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Abstract

Out-of-Distribution (OOD) detection is crucial for the
reliable deployment of deep-learning applications. When
a given input image does not belong to any categories of
the deployed classification model, the classification model
is expected to alert the user that the predicted outputs might
be unreliable. Recent studies have shown that utilizing
a large amount of explicit OOD training data is helpful
for improving OOD detection performance. However, col-
lecting explicit real-world OOD data is burdensome, and
pre-defining all out-of-distribution labels is fundamentally
difficult. In this work, we present a novel method, Dis-
entangling Marginal Representations (DMR), that gener-
ates artificial OOD training data by extracting marginal
features from images of an In-Distribution (ID) training
dataset and manipulating these extracted marginal repre-
sentations. DMR is intuitive and can be used as a real-
istic solution that does not require any extra real-world
OOD data. Moreover, our method can be simply applied to
pre-trained classifier networks without affecting the origi-
nal classification performance. We demonstrate that a shal-
low rejection network that is trained on the small subset of
synthesized OOD training data generated from our method
and attachable to the classifier network achieves superior
OOD detection performance. With extensive experiments,
we show that our proposed method significantly outper-
forms the state-of-the-art OOD detection methods on the
broadly used CIFAR-10 and CIFAR-100 detection bench-
mark datasets. We also demonstrate that our proposed
method can be further improved when combined with ex-
isting methods. The source codes are publicly available at
https://github.com/ndb796/DMR.
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1. Introduction
Deep-learning applications have produced remarkable suc-
cess in a variety of domains, especially in image recogni-
tion tasks [5, 21, 25, 30, 33]. Meanwhile, the trustwor-
thiness of predicted outputs from a trained model has also
been required unprecedentedly for the reliable deployment
of deep-learning applications [7, 19, 29]. For example, an
autonomous driving vehicle utilizing deep neural networks
could need to distinguish unknown objects that do not be-
long to any categories used in the training dataset. Out-of-
Distribution (OOD) detection, thus, is a crucial tool to no-
tify the users who use the deep-learning models of a degree
of reliability for the predicted results. For example, input
data might be rejected when the confidence score (proba-
bility) of the predicted output is below a certain threshold
value. In the real-world deployment setting, a classifica-
tion model can bump into not only known objects from the
in-distribution DID but also unknown objects from the out-
of-distribution DOOD. Therefore, the purpose of OOD de-
tection is to train a rejection network R(·) that informs users
of whether an input data x belongs to the DOOD as follows:

R (x) =

{
0 if x ∈ DID

1 if x ∈ DOOD
(1)

To implement the classifier R(·) that rejects the poten-
tial OOD data, we can (1) utilize the output representations
from the pre-trained classification model itself in the infer-
ence time [2, 7, 31] or (2) train the rejection network on the
pre-defined OOD dataset in the training time [8, 14, 17].
Recently proposed post-hoc OOD detection methods utilize
feature vectors or logits of pre-trained classification mod-
els [2, 7, 18–20]. For example, the maximum value of the
softmax output probabilities (MSP) can be used for the indi-
cator that represents the probability of whether a given data
is ID or OOD data [7, 19]. Generally, we expect that the
MSP value of a classifier model trained on an ID training
dataset is higher when a given data belongs to the ID data
distribution compared to the OOD data distribution. On
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the other hand, some methods leverage pre-defined train-
ing OOD data in the training time. Outlier Exposure (OE)
enhances OOD detection performance by collecting a large
number of explicit OOD data and using these data as OOD
training data in the training time [8].

Some studies have adopted OOD data generation meth-
ods that synthesize OOD training data by utilizing only the
ID training dataset and train a rejection network on the syn-
thesized OOD training data. For example, Generative Ad-
versarial Networks (GAN) can be used for generating syn-
thesized OOD data that is classified as a uniform distri-
bution by a classification model [17]. In their work, they
argue that the OOD training data sufficiently close to the
original in-distribution dataset is useful for training rejec-
tion networks. A recent work, KIRBY [14], has proposed
an OOD data generation pipeline, which is motivated by
the previous work [17]. They have demonstrated the im-
ages in which key regions are removed can be used as use-
ful artificial OOD data for training a rejection network and
their method shows improved OOD detection performance.
However, the main idea of KIRBY is to aim to remove only
the key regions, thus, representations of the background in
an image still remain. Therefore, KIRBY might not be use-
ful in the case where a large number of the data have no
clear key regions.

Our work is also motivated by the useful observation [17]
that the generated OOD training images close to the origi-
nal in-distribution dataset are helpful in training a rejection
network. However, in our study, surprisingly, we have ob-
served that the OOD data does not need to be close to the
in-distribution dataset in human perception. Our method,
DMR, generates the artificial OOD training data by extract-
ing marginal features from given images and combining the
pieces of marginal representations. Moreover, our method
can be applied to images that have no dominant key fea-
tures. The generated OOD training images often seem un-
realistic, however, greatly useful for training the rejection
network. Our proposed method is an intuitive and novel ap-
proach that separates non-class discriminative marginal fea-
tures from the ID dataset without explicitly selecting the key
regions. We have demonstrated that our proposed method
achieves superior OOD detection performance compared
to the recent SOTA methods including generation-based
methods [3, 6, 14, 17] and is even competitive with the
OE, although our method does not require any extra real-
world training OOD dataset and utilizes only the original
ID dataset. Furthermore, we have demonstrated the OOD
detection performance additionally increases by combining
our method and the previous work. We hope that our find-
ings provide new insight into the OOD detection research
domain. We also provide the source codes.

2. Related Work
Related OOD detection studies could be divided into two
categories (1) post-hoc methods and (2) training meth-
ods that utilize the OOD training data. First, recent stud-
ies have proposed various post-hoc OOD detection meth-
ods that are post-attachable given a pre-trained classifier.
Post-hoc OOD detection methods generally utilize fea-
ture vectors or logits of pre-trained classification mod-
els [2, 7, 9, 19, 20, 28, 31]. These post-hoc methods do
not require additional model training, thus, we can apply
the post-hoc method to models that are already trained on
a specific dataset. However, some post-hoc methods re-
quire additional inference time due to the gradient calcu-
lation [18, 19] or feature processing [31]. Secondly, we can
train a network on the pre-defined OOD dataset [8, 14, 17]
in the training time. OE is one of the most straightforward
approaches, which aims to collect a large number of OOD
data that does not belong to the ID categories and train a
rejection network on this pre-defined OOD training dataset
[8]. The OE method shows superior OOD detection perfor-
mance compared to most post-hoc methods. However, the
OE suffers from large labeling costs because they require an
explicitly defined OOD training dataset. Unfortunately, the
manifold of the true OOD data distribution is too large and
unknown, therefore, OE is not feasible in many real-world
deployment settings.

Alternatively, we can synthesize artificial OOD data
and train the rejection network on the synthesized OOD
dataset [13, 14, 17]. KIRBY [14] and GAN [17] only re-
quire the ID training dataset, which is a feasible setup for
real-world deployment scenarios. The GAN can be used
to generate OOD training images that are classified as a
uniform distribution for a classifier [17]. However, their
method needs to jointly train the three networks, which in-
troduces training instability. Moreover, some synthesized
OOD images with poor fidelity might result in OOD de-
tection performance degradation [14]. In this perspective,
the KIRBY that erases the key regions of an image utiliz-
ing an off-the-shelf pre-trained classifier [14] could be a
better choice. However, we have found that KIRBY can
not completely remove key regions of images, thus some
synthesized OOD images are still class-discriminative. In
contrast, our work takes a new direction, that extracts vari-
ous marginal representations in a latent space and then syn-
thesizes artificial OOD data by leveraging these marginal
features. We have found that a simple latent vector ma-
nipulation can take off the marginal features from a set of
feature representations of an ID dataset in the latent space.
Our proposed method is novel and quite different from the
recently proposed synthesizing methods [14, 17]. The pre-
viously proposed KIRBY is a top-down approach that de-
tects the location of key regions in an ID training image and
then erases the key features from that original image step
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Figure 1. The illustration of our proposed method, DMR, which disentangles marginal features from the original image by leveraging the
latent operation in the latent space. As shown in the above figure, our proposed method conducts the multiple latent mix-up (MLM) using
the marginal representations wmar to generate the artificial OOD training images. Our feature manipulation method in the latent space is
effective in generating useful OOD training images.

by step. In contrast, our method takes a novel bottom-up
approach that combines various pieces of marginal repre-
sentations by leveraging the latent vectors. We also find a
new observation through the synthesized OOD training im-
ages generated from our method, that our generated OOD
training images are sometimes not a natural image in hu-
man perception, however greatly effective for training the
OOD rejection network, which has not been observed previ-
ously. Our method can also be combined with another syn-
thesizing method such as KIRBY, which further improves
the OOD detection performance and indicates that our ap-
proach can be used as an orthogonal method.

3. Proposed Methods
For classification tasks, we train a classification model on
training samples of the in-distribution DID over pairs of
data x and corresponding labels y. We generally train a
model containing a feature extractor F : X → Z and a shal-
low classifier C: Z → Y by minimizing the empirical risk:

E(x,y)∼DID [ℓ(C(F (x)), y)] (2)

where ℓ denotes a suitable loss function such as the
cross-entropy function for a multi-class classification task,
X denotes input space, Y denotes a label space, and Z
denotes a feature space. Our method aims to generate
the artificial training OOD images that compose the proxy
OOD distribution DOOD

train . Our proposed method produces
this OOD training dataset using only samples of the in-
distribution DID because we assume that we can not access
the true test OOD distribution DOOD

test in the training time.
To generate the synthesized OOD dataset, we utilize in-

dividual two functions, encoder E: X → W and generator

G: W → X where W denotes a latent space. We for-
mally introduce the ideal disentangling property of a gen-
erator G is the ability to separate the latent space W into
Wcls and Wmar. We hypothesize that Wcls consists of the
class-discriminative features that are distinguished from the
marginal representation distribution Wmar. Our method
utilizes encoded latent vectors wori = (wmar, wcls) with
wmar ∈ Wmar and wcls ∈ Wcls. For a given image x,
the encoded latent vector wori can be obtained by forward-
ing the original sample x into an encoding network E(·)
where the E(·) maps image x into a latent space of G(·)
[1, 26]. Ideally, the original sample x can be reconstructed
as G(wmar, wcls) using a generative model G(·).

We note that the marginal representations wmar are also
important to generate valid images. For example, some tex-
tures that do not contain class-discriminative features can
compose a feasible image. The background scenes such as
clouds and sky can be found in various images along diverse
categories such as ocean, glacier, and forest for scene classi-
fication tasks, which might be interpreted as being not class-
discriminative. Using these ingredients, we could train the
rejection network R(·) to classify inputs as follows:

R (x) =

{
0 if x = G(wori)

1 if x = G(wmar)
(3)

In this work, we regard the rejection network as R =
F · B where F (·) is the frozen feature extractor trained on
the DID and the B(·) denotes the additional binary classi-
fication model. For OOD detection, our proposed method
only trains the model B(·) that is a shallow MLP attachable
to the frozen feature extractor F (·).
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Figure 2. The synthesized OOD training data examples are randomly selected from each method using the CIFAR-10 ID dataset. With
DMR, the class-discriminative features are relatively well erased from the original images compared to the KIRBY and the vanilla MLM.

3.1. Multiple Latent Mixup (MLM)

Our work focuses on the way to synthesize artificial OOD
training data. First, we start with an assumption of previ-
ous work. A study [17] argues that the synthesized OOD
training samples nearby in-distribution samples are useful
to train the rejection network and they utilize a GAN archi-
tecture to generate images that are classified as a uniform
distribution. To meet this property, we first present Multi-
ple Latent Mix-up (MLM) which mixes the encoded latent
vectors in the latent space.

xOOD
mix = G(

1

k

k∑
i

wori
i ) ≈ G(wmar) (4)

We can set the number of samples to mix by adjusting
the value of k. We recommend setting the classes of mixed
samples to be different from each other to remove represen-
tative features belonging to certain categories. For example,
if k = 1, the decoded image G(wori) is ideally the same as
the original image x. In contrast, if the k is sufficiently
large, the diversity of the synthesized increases, which re-
sults in more abundant OOD training data. However, if the
k ≈ M where M denotes the number of classes in the train-
ing dataset, the sampled diversity drastically decreases. We
have found that OOD training images generated from our
vanilla MLM are more effective than the previous work [17]
to train the rejection network, however, some synthesized
images are highly correlated with a certain class and still
contain class-discriminative features as shown in Figure 2.

3.2. Disentangling Marginal Representations

To remedy the limitation of vanilla MLM, we aim to synthe-
size OOD data that does not contain class-correlated repre-
sentations. We postulate that a latent representation wori

can be conceptually divided into (1) class-discriminative
representations wcls that have a high correlation with a true

label y and (2) the marginal representations wmar whose
features are not correlated to a certain class. To extract
marginal representations from data, we leverage the class-
representative features. In the latent space, we first define
the representative latent vectors as µ1, µ2, . . . , µM for each
class where M is the total number of classes. We expect that
the latent representatives µy contain class-discriminative
features according to their true class y by taking the av-
erage latent representations per class. Thus, we can extract
the marginal representations by utilizing a simple latent ma-
nipulation given an in-distribution image data x and corre-
sponding label y. In this work, our proposed method ob-
tains the marginal representations by utilizing latent vectors
as follows:

wmar = E(x)− µy (5)

where µy = Ex∈DID
y

[E(x)] and DID
y denotes the origi-

nal in-distribution image dataset that belongs to the label y.
Our method extracts the marginal features of x by subtract-
ing the µy from E(x). Interestingly, we have observed this
simple latent operation is effective in obtaining useful OOD
training samples. To generate high-fidelity OOD training
samples, we adopt the recently proposed style-based GAN
model [12, 27]. We note that the encoding procedure is
optional because we can get simply random latent vector
w from the GAN model [10, 11]. For example, we might
use the mapping network [10] instead of encoding an im-
age sample into a latent vector. With the assumption that
the images generated from a generative model G(·) are on
the valid image manifold, we can obtain the synthesized
OOD data by removing class-discriminative features using
the following equation (single latent inversion with DMR):

xOOD
DMR = G(λ · wmar) = G(λ · (E(x)− µy)) (6)
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ID Methods

OOD Datasets
SVHN Textures LSUN-crop Tiny-ImageNet Place-365 Gaussian Noise Average

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

CIFAR-10

MSP 91.91 95.81 88.51 78.50 96.49 95.69 94.59 93.10 88.24 95.61 83.69 73.73 90.57 88.74
ODIN 91.63 95.95 88.34 80.70 97.49 97.31 95.80 95.19 87.92 95.69 75.54 63.94 89.45 88.13

Mahalanobis 96.78 98.72 96.26 94.55 93.73 92.33 86.90 82.20 80.15 92.33 99.23 98.24 92.18 93.06
Energy 91.07 96.03 85.34 78.47 99.05 99.02 97.97 97.75 89.88 96.76 62.63 53.91 87.66 86.99
Entropy 92.39 96.31 88.83 80.38 97.32 97.13 95.43 94.79 88.70 96.03 83.09 72.59 90.96 89.54

MaxLogit 91.10 96.07 85.48 78.65 98.95 98.89 97.83 97.56 89.81 96.71 65.46 56.20 88.11 87.34
KL-Matching 84.34 92.50 75.98 69.80 90.83 90.97 83.62 86.42 72.07 91.58 55.80 56.50 77.11 81.30

ViM 95.58 98.16 93.78 90.89 98.48 98.45 95.82 95.40 85.60 94.81 95.26 92.04 94.09 94.96
GAN 72.40 74.82 75.33 72.65 72.64 72.19 76.81 74.75 81.03 92.55 69.45 57.56 74.61 74.08
ACET 91.85 96.22 88.74 79.01 92.56 90.97 88.21 88.93 89.02 95.61 86.04 80.11 89.40 88.48
MIM 97.25 98.58 96.11 94.13 99.52 99.41 98.72 98.55 90.94 96.90 99.65 99.25 97.03 97.80

KIRBY 99.03 99.63 92.26 90.67 99.55 99.51 97.93 97.85 89.86 96.74 99.05 98.02 96.28 97.07
Ours (DMR) 99.46 99.79 95.81 94.03 99.59 99.55 98.16 98.02 93.29 97.86 99.70 99.29 97.67 98.09

Table 1. Comparison with state-of-the-art methods using a WideResNet-40-2 classifier. All experiments are conducted by the OOD
detection benchmark framework [15]. The symbol ↑ indicates larger values are better.

where the λ denotes an emphasis factor for amplifying
marginal representations. We generate DOOD

DMR dataset us-
ing the above equation. For experiments, we simply choose
the constant λ as a real number that is uniformly sampled
between 1 and 3, which is suitable to obtain the improved
OOD detection performance. While the generated OOD
data xOOD

DMR sometimes does not seem realistic in human
perception, we demonstrate that these images can be greatly
helpful for training the rejection network.

However, we have observed that the simple subtraction
of latent vectors might suffer from the lack of diversity of
synthesized images. Thus, we further leverage the Multi-
ple Latent Mixup (MLM) that mixes representations in the
latent space with our proposed DMR. In conclusion, the ar-
tificial OOD training data xOOD

DMR mix can be generated by
the following equation given an original image x and corre-
sponding label y (multiple latent mix-up with DMR):

xOOD
DMR mix = G(λ · 1

k

k∑
i

wmar
i ) (7)

We generate a DOOD
DMR mix dataset using the above equa-

tion. The synthesized OOD training data based on our
methods are illustrated in Figure 2. Our DMR generates ar-
tificial OOD images utilizing the marginal representations
while the KIRBY [14] removes the key regions that gen-
erally contain class-discriminative objects. We note that
our proposed method can be applied to images that have
no clear class-discriminative key regions.

3.3. Training Networks

We first train various neural networks, WideResNet-40-2
(WRN), ResNet-50, and DenseNet-121 on the CIFAR-10
and the CIFAR-100 datasets individually. We then freeze

these trained classification models. Given a frozen feature
extractor F (·) of a classifier, we train only an additional bi-
nary classification rejection network B(·) which is a 2-layer
shallow MLP network on the synthesized OOD dataset from
our proposed method. After training, we can simply de-
tect the OOD samples by forwarding the feature vectors ex-
tracted by the frozen feature extractor F (·) into the shallow
rejection network B(·). Our proposed method does not up-
date the weights of the original classification model F (·)
and the classification head C(·), thus, does not affect the
original classification performance. Our final loss function
is based on the binary cross-entropy function as follows:

−E[y · log(R(x)) + (1− y) · log(1−R(x))] (8)

where we set xID ∈ DID to a negative sample (y = 0)
and synthesized xOOD

train to a positive sample (y = 1). In de-
tail, the XOOD

train is determined as described in Table 3. For
removing the class-discriminative features from the original
ID data, our proposed method takes a surrogate approach
that generates xOOD

train samples that do not belong to a spe-
cific category. Our proposed method is an effective and re-
alistic solution in that our method can be applied to any off-
the-shelf frozen classifier and does not affect the original
classification performance.

3.4. Latent Manipulation

For the experiments, we have adopted the recently presented
StyleGAN architecture [27] which has been known as being
well-disentangling feature representations. Specifically, we
train the StyleGAN-XL model where the dimension of the
latent vectors is 12 × 512 on the CIFAR-10 dataset. We
have also trained the StyleGAN-XL model where the di-
mension of the latent vectors is 32× 512 on the ImageNet-
1k dataset. Recent studies also have demonstrated that the
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ID Methods

OOD Datasets
SVHN Textures LSUN-crop Tiny-ImageNet Place-365 Gaussian Noise Average

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

CIFAR-100

OE 93.53 96.53 86.84 77.33 91.28 89.68 91.96 90.47 84.59 94.35 94.85 86.35 90.50 89.11
KIRBY 94.35 95.53 89.08 85.70 97.11 96.36 91.91 90.81 78.49 92.10 99.92 99.83 91.81 93.38

Ours (DMR) 98.81 99.51 89.39 84.59 9628 95.40 92.88 90.65 77.75 91.71 99.94 99.69 92.50 93.59
Ours + KIRBY 98.39 99.33 91.65 87.75 96.90 96.15 92.72 90.92 78.71 92.10 99.95 99.74 93.05 94.33

Table 2. Comparison results with OE. Without any real-world OOD training data, ours shows a better performance than the OE.

encoding (inversion) method could be used for finding the
corresponding latent vector given image x [1, 26]. First,
we utilize the encoding method to map an image x into the
latent vector wori. Previous studies have shown that latent
vector arithmetic is effective for semantic manipulation in
the image generation domain [1, 23]. However, we have
found that the simple subtraction in the latent space may
suffer from the diversity of generated images. That is why
we further utilize the multiple mix-ups (MLM) in the latent
space, which is a novel and effective approach.

OOD Trainset CIFAR-10 CIFAR-100
MLM DMR XOOD

train AUROC AUPR AUROC AUPR

✓ DOOD
mix 95.27 96.26 89.80 92.52

✓ DOOD
DMR 97.65 98.01 91.80 92.81

✓ ✓ DOOD
DMR mix 97.67 98.09 92.50 93.59

Table 3. OOD detection performances of proposed methods aver-
aged over the six OOD benchmark datasets.

4. Experiments

4.1. Datasets

For the experiments, we follow the broadly adopted OOD
detection evaluation settings used in previous studies [14,
15]. We use CIFAR-10 and CIFAR-100 [16] as the in-
distribution datasets, which are widely utilized in numer-
ous image recognition tasks. For training the attachable re-
jection network, we generate 50,000 OOD images for the
CIFAR-10 classifier and the CIFAR-100 classifier. For ex-
ample, we train the rejection network B(·) on the 50,000
original ID training images and synthesized OOD dataset
DOOD

train whose size is 50,000, while freezing the feature ex-
tractor F (·) of a classifier trained on the CIAFR-10 dataset.

4.2. Evaluation Metrics

We have adopted the baseline evaluation metrics in the
OOD detection research domains as follows:

• AUROC is a generally adopted metric evaluating the de-
tection performance of a binary classifier, which denotes
the area under the receiver operating characteristics.

• AUPR denotes the area under the precision-recall curve.
This metric is especially useful for evaluating binary clas-
sification performance in imbalanced data settings.

4.2.1 ID and OOD Datasets

We experiment with the proposed methods using the
CIFAR-10 and the CIFAR-100 dataset as the in-distribution
dataset. We use the following OOD test datasets for evalu-
ating various OOD detection methods identically.
• SVHN consists of images that represent a digit between

0 and 9. The SVHN has been used for OOD detection
generally in the case that the ID dataset is CIFAR-10 or
CIFAR-100 [24].

• Textures contains diverse images belonging to natural
texture categories. This dataset is also known as Describ-
able Texture Dataset (DTD) and has 47 categories. Each
category has 120 images [4].

• LSUN-crop dataset is devised for scene classification
tasks, containing various scene images. The categories
of LSUN are not overlapped with the CIFAR-10 and
CIFAR-100 dataset [32].

• Tiny-ImageNet dataset contains a small subset of the
original ImageNet dataset. In detail, we select the Tiny-
ImageNet cropped dataset as a test OOD dataset follow-
ing previous studies [29].

• Places-365 dataset contains various images and each
image belongs to a certain place (scene) over 365
classes [22].

• Gaussian Noise dataset contains random noise images
sampled from the Gaussian distribution.

4.3. Overall Experimental Results

We first reproduce the recently proposed SOTA methods
and report their OOD detection performance in Table 1 and
Table 4.

For the CIFAR-10 and CIFAR-100 datasets, we train
the rejection network B(·) using all 50,000 DID images
and similarly synthesized 50,000 DOOD

train images for both
KIRBY and our method. The rejection network B(·) is
trained for 10 epochs, with a learning rate of 0.01 and a
momentum of 0.9. We use a mix-up parameter k = 5 and

4037



ID Methods

OOD Datasets
SVHN Textures LSUN-crop Tiny-ImageNet Place-365 Gaussian Noise Average

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

CIFAR-100

MSP 71.37 84.37 73.54 57.50 85.58 84.35 86.32 84.80 73.91 89.44 80.67 69.09 78.56 78.25
ODIN 64.69 78.65 72.61 57.29 85.69 84.68 87.36 86.23 73.08 88.93 77.96 65.48 76.89 76.87

Mahalanobis 85.68 93.09 89.92 85.28 52.03 46.74 55.95 49.22 63.92 84.24 99.90 99.87 74.56 76.40
Energy 48.28 69.66 53.53 39.70 96.91 97.12 95.92 95.81 63.49 84.32 70.40 56.85 71.42 73.74
Entropy 73.87 85.01 76.29 61.57 95.88 95.71 95.28 94.92 75.81 90.42 79.52 66.08 82.77 82.28

MaxLogit 73.95 85.36 76.37 61.64 95.14 94.68 94.67 94.01 75.94 90.50 72.37 58.60 81.40 80.79
KL-Matching 70.14 86.76 71.89 63.10 77.72 80.41 82.09 81.80 66.06 88.07 81.27 74.09 74.86 79.03

ViM 92.54 96.64 90.69 86.26 75.55 65.73 79.96 71.54 70.11 87.68 99.88 99.84 84.78 84.61
MIM 88.92 94.35 88.02 83.92 95.04 94.68 92.36 91.17 71.91 87.59 99.79 99.96 89.34 91.94

KIRBY 94.35 95.53 89.08 85.70 97.11 96.36 91.91 90.81 78.49 92.10 99.92 99.83 91.81 93.38
DMR 98.81 99.51 89.39 84.59 96.28 95.40 92.88 90.65 77.75 91.71 99.94 99.69 92.50 93.59

Table 4. Comparison with state-of-the-art methods using a WideResNet-40-2 classifier on CIFAR-100. The symbol ↑ indicates that larger
values are better.

CIFAR-10 CIFAR-100
ID WRN ResNet DenseNet WRN ResNet DenseNet

MSP 90.57 84.96 85.24 78.56 67.51 76.02
ODIN 89.45 84.30 86.18 76.89 67.02 75.22

Mahalanobis 92.18 85.11 85.71 71.42 57.50 80.52
Energy 87.66 83.08 83.10 76.98 75.86 83.31
Entropy 90.96 85.28 85.78 82.77 70.43 79.49

MaxLogit 88.11 83.79 84.13 81.40 74.88 83.38
KL-Matching 77.11 74.25 75.95 74.86 65.19 68.40

ViM 94.09 91.57 92.32 84.78 83.09 83.34
MIM 97.17 96.97 97.11 89.37 82.33 81.01

KIRBY 96.26 97.08 97.18 91.81 81.12 82.90
Ours (DMR) 97.67 97.36 97.24 92.50 83.53 83.51

Table 5. Experimental results (AUROC) using different architec-
tures averaged over the six OOD benchmark datasets.

an emphasis factor λ sampled from a uniform distribution
between 1 and 3.1

Detailed examples of synthesized OOD samples accord-
ing to the mix-up parameter k and emphasis factor λ are
illustrated in Figure 3 and Figure 4. Interestingly, our
proposed method shows better performance over the all
OOD test datasets compared to the KIRBY that generates
background-like images. This result indicates that the syn-
thesized OOD training data does not need to be natural im-
ages in human perception. Although our synthesized OOD
images are not realistic for humans, yet, are effective in
training the rejection network.

Further detailed synthesized OOD data examples accord-
ing to the various hyper-parameters k and λ are illustrated
in the supplementary materials. Our methods show superior
OOD detection performance compared to the other SOTA
methods as shown in Table 1 and Table 4. Our proposed
method can be combined with other synthesized meth-
ods such as KIRBY. Our experiments show the combined
method achieves better performance than OE as shown in

1Code is available at https://github.com/ndb796/DMR

Table 2. We note that the OE [8] requires a large-scale ex-
plicit OOD training dataset beyond the ID dataset and also
requires additional training steps. In contrast, our method
only utilizes the ID training dataset. We have also shown
our proposed method achieves superior OOD detection per-
formance than SOTA methods over various network archi-
tectures as shown in Table 5.

5. Discussion

A previous study has proposed the synthesizing method to
generate OOD images that are classified as a uniform dis-
tribution [17]. However, this method shows poor detec-
tion performance due to the training instability introduced
by their approach that jointly trains three networks includ-
ing the GAN model. Our method utilizes the individually
trained style-based GAN architectures [10, 11], which re-
sults in the high-fidelity samples synthesized OOD training
data as shown in Figure 2. Using the multiple latent mix-ups
without DMR, the generated OOD images seem more re-
alistic and achieve a low FID score than the previous GAN-
based method [17] in the datasets in this work.

In previous work KIRBY, they argue their improved de-
tection performance is introduced by the close semantic dis-
tance between the ID and OOD datasets. However, we have
found that the synthesized OOD data do not need to be close
to the ID data distribution in human perception. Although
the artificial OOD training images can seem unnatural for
humans, these images can be largely useful for training the
rejection network. Rather, we have found that if the ID
dataset has too much semantic information similar to the
ID dataset, training the rejection network might be hard. To
verify this assumption, we have explored the OOD detec-
tion performance of our method that utilizes the synthesized
images generated from the mix-up of latent vectors wori

(MLM). As shown in Table 3, when using the synthesized
OOD images generated by our vanilla multiple latent mix-
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Figure 3. The examples of synthesized OOD images generated
from our methods according to the value of the mixup parameter
k using the CIFAR-10 dataset.
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Figure 4. The examples of synthesized OOD images generated
from our methods according to the value of the feature emphasis
parameter λ using the CIFAR-10 dataset.

up method without DMR, the final OOD detection perfor-
mance is relatively poor, which indicates it is also impor-
tant to disentangle and remove the class-discriminative fea-
tures. As shown in Figure 2, KIRBY erases the key features,
however, KIRBY tends to leave some class-discriminative
features and artifacts, thus frequently producing unsatisfac-
tory synthesized samples. Our method is based on a re-
cently presented GAN architecture, which results in better
fidelity compared to the KIRBY. We have also demonstrated
that it is important to remove the class-discriminative fea-
tures while maintaining the synthesized OOD images to

have good fidelity. Specifically, we have shown the OOD
detection performance could be improved with our DMR
(Table 3). The disentangling procedure is fundamentally
hard for natural images and we believe the latent encod-
ing method can be further improved. Thus, we will further
explore suitable disentangling methods and latent inversion
methods to generate artificial OOD data for future work.

We can control the degree of mixing and the level of
the diversity of the synthesized OOD samples by adjust-
ing the latent mix-up parameter k. When the k increases,
the chance that we could obtain more diverse synthesized
OOD images becomes larger. However, if the mix-up pa-
rameter k is the same as M (k = M ) where M is the num-
ber of classes, the diversity of images drastically decreases.
Therefore, we recommend setting 3 ≤ k ≤ 5 for generating
synthesized OOD images to achieve improved OOD detec-
tion performance for the CIFAR-10 ID setup. Our proposed
method also utilizes an effective emphasis factor λ for scal-
ing feature representations. We have observed that the di-
versity of images additionally increases by adjusting the λ
values. As shown in Figure 4, the contrast and saturation of
images tend to be enhanced when the value of the λ scal-
ing factor increases, which could result in the improvement
of the diversity of synthesized OOD training images. Thus,
we adopt this emphasis approach for feature representations
and we observe that this method further improves the OOD
detection performance by generating useful OOD training
samples. We also observe that if 3 ≪ λ, the brightness
and contrast of synthesized OOD samples are enhanced too
much to obtain a good OOD detection performance.

6. Conclusion

In this work, we present a novel method, DMR that disen-
tangles the marginal representations from the original im-
ages. The synthesized OOD training data that combines
these marginal features is greatly useful for OOD detec-
tion. The latent mix-up across the different categories can
provide more diverse artificial samples. On the baseline
OOD detection benchmark datasets, our proposed method
shows superior performance compared to the recently pro-
posed state-of-the-art methods. Our work revisits the desir-
able properties of synthesized OOD images and discusses
them. We hope that this work provides new insights for
OOD detection research.
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