centralized and top-down: major

benchmarking datasets are monolithic products created by

established research institutions, often in cooperation with

1DeepCrackZ and DeepCrackL are used for disambiguation since both

were originally called DeepCrack.

Total Crack Coverage Primary

Dataset Image Sizes Samples Original Centerline Reference

AEL [462, 1000]×[311, 991] 58 0.67% 0.32% [2]

BCL 256×256 11,000 2.24% 0.30% [55]

Ceramic 256×256 100 2.05% 0.60% [25]

CFD 320×480 118 1.62% 0.47% [42]

Conglomerate 448×448 9,584 3.18% 0.31% [8]

CRACK500 [1440, 1936]×[2560, 2592] 447 2.84% 0.11% [57]

CrackLS315 512×512 315 0.25% 0.25% [60]

CrackSeg9k 400×400 6,315 2.48% 0.21% [27]

CrackTree200 600×800 206 0.32% 0.32% [59]

CrackTree260 [600, 720]×[800, 960] 260 0.46% 0.45% [60]

CRKWH100 512×512 100 0.36% 0.36% [60]

CrSpEE [81, 4160]×[116, 4608] 1,220 0.84% 0.11% [4]

CSSC 768×768 195 2.42% 0.20% [53]

DeepCrack [384, 544]×[384, 544] 537 3.54% 0.37% [32]

DIC 256×256 1,060 1.79% 0.41% [39]

GAPS384 1080×1920 384 0.36% 0.05% [52]

Kaggle11k 448×448 11,298 3.50% 0.75% [35]

Khanh11k 448×448 11,298 3.50% 0.75% [22]

LCW [237, 4608]×[256, 5184] 3,773 0.02% 0.01% [8]

Masonry 224×224 240 4.21% 0.41% [17]

S2DS 1024×1024 743 0.26% 0.03% [6]

Stone331 512×512 331 0.10% 0.10% [60]

TopoDS 256×256 7,180 0.31% 0.31% [38]

UAV75 512×512 75 1.42% 0.24% [7]

Table 1. Overview of useful, relevant, and accessible datasets for

crack segmentation as of Aug 16, 2023. The column ‘crack cov-

erage’ represents the area covered by the pixel-wise crack labels

across all images of the respective dataset. ‘Centerline’ derives

from the transformation of the original labels to a centerline rep-

resentation.

renowned industry partners. Datasets for crack segmenta-

tion, on the other hand, typically emerge from a more demo-

cratic ‘grassroots’ movement in a decentralized and bottom-

up fashion. Even though complicating benchmarking, the

singular datasets usually have their right of existence by re-

flecting a specific challenge linked to crack segmentation.

Composing these special cases into the overarching OMNI-

CRACK30K dataset reduces biases, enables benchmarking,

and paves the road to a more general ’universal’ crack seg-

mentation.

3.1. Available Datasets

[9] and [27] attempted to list or combine different datasets,

in yet incomplete fashion. Tab. 1 provides a quantitative

overview of available, relevant, and useful datasets for

crack segmentation, briefly outlined in the following:

AEL: Published by [2], contained subsets: AIGLE RN,

ESAR, and LCMS. LCMS has low-quality images. AEL

features images of variable size showing asphalt cracks.

BCL: Bridge Crack Library (BCL), published by [55].

Consists of patches from larger images. Cracks are shown

in a macro-like fashion, which accounts for the blur visi-

ble in many samples. 2,036 samples show cracks in steel,

5,769 in concrete and stone, and 3,195 are negative samples

for crack-like artifacts. No information on the data splits.

Featuring only synthetic cracks, BCL 2.0 is disregarded.
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AEL BCL Ceramic CFD CRACK500

CrackLS315 CrackTree260 CRKWH100 CrSpEE CSSC

DeepCrack DIC GAPS384 Khanh11k LCW

Masonry S2DS Stone331 TopoDS UAV75

Figure 1. Visual impression of the crack segmentation datasets which are combined into the OmniCrack30k dataset. Images are cropped

to square. Best viewed on screen.

Ceramic: Published by [25]. No labels provided for the test

set. The images show cracks in a variety of ceramic tiles.

CFD: Short for CrackForest dataset [42]. The images show

cracks almost exclusively in asphalt surfaces. Exact dataset

splits are not reported; train/test share is 60%/40%.

Conglomerate: Compiled and used by [8]. Based on

Khanh11k, it forms a collection of datasets, including CFD,

CRACK500, CrackTree200, DeepCrack, GAPs, etc.

CRACK500: The dataset is provided by [52], its origins are

traced to [57]. The images by [52] are smaller than the size

reported by [57]. The images vary in size and exclusively

show pavement cracks of variable widths.

CrackLS315: Published by [60]. The images show asphalt

cracks with slight illumination inhomogeneities.

CrackSeg9k: [27] combined and transformed the Khanh-

11k, Masonry, and Ceramic datasets. The downloadable

dataset has ∼6k samples instead of 9k (Aug 16, 2023).

CrackTree200: Also referred to as CrackTree206, pub-

lished by [59]. Features asphalt cracks in relatively homo-

geneous conditions.

CrackTree260: Extension of CrackTree200, published by

[60]. Images with lower quality and cracks with a sophis-

ticated net-like structure were added. All images show as-

phalt cracks under relatively homogeneous conditions.

CRKWH100: Published by [60]. The images show asphalt

cracks with slight illumination inhomogeneities. It contains

five images with white cracks.

CrSpEE: The Crack and Spalling Dataset in the Context

of Extreme Events (CrSpEE) is designed for instance seg-

mentation of cracks and spalling [4]. It shows cracks (and

spalling) ‘in the wild’, i.e., under challenging conditions

with numerous distractors (people, context, etc.).

CSSC: The Concrete Structure Spalling and Crack dataset

(CSSC) published by [53]. Duplicates resulting from flip-

ping augmentations are removed. The images show cracks

and spalling mostly in concrete and stone.

DeepCrack: Published with model DeepCrackL [32]. Fea-

tures partly very wide cracks in different surfaces, e.g., con-

crete and stone. Some images are blurry.

DIC: Published by [39] to investigate digital image cor-

relation (DIC) for deformable image matching. Features

cracks on a plastered wallett (a specimen) with random

black speckles under homogeneous, lab-like conditions.

GAPS384: [20], [46], and [47] published a series of

datasets under the name GAPs (German Asphalt Pavement

Distress) v1, v2, and 10m. GAPs v1 and GAPs v2 provide

patch classification labels only. GAPs 10m contains very

coarse segmentation masks. [52] created pixel-wise labels
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for GAPs v1, released as GAPS384. The images show as-

phalt cracks under relatively homogeneous conditions.

LCW: The Labeled Cracks in the Wild (LCW) dataset

features crack detection under challenging conditions [8].

Most images are of lower quality and show the structure’s

context, including support elements, vegetation, etc. A high

number of negative samples is contained. To counteract dis-

balance, OMNICRACK30K uses positive samples only. The

images almost exclusively show cracks in concrete.

Masonry: Features cracks in variable kinds of masonry,

mostly brick walls [17]. The negative samples are not pro-

vided. The reconstructed train/test split is probably faulty.

Kaggle11k: A copy of Khanh11k without reference.

Khanh11k: The name refers to the repository owner. A

collection of other datasets, including CrackTree200, CFD,

CRACK500, DeepCrack, and parts of AEL. Labels were

stored in JPG format, which probably accounts for artifacts

in some labels. Many images were patched and anisotropi-

cally scaled, leading to distortions.

S2DS: Structural Defects Dataset (S2DS), published by [6].

Contains cracks alongside other classes representing real-

world inspection scenarios of concrete structures. Due to

the overall small number, also the negative samples are kept.

Stone331: Published by [60]. The images show cracks in

stone under homogeneous conditions.

TopoDS: An ‘in the wild’ dataset with challenging images

containing a multitude of distractors (other support struc-

tures, objects, etc.) [38]. The centerline annotations often

are coarse and have offsets to the presumed centerline. Fea-

tures cracks on various structures in a post-disaster scenario.

Demolition edges of spallings are also labeled as crack.

UAV75: Unmanned Aerial Vehicle dataset (UAV75) [7].

Represents cracks in real-world, UAV-based inspection sce-

narios with fine, partially blurry cracks in concrete surfaces.

3.2. Overlap Analysis

It was observed that images from certain datasets frequently

re-occur in others. For the overlap analysis all images are

transformed into a perceptual embeddings of size 32×32×3

with four rotational configurations. This preserves the im-

age characteristics while abstracting from slight image ma-

nipulations. The normalized overlap score is computed as

|{b : ||a − b|| < τ}|/|A|, where a and b represent the

perceptual embeddings and |A| the number of samples in

dataset A. In this case τ = 100 rendered suitable.

Tab. 2 shows the results of the overlap analysis. The

datasets BCL, CrackLS315, CRKWH100, DIC, LCW, Ma-

sonry, S2DS, Stone331, TopoDS, and UAV75 are not listed

since they are mutually exclusive with all other datasets

considered here. For CRACK500 and GAPS384, the

patched version is used for overlap analysis. The overlap-

ping properties between Kaggle11k and Khanh11k suggest

that they are identical, which is the case. Furthermore, it can
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AEL – – – – – – – – – – – 52 52

Ceramic – – – – – – – – 1 – – – –

CFD – – 100 – – – – – – – – 300 300

Conglomerate – – 1 36 52 2 2 0 0 5 5 104 104

CRACK500 – – – 92 49 – – – – – – 92 92

CrackSeg9k – – – 79 29 – – – – – 6 103 103

CrackTree200 – – – 100 – – 100 – – – – 100 100

CrackTree260 – – – 79 – – 79 – – – – 79 79

CrSpEE – – – 0 – – – – 2 0 – 0 0

CSSC – 0 – 1 – – – – 1 1 – 1 1

DeepCrack – – – 97 – – – – 0 1 – 97 97

GAPS384 – – – 100 – 75 – – – – – 100 100

Kaggle11k 0 – 1 86 31 58 2 2 0 0 5 5 102

Khanh11k 0 – 1 86 31 58 2 2 0 0 5 5 102

Table 2. Result of the overlay analysis. The share of dataset A

contained in dataset B in %. Numbers of more than 100% indicate

a duplication of samples.

be observed that duplicates of the CFD images occur three

times in Khanh11k. More problematically, they scatter over

test and training, leaking information to the test set.

It can be concluded that there are only a handful of

genuine datasets that created images and distributed seg-

mentation labels. The most prominent ones include CFD,

CRACK500, CrackTree200, DeepCrack, and GAPs. Other

genuine but less visible datasets are AEL, Ceramic. On the

other hand, Conglomerate, CrackSeg9k, Kaggle11k, and

parts of Khanh11k are mere data collections with disputable

scientific value.

3.3. OmniCrack30k

The dataset used in this work is henceforth called OMNI-

CRACK30K. The prefix ‘Omni’ is borrowed by [10], who

proposed the Omni3D dataset, a combination of multiple

dataset for 3D object detection. The suffix ‘30k’ follows

the establishing naming convention to inform about the ap-

proximate number of samples in the dataset.

Tab. 3 provides an overview of the OMNICRACK30K

dataset. There are roughly 30k samples in total, with 22k

for training, 3.3k for validation, and 4.6k for testing, re-

sulting in a train/val/test split of roughly 75/10/15. BCL

contributes the largest share of 11k samples, accounting for

one third of all samples. The images in BCL, however, are

comparatively small, leading to a less than 10% contribu-

tion in terms of pixels. On the other hand, CRACK500 and

LCW consist of relatively large images, contributing about

20% each in terms of pixels. The Ceramic and Masonry

subsets have the lowest share in pixels with 7M and 12M

respectively, representing together less than 1% of all pix-

els. The CrackTree260 is not included in the test set since it

was traditionally used for training only, e.g., [60].
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Samples Pixels (in million)

Train Val Test Total Train Val Test Total

AEL – – 58 58 – – 20.8 20.8

BCL 8,910 990 1,100 11,000 583.9 64.9 72.1 720.9

Ceramic 70 15 15 100 4.6 1.0 1.0 6.6

CFD 61 10 47 118 9.4 1.5 7.2 18.1

CRACK500 250 50 199 499 934.9 188.3 915.3 2,038.5

CrackLS315 – – 315 315 – – 82.6 82.6

CrackTree260 234 26 – 260 122.2 14.0 – 136.2

CRKWH100 – – 100 100 – – 26.2 26.2

CrSpEE 981 109 130 1,220 617.6 68.5 72.2 758.2

CSSC 101 12 73 186 59.6 7.1 43.1 109.7

DeepCrack 263 30 236 529 54.9 6.3 49.3 110.5

DIC 301 129 100 530 19.7 8.5 6.6 34.7

GAPS384 353 4 27 384 732.0 8.3 56.0 796.3

Khanh11k 3,750 417 737 4,904 752.6 83.7 147.9 984.3

LCW 781 87 377 1,245 778.8 91.1 947.4 1,817.3

Masonry 130 14 96 240 6.5 0.7 4.8 12.0

S2DS 563 87 93 743 590.3 91.2 97.5 779.1

Stone331 – – 331 331 – – 86.8 86.8

TopoDS 5,360 1,287 533 7,180 351.3 84.3 34.9 470.5

UAV75 50 10 15 75 13.1 2.6 3.9 19.7

Total 22,158 3,277 4,582 30,017 5,631.6 721.9 2,675.5 9,029.0

Table 3. Overview of the OMNICRACK30K dataset for crack seg-

mentation. It consists of 20 subsets. The number of samples and

pixels are shown as well as the dataset splits into train, validation,

and test set.

The under- and overrepresentation of subsets is inher-

ent to the landscape of crack segmentation. Unlike others

[27], no attempt is made to unify the subsets in terms of

size or other properties. The subsets are deliberately kept

as unmodified as possible, especially in the case of the test

sets. The goal is to maintain benchmarking comparability

of these specific subsets independent of OMNICRACK30K.

The following modifications are performed. The dupli-

cates identified in the overlap analysis are removed from

derivative datasets. Therefore, some datasets from Tab. 3

show fewer samples than in Tab. 1. As pointed out by [27],

the labels of the Khanh11k dataset are fixed by morpholog-

ical processing. For those datasets without validation set,

a fraction (roughly 10%) of the training set is split off and

held out for validation. To counteract the imbalance and to

avoid class inconsistencies, the negative samples from the

LCW training set are removed.

4. Benchmarking

4.1. Metrics

It is convincingly argued by [6] that standard intersection-

over-union (IoU) is suited for blob-like objects, while

cracks form rather elongated, line-like structures. Accord-

ingly, the centerline intersection-over-union (clIoU) met-

ric2 is proposed for evaluating crack segmentation. It is

2Originally called ltIoU for line-based tolerant IoU [6].

defined as:

clIoUτ =
|TPcl|

|TPcl|+ |FPcl|+ |FNcl|
(1)

TPcl = ST

⋂

[

SP ⊕Kτ

]

FPcl = SP \
[

SP

⋂

[

ST ⊕Kτ

]]

FNcl = ST \ TPcl

TPcl, FPcl, and FNcl denote the true positives, false pos-

itives, and false negatives for clIoU. The skeleton of the

ground truth is denoted ST , the skeleton of the prediction

SP . Skeletonization or thinning can be performed with off-

the-shelf methods, here [21] is used3. Kτ refers to the dila-

tion kernel, for instance a circle with radius τ . The symbol

⊕ denotes the morphological operator for dilation. Dilation

implements the positional tolerance of the clIoU. TPcl is the

intersection of the true skeleton with the dilated skeleton of

the predictions, FPcl the skeleton of the predictions without

the intersection of predicted skeletons and the dilated true

skeletons. FNcl is computed from the true skeleton without

the TPcl. The clDice metric, proposed by [43], is calculated

in similar fashion.

4.2. Baselines

Two groups of baselines are selected for benchmarking.

The results of six domain-specific models regularly used for

crack segmentation are presented. These models are specif-

ically tuned on one or more crack segmentation datasets,

thereby assumed to have learned powerful crack-specific

representations. The models include DeepCrackZ [60],

DeepCrackL [32], CrackFormer [31], HMA [6], Conglo

[8], and TOPO [38]. For more details, see Sec. 2. Further-

more, transfer learning is applied to four general-purpose

approaches widely used for semantic segmentation. The

models are trained on OMNICRACK30K.

The self-configuring approach nnU-Net [24] won multi-

ple challenges in medical imaging. Based on a set of fixed,

rule-based, and empirical parameters, a suitable configura-

tion of the architecture, data processing, and training pa-

rameters is inferred. The patch size, 256 × 256 for OM-

NICRACK30K, is deduced from the dataset and based on

the median image size. U-Net [40] serves as architectural

template, which is adapted to the inferred patch size. For

OMNICRACK30K, the encoder consists of six convolutional

blocks that transform the input into a 512 × 4 × 4 feature

representation. Pooling is performed by convolutional lay-

ers of stride two. The decoder features six complementary

convolutional blocks, each starting with a transposed con-

volution to upsample the input. Skip connections link inter-

mediate encoder outputs to the respective decoder blocks.

3https : / / scikit - image . org / docs / stable / api /

skimage.morphology.html#skimage.morphology.thin
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# Test Samples 58 1100 15 47 199 315 100 130 73 236 100 27 737 377 96 93 331 533 15 241

DeepCrackZ CrackTree260 61.8 40.9 19.2 83.8 3.2 70.6 82.8 3.3 3.7 37.8 20.3 40.8 44.3 1.0 16.9 4.3 31.7 13.9 19.1 31.5

DeepCrackL DeepCrack 19.5 22.9 19.7 31.5 3.0 7.1 6.2 2.7 2.5 51.3 7.9 1.7 27.0 0.2 34.2 7.9 11.5 6.8 10.9 14.4

CrackFormer CrackTree260 44.6 15.9 18.1 76.4 3.8 43.6 70.8 3.1 1.7 27.4 19.9 5.1 20.2 0.1 18.2 2.7 13.8 7.5 23.4 21.9

HMA S2DS 30.2 44.6 16.6 73.5 15.9 17.2 45.3 10.1 43.1 58.5 0.0 21.6 70.0 4.0 22.5 85.7 8.3 18.6 41.3 33.0

Conglo Conglomerate 58.0 56.5 29.1 86.6 43.8 57.5 80.3 14.6 26.6 84.3 47.4 59.8 94.4 5.6 36.2 45.8 43.2 16.5 55.7 49.6

TOPO TopoDS 38.2 53.4 45.5 65.9 17.4 34.3 60.8 17.8 29.8 60.3 22.9 32.1 68.0 6.2 35.6 42.8 45.9 38.1 53.8 40.5

nnU-Net OmniCrack30k 79.3 82.3 50.8 88.7 45.3 70.7 88.1 24.3 43.6 82.4 89.0 64.2 91.0 11.8 78.2 73.5 69.2 5.8 72.8 63.7

DeepLabV3 OmniCrack30k 51.5 55.5 20.4 76.3 21.2 34.0 51.9 10.3 32.7 67.9 57.0 31.2 76.8 2.9 19.8 47.4 46.5 24.9 38.7 40.4

BEiT OmniCrack30k 62.6 63.8 21.9 82.6 28.3 46.9 60.0 10.6 32.0 73.5 40.7 41.5 73.4 3.9 25.4 49.5 49.3 23.9 31.1 43.2

Mask2Former OmniCrack30k 76.3 61.4 52.4 84.8 22.4 67.2 78.5 15.5 38.1 75.9 55.0 37.5 82.8 5.5 34.3 54.2 62.5 30.7 69.9 52.9

Average 52.2 49.7 29.4 75.0 20.4 44.9 62.5 11.2 25.4 61.9 36.0 33.6 64.8 4.1 32.1 41.4 38.2 18.7 41.7 39.1

Max 79.3 82.3 52.4 88.7 45.3 70.7 88.1 24.3 43.6 84.3 89.0 64.2 94.4 11.8 78.2 85.7 69.2 38.1 72.8 66.4

Table 4. Performance measured in clIoU4px in % with tolerance radius τ = 4px on the test subsets. ‘Average’ refers to the unweighted

mean over the datasets and approaches respectively. ‘Max’ represents the maximum performance reached by the compared approaches.

Tolerance τ

0 px 1 px 2 px 4 px 8 px 16 px 32 px 64 px 128 px

DeepCrackZ 3.2 7.4 9.6 12.0 14.0 15.4 16.7 18.7 22.3

DeepCrackL 1.6 4.4 6.4 8.6 10.8 12.9 15.1 18.2 22.9

CrackFormer 1.6 4.2 5.8 7.9 10.1 12.4 15.0 17.3 21.5

HMA 8.0 21.8 29.2 35.3 39.1 41.9 44.6 48.0 52.5

Conglo 7.5 24.2 38.7 52.3 59.3 64.3 68.4 72.2 76.3

TOPO 5.3 16.6 26.8 40.8 51.0 56.9 62.3 69.3 77.5

nnU-Net 16.2 38.2 49.4 58.5 64.3 67.9 70.2 72.1 74.0

DeepLabV3 5.4 16.8 26.8 40.6 53.4 61.9 68.1 74.2 80.5

BEiT 5.7 18.0 29.1 43.1 54.6 62.0 67.7 73.2 78.5

Mask2Former 5.7 18.2 29.9 46.0 59.5 68.8 74.3 79.0 83.4

Table 5. The clIoU metric in % computed with different radii of

tolerance τ on the validation set.

Throughout the model, leaky ReLU activations, instance

normalization, and dropout are used. The loss is based on

a combination of cross-entropy and Dice loss. Five models

of the same configuration are trained on different splits of

the training set in five-fold cross-validation. Based on the

fold performances measured by the Dice coefficient, nnU-

Net finally derives a powerful ensemble.

DeepLabV3 [13] is an established baseline that makes

elaborate use of atrous convolutions. BEiT [5] is a vision

transformer pre-trained by masked image modeling. BEiT

uses the UPerNet [50] framework for semantic segmenta-

tion which implements a feature pyramid network with a

pyramid pooling module. Mask2Former [16] is an approach

to unify the recognition tasks of object detection, instance

segmentation, and semantic segmentation.

5. Results

In this section, the results of the benchmarking approaches

on OMNICRACK30K and its subsets are presented.

5.1. Positional Tolerance

To assess the effects of different positional tolerances of the

evaluation metric, the clIoU is computed with radii zero

and τ = 2n where n ∈ {0, 1, . . . , 6, 7}. Tab. 5 shows

the results. It is observed that the transition from 2px to

4px yields a significant leap in values, while for larger tol-

erances, smaller increases are detected. This transition indi-

cates that at a 4px tolerance, the models are capable of op-

erating a major part of their performance. This corresponds

to the tolerance of τ = 4px proposed by [6]. It is consid-

ered a plausible compromise between positional accuracy

and classification slack: 4px is still rigid enough to allow

for subsequent processing, such as crack width estimation,

while reasonably accounting for inaccuracies induced in the

annotation process. The selection of a specific tolerance

value, however, is an empirical question and a matter of de-

bate.

5.2. SubsetSpecific Performance

Tab. 4 shows the results of the benchmarking approaches

on the test subsets of OMNICRACK30K. Note that only

the general models are trained on OMNICRACK30K, while

the crack-specific approaches used their specific datasets.

Averaged over all subsets, nnU-Net performs the best by

achieving a clIoU4px of 64%. For 14 out of 19 subsets, it

outperforms all other approaches. Furthermore, it is rel-

atively close to the 66% achieved by a hypothetical opti-

mal ensemble over all models. Mask2Former achieves the
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Figure 2. Qualitative results of benchmarking approaches on representative images from selected test subsets.
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Asphalt Ceramic Concrete Steel Stone ‘In the Wild’

DeepCrackZ 68.6 19.2 4.9 40.9 31.7 7.1

DeepCrackL 7.3 19.7 8.0 22.9 11.5 4.0

CrackFormer 31.1 18.1 3.3 15.9 13.8 5.0

HMA 29.9 16.6 78.0 44.6 8.3 16.5

Conglo 64.9 29.1 46.8 56.5 43.2 15.8

TOPO 42.9 45.5 44.0 53.4 45.9 29.8

nnU-Net 76.5 50.8 73.4 82.3 69.2 12.8

DeepLabV3 43.4 20.4 46.2 55.5 46.5 21.1

UPerNet 54.4 21.9 47.0 63.8 49.3 20.5

Mask2Former 69.5 52.4 56.2 61.4 62.5 26.4

Average 48.8 29.4 40.8 49.7 38.2 15.9

Max 76.5 52.4 78.0 82.3 69.2 29.8

Table 6. Performance on different surface materials resp. ‘in the

wild’ measured in clIoU4px in % with tolerance radius of τ = 4px

on the test set.

second-best result of 53%, lagging more than 10% points

behind nnU-Net. HMA and TOPO perform the best on their

datasets, S2DS and TopoDS, respectively. Mask2Former

outperforms nnU-Net on the Ceramic dataset by a small

margin. Conglo, a finetuned DeepLabV3+, achieves top

performance on DeepCrack and Khanh11k. LCW, CrSpEE,

and TopoDS are the most challenging datasets across all ap-

proaches, while Khanh11k and CRKWH100 are the easiest.

Fig. 2 provides a comparative overview of qualitative re-

sults for all approaches on representative images of selected

subsets. BEiT was excluded due to space constraints and

limited informative value. DeepCrackZ is very sensitive

to fine, line-like features, performing best on CrackLS315

but oversegmenting other images. DeepCrackL shows a

strong response to darker features, such as the shadow in

S2DS. CrackFormer tends to oversegmentation. HMA pro-

duces thick masks and misses finer cracks, especially in

unknown materials. Conglo shows a balanced result but

struggles with Ceramic and ‘in the wild’ data. TOPO pro-

duces connected cracks while missing finer cracks in Ce-

ramic and CrackLS315. DeepLabV3 underperforms for

thin cracks, on Masonry, and ‘in the wild’. The performance

of nnU-Net appears relatively balanced, partially segment-

ing even the small Ceramic cracks. However, nnU-Net fails

for TopoDS. Mask2Former misses thin cracks and struggles

with Ceramic and Masonry. Many approaches have prob-

lems segmenting the thick crack in DeepCrack, for which

only DeepCrackL, Conglo, and nnU-Net show (partial) suc-

cess.

5.3. Surface Dependency

To assess performance under diverse conditions, Tab. 6 re-

ports clIoU4px on five different surface materials as well

as ‘in the wild’. Asphalt is represented by AEL, CFD,

CrackLS315, CRKWH100, and GAPS384, ceramic by Ce-

ramic, Concrete by S2DS and UAV75, steel by BCL, and

stone by the Stone331 dataset. CrSpEE and TopoDS rep-

resent ‘in the wild’ conditions. Observations show that the

models perform reasonably well on the materials they were

trained on: HMA achieves the top clIoU4px on concrete,

and TOPO excels in ‘in the wild’. For asphalt, steel, and

stone, however, nnU-Net takes the lead. Mask2Former out-

performs nnU-Net on ceramic by a small margin. Despite

nnU-Net’s overall strong performance, it distinctly lags be-

hind in ‘in the wild’; all other general-purpose models ex-

ceed nnU-Net by at least 7

In all approaches, ‘in the wild’ proves to be the toughest

scenario. Steel appears to be the easiest, although this can

be attributed to the relative ease of the BCL dataset. The

average performance on asphalt is also decent, likely be-

cause many crack-specific approaches were trained on as-

phalt data.

6. Conclusion

The decentralized emergence of datasets for crack segmen-

tation presents a considerable challenge in tracking me-

thodical progress in the field. The compilation of relevant

datasets into the OMNICRACK30K dataset marks the first

systematic and comprehensive approach to facilitate sus-

tainable benchmarking for crack segmentation. The anal-

yses reveal significant overlap among available datasets,

sometimes even resulting in information leakage from the

training set into the test set. These shortcomings are ad-

dressed to establish a scientifically sound basis for bench-

marking. Emphasis is placed on preserving the original

datasets as unmodified as possible to maintain comparabil-

ity for past and future evaluations on the individual datasets.

Beyond crack-specific approaches developed in recent

years, transfer learning is applied to SOTA models designed

for semantic segmentation. Despite the promotion of tai-

lored architectures and losses in crack-specific approaches,

general-purpose models demonstrate effective performance

in crack segmentation. In some cases, they even outperform

dedicated crack-specific models, highlighting the effective-

ness of these general-purpose models.

The standout model is nnU-Net, relying on the basic U-

Net architecture. The self-configuration of architectural,

data, and training parameters indicates that architectural

modifications are of subordinate relevance. The perfor-

mance on OMNICRACK30K positions nnU-Net as a pow-

erful starting point for universal crack segmentation. While

past approaches often focused on singular datasets, the field

of crack segmentation has matured, prompting the logical

next step toward more challenging environments and di-

verse surfaces. Although nnU-Net performs well under con-

trolled circumstances, it exhibits significant deficits in crack

segmentation ‘in the wild.’ These deficits create opportuni-

ties for future domain-specific adaptations and genuine me-

thodical contributions in the field of crack segmentation.
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