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Abstract

We introduce Dynamic Distinction Learning (DDL) for
Video Anomaly Detection, a novel video anomaly detec-
tion methodology that combines pseudo-anomalies, dy-
namic anomaly weighting, and a distinction loss function
to improve detection accuracy. By training on pseudo-
anomalies, our approach adapts to the variability of normal
and anomalous behaviors without fixed anomaly thresh-
olds. Our model showcases superior performance on the
Ped2, Avenue and ShanghaiTech datasets, where individ-
ual models are tailored for each scene. These achieve-
ments highlight DDL’s effectiveness in advancing anomaly
detection, offering a scalable and adaptable solution for
video surveillance challenges. Our work can be found on:
https://github.com/demetrislappas/DDL.git

1. Introduction

Anomaly detection is pivotal in the field of video surveil-
lance, where algorithms scan through endless hours of
footage to identify activities or events that deviate from the
norm—be it unauthorized intrusions, unusual behavior, or
safety breaches. Its application in video analysis is indis-
pensable across a multitude of sectors, underpinning secu-
rity protocols, ensuring public safety, and enhancing opera-
tional efficiency. The capacity of video anomaly detection
systems to flag deviations in real-time or in hindsight al-
lows organizations to take quick, informed action to miti-
gate risks.

Nevertheless, the task of distinguishing the ordinary
from the extraordinary in videos is exceptionally challeng-
ing. Video anomaly detection typically lives within the do-
main of unsupervised learning due to the inherent scarcity
of labeled anomalies and the impracticality of cataloging

the large array of possible anomalous events. The unpre-
dictable nature of anomalies further adds to the complexity,
making it difficult for models trained on ‘normal’ behavior
to generalize and identify outliers effectively. This difficulty
is magnified by the context-sensitive definition of what con-
stitutes an anomaly within video data, as it can vary signif-
icantly from one setting to another. In the absence of suffi-
cient examples of anomalous behavior during training, sys-
tems often struggle to accurately discern anomalies when
they do occur, resulting in a high number of false positives
or missed detections.

Traditional approaches to this challenge have relied on
neural network architectures like AutoEncoders and UN-
ets [7–10, 12, 16, 17, 23, 28, 30, 31, 33, 35, 37, 38, 40].
These models are trained to recreate ‘normality’ by learning
to compress and then reconstruct input data with minimal
loss. The underlying premise is that, by becoming adept at
reconstructing normality, these networks would inherently
struggle when faced with anomalies, thus allowing for their
detection. However, there lies a catch—these systems do
not necessarily learn an explicit distinction between normal
and anomalous samples, it is only hoped that anomalies will
pose a greater challenge for the reconstruction process.

To address this predicament, various methodologies have
introduced pseudo-anomalies during the training phase, of-
fering models a taste of the ‘abnormal’ to foster learning
[1–4, 24, 41]. These strategies, however, often overlook
a critical aspect: the quantification of the ‘right level’ of
pseudo-anomaly. That is, how anomalous should pseudo-
anomalies be to represent real anomalies? Too small, and
the pseudo-anomalies bare too close a resemblance to nor-
mal data; too high, and the model may fail to recognize
genuine, more subtle, anomalies.

In our work, the innovation lies not just in the incor-
poration of pseudo-anomalies, but in the strategic intro-
duction of a dynamic anomaly weight σ(ℓ). This adapt-
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ability is crucial, allowing our model the flexibility to dis-
cover the optimal threshold of anomaly intensity for effec-
tive learning. Rather than being constrained to a predeter-
mined, static level of pseudo-anomaly — which might risk
the model’s overfitting to artificial quirks — the dynamic
nature of σ(ℓ) entrusts the model with the autonomy to fine-
tune this threshold. By doing so, the model is trained to dif-
ferentiate between normal and anomalous patterns without
being anchored to any specific level of anomaly defined by
the user.

Our work also introduces the Distinction Loss, which
works in tandem with σ(ℓ), and is crafted to refine the
model’s discrimination capabilities. The Distinction Loss
encourages the model to rebuild pseudo-anomalous frames
to more closely resemble the normal state rather than the
inputted anomalous one.

In the forthcoming chapters, we delve into the core of
our research on Dynamic Distinction Learning (DDL) for
video anomaly detection. We first begin by providing a
brief overview of related work in Chapter 2. Chapter 3 out-
lines the methodology, detailing the DDL framework and
its components. Chapter 4 describes the datasets consid-
ered for evaluation, leading to Chapter 5, which presents
our findings through quantitative results. In our final chap-
ter, Chapter 6, we provide ablation studies, highlighting the
improvements offered by our work.

2. Related Work
The challenge of anomaly detection in video data is ex-
acerbated by the predominance of normal behavior within
datasets, leading to an inherent bias towards non-anomalous
examples. Unsupervised learning, particularly through the
use of AutoEncoders (AEs), has emerged as a preferred so-
lution. AEs leverage the discrepancy between input and re-
constructed output to identify anomalies, operating under
the principle that unfamiliar anomalous inputs will result
in significant reconstruction errors [7–10, 12, 28, 30, 33].
However, the challenge of accurately reconstructing normal
samples to distinguish them from anomalies remains, with
UNets and their skip connections offering a partial solu-
tion by improving reconstruction fidelity, albeit complicat-
ing the reliance on the latent space for anomaly detection
[16, 17, 23, 31, 35, 37, 38, 40].

Recent advancements have explored the temporal dimen-
sion of video anomaly detection, employing AEs and UNets
to reconstruct sequences or predict subsequent frames, un-
der the hypothesis that anomalies will disrupt the model’s
ability to accurately predict future frames based on a se-
quence of normal frames [8, 12, 16, 17, 22, 23, 31, 33,
35, 37, 38, 40]. The integration of Transformers and atten-
tion mechanisms aims to capture the temporal characteris-
tics of video data more effectively, enabling AutoEncoders
and UNets to identify anomalies by focusing on the rela-

tionships between frames [12, 18, 36, 40]. Optical Flow
has been utilized to enhance motion-related anomaly detec-
tion, providing a compact yet informative representation of
temporal changes by capturing pixel motion between con-
secutive frames [5, 8, 33, 37, 39].

To improve the performance of AEs and UNets, some
studies have incorporated supervised learning techniques,
Generative Adversarial Networks (GANs), and Object De-
tection to refine the distinction between normal and anoma-
lous samples. GANs, in particular, create a generative-
discriminative adversarial relationship that enhances the
model’s ability to reconstruct outputs indistinguishable
from the original input [12, 19, 31, 33, 37, 40]. Object De-
tection focuses the anomaly detection process on significant
frame objects, albeit limited by the detection model’s scope
and accuracy [7, 11, 12, 19, 31, 31, 33, 34, 37, 40]. Mem-
ory modules have also been proposed to prevent anomaly
reconstruction by referencing normal samples, suggesting
enhanced model complexity as a pathway to more effective
anomaly detection [7, 14, 23, 28, 30, 34, 35, 39].

The imbalance between normal and anomalous sam-
ples in datasets has necessitated the development of
innovative approaches that introduce pseudo-anomalies.
These methods are designed to enhance the capability of
reconstruction-based models to distinguish between normal
and anomalous samples with greater precision. Techniques
for generating pseudo-anomalies vary widely, some strate-
gies involve the use of external datasets to inject anomalies
into a dataset of normal samples. This can involve leverag-
ing attention mechanisms to identify and transfer key fea-
tures from third-party datasets to normal samples, thus cre-
ating pseudo-anomalies [1], or introducing noise into the la-
tent space of models using external data [24]. Other meth-
ods consider a more creative approach, which utilize the
previous state of the model to generate lower quality recon-
structions which would be represented as anomalous sam-
ples [41]. More traditional approaches attempt to invoke
abnormality during training by directly providing the model
with human defined anomalous behavior, such as revers-
ing the sequence of input frames [2]. More recent pseudo
anomalous methods attempt to attain superior results by in-
jecting a suite of human defined anomalies, including the
manipulation of video frames by reversing their sequence,
skipping frames, adding noise, fusing frames, or incorpo-
rating random patches [3, 4]. Anomalies, regardless of their
specific nature (skipping frames, repeating frames, intro-
ducing extraneous shapes, etc), are perceived by convolu-
tional layer kernels as unusual collections of vector rep-
resentations—noise. Despite their efficacy, these methods
rely on manual intervention to simulate anomalies, requir-
ing a subjective determination of the degree of anomaly in-
troduced—raising the question, “What constitutes the ap-
propriate level of noise to be considered anomalous?”
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Against this backdrop, our research introduces a sophis-
ticated approach that not only incorporates the concept of
dynamic anomaly weighting but also presents a novel dis-
tinction loss function. This methodology aims to advance
the anomaly detection domain by providing a more refined
mechanism for distinguishing between normal and anoma-
lous events, thereby segueing into the detailed explanation
of our proposed methodology outlined in Section 3.

3. Methodology
The Dynamic Distinction Learning (DDL) architecture is
outlined in Figure 1. Consider a sequence of normal video
frames represented as a tensor X ∈ Rc×T×H×W , where c is
the number of channels, T is the number of frames (which
must be an odd number, as we will be reconstructing the
middle frame), and H and W are the height and width of
the frames respectively. To simulate anomalies over the se-
quence, we pass the model through an Object Detection and
Tracking model, followed by Random Object Masking -
which selects a random tracked object across all frames and
returns a sequence of binary masks M ∈ {0, 1}c×T×H×W

delineating the regions of the frames where the pseudo-
anomaly will be present. Alongside, we also introduce a
noise tensor A ∈ Rc×T×H×W , which is uniformly random
generated.

We also define a trainable parameter ℓ ∈ R, which is
passed through a sigmoid function, σ(ℓ) ∈ (0, 1), to repre-
sent the anomaly weight. We chose a sigmoid function to
bound the trainable parameter between the values of 0 and
1, so to portray a percentage of anomaly inflicted. The se-
quence of normal frames X , the masks M , the noise tensor
A, and the anomaly weight σ(ℓ) are passed into the Pseudo
Anomaly Creator to fabricate pseudo anomalies XA.

Both the sequence of normal frames X , and the pseudo
anomalies XA, are passed through a reconstruction model
and calibrated using a linear combination of the Recon-
struction Loss and Distinction Loss. The anomaly weight
is heavily calibrated by the Distinction Loss, a loss func-
tion designed to converge the anomaly weight to repre-
sent the minimum anomaly capable of being detected. The
adaptability of the anomaly weight σ(ℓ) allows the model
to dynamically calibrate the degree of anomaly present in
the training data, ensuring an effective balance between the
recognition of normal patterns and the detection of devi-
ations. This is critical for preventing the model from ei-
ther becoming desensitized to subtle anomalies or overre-
acting to minor irregularities, thus maintaining a nuanced
representation of what constitutes an anomaly throughout
the training process.

3.1. Pseudo Anomaly Creator

Our approach to fabricating pseudo-anomalies within video
sequences begins with the application of object detection

and tracking at each frame, then randomly selecting an ob-
ject from the set of tracked objects for masking. We employ
object tracking to consistently mask the same object across
all frames within a temporal window, T . These masks, de-
noted as M , are crucial in defining the regions for anomaly
simulation, ensuring the anomalies are contextually inte-
grated around objects.

Following the identification and masking of objects,
we proceed to the creation of pseudo-anomalies, via the
Pseudo Anomaly Creator, a two-step noise integration pro-
cess shown in Figure 2. Initially, we generate noise-infused
frames, XĀ, by blending the original input frames, X , with
a noise tensor, A, using the dynamically learned anomaly
weight, σ(ℓ). This blend is achieved through a linear com-
bination, ensuring the proportionate integration of noise and
original content as per the following equation:

XĀ = (1− σ(ℓ)) ·X + σ(ℓ) ·A (1)

Here, the element-wise multiplication (·) facilitates the
precise control over the extent of noise addition, allow-
ing for variable distortion levels that are directly influenced
by the anomaly weight, which evolves during the training
phase.

The subsequent phase involves the formulation of the
pseudo-anomalous frames, XA. These frames emerge from
overlaying the noise-infused frames, XĀ, onto the original
input frames, X , strictly within the boundaries defined by
the object masks M . The mathematical representation of
this process is captured by:

XA = (1−M) ·X +M ·XĀ (2)

Through this method, we ensure that the noise, sym-
bolizing potential anomalies, is selectively applied to the
areas of interest - those being the detected objects within
the frame. This approach not only maintains the contextual
relevance of the introduced anomalies but also simulates a
variety of anomalous patterns by leveraging the variability
in noise composition; we elaborate on this in Section 7.2
within the Supplementary Material. By focusing on object
regions, our method aims to create realistic and pertinent
anomalies, enhancing the model’s ability to detect and learn
from these fabricated irregularities, which are designed to
mimic a diverse spectrum of anomalous behaviors and ap-
pearances, including unseen shapes and uncommon motion
blurs.

3.2. Reconstruction Model Definition

We define a reconstruction model f = E◦D, where E and D
represent some encoder and decoder parts of a deep learning
architecture, respectively. The choice of architecture is flex-
ible and can include, but is not limited to, AutoEncoders,
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Figure 1. The Dynamic Distinction Learning (DDL) Architecture: This diagram illustrates the DDL model’s workflow, including object
detection and tracking, random object masking, pseudo anomaly creation, our C3DSU model and the distinction loss calculation. The
architecture depicts how the pseudo anomalies are created, then passed through the model along with their normal counter parts. The
diagram also provides a visual depiction of the distinction loss calculation, showing how the model learns to minimize the numerator and
maximize the denominator.

UNet structures, or other suitable convolutional neural net-
works designed for video reconstruction.

In practice we employ an adaptation of a 2D UNet
model, tailored for the analysis of temporal data through the
integration of 3D convolutional layers between skip connec-
tions. We call this architecture a Conv3DSkipUNet (C3DSU
or f for the context of this work); more detail of our archi-
tecture can be found in Section 7.3 within the Supplemen-
tary Material. The model receives an input such as X and
returns a reconstructed output f(X) ∈ Rc×t×H×W , where
t represents the middle frame in T ; that is, the model re-
ceives an odd sequence of frames as an input and returns
the reconstructed middle frame.

3.3. Loss Function

We define a loss function, L, which integrates the standard
reconstruction loss with our novel distinction loss to fine-
tune the model’s sensitivity to anomalies.

L = Lrecon + λ · Ldist (3)

where λ is a hyperparameter that modulates the impact of
the distinction loss relative to the reconstruction loss. This
adjustment is crucial for ensuring that the model effectively

balances learning to reconstruct normal frames while also
distinguishing them from pseudo-anomalous frames.

3.3.1 Reconstruction Loss

The first function is the standard reconstruction loss:

Lrecon = ∥Xt − f(X)∥ (4)

where Xt is the middle frame of X . This loss function
encourages the model to accurately reconstruct the normal
input frame, thus learning the distribution of normal frames.

3.3.2 Distinction Loss

The distinction loss is the second loss function in our model,
designed to fine-tune the distinction between normal frames
and their pseudo-anomalous counterparts. This differen-
tiation is crucial for the model to recognize and identify
anomalies effectively. The distinction loss function is ar-
ticulated through the following mathematical formulations:

P = ∥M t · (Xt − f(XA))∥ (5)

N = ∥M t · (Xt
A − f(XA))∥ (6)
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Figure 2. Pseudo-Anomaly Creation Process: This figure demonstrates the step-by-step procedure for generating pseudo-anomalies within
video frames. It begins by receiving the normal input frames, the masked frames, and a dynamically learned anomaly weight followed by
the application of a noise tensor modulated by the anomaly weight.

Ldist =
P + ϵ

N + ϵ
(7)

Here, P serves to penalize the differences between the
original normal frame Xt and the model’s reconstruction of
the pseudo-anomalous frame Xt

A within the masked anoma-
lous regions. The term N captures the reconstruction error
when the model tries to reconstruct the pseudo-anomalous
frame within these same regions. The parameter ϵ is a small
constant to prevent division by zero, thus ensuring numeri-
cal stability.

The essence of this loss function is to compel the model
to prefer transforming pseudo-anomalous frames back into
their normal state. In simpler terms, when the model en-
counters an anomalous frame, the goal is for its recon-
structed output to bear a closer resemblance to a normal
frame rather than retaining the anomalous characteristics.
Though this is a hopeful outcome for any standard recon-
struction model, the distinction loss explicitly trains the
model to target this outcome, evidence of this is shown in
Supplmentary Material, Section 7.4 within Figures 7 and 8.

The underlying intuition of the distinction loss Ldist is
to foster a reconstruction process that pulls the pseudo-
anomalous frame towards the normal frame more than it
does towards itself. This is achieved by aiming to reduce

Figure 3. Panel (a) depicts a scenario where σ(ℓ) approaches zero,
leading to minimal deviation from the original frame and challeng-
ing the model’s ability to distinguish between normal and anoma-
lous regions due to the lack of significant noise. Panel (b) illus-
trates the opposite extreme, where σ(ℓ) is near one, resulting in
an overly distorted anomalous region dominated by noise, which
challenges the model’s reconstruction capabilities and undermines
the distinction loss’s effectiveness.

P—the difference between the normal frame and its re-
construction from a pseudo-anomalous input—and to in-
crease N—the difference between the pseudo-anomalous
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frame and its reconstruction. By doing so, the model is in-
centivized to differentiate between normal and anomalous
frames, thereby enhancing its anomaly detection capabili-
ties. This approach contrasts with methodologies employed
by our competitors [2, 3], who focus on maximizing the
discrepancy between pseudo anomalous inputs and their re-
constructions. Such a strategy often results in the emer-
gence of unusual patches within the reconstructed images,
a side effect not observed with our model. In contrast, the
distinction loss aims to transform pseudo anomalies to re-
semble normalcy. A visual representation of the distinction
loss can be seen in Figure 1.

For the model’s reconstruction function f , the ideal sce-
nario is to replicate the normal regions with high fidelity
while transforming the anomalous regions towards nor-
malcy. This ability is reflected in the dynamics of P and
N :

• A lower P indicates the model’s proficiency in recon-
structing the normal aspects of a frame, even when pre-
sented with a pseudo-anomalous input.

• A higher N indicates that the model is not simply repli-
cating the anomalous features present in the pseudo-
anomalous frames, but rather is challenged to reconstruct
those features, reflecting a discrepancy between the input
and the output.

The impact of σ(ℓ), the anomaly weighting factor, on the
distinction loss is pivotal:

• With σ(ℓ) approaching zero, the noise’s influence on XA

is minimized, leading to a scenario where XA is almost
identical to X . This presents a challenge in distinguishing
between normal and anomalous frames, as P and N be-
come similar, pushing Ldist ≈ 1. This can be visualized
in Figure 3 (a).

• On the other hand, as σ(ℓ) tends towards one, the anoma-
lous region is replaced with something which almost en-
tirely resembles noise. The model then faces the nearly
impossible challenge of reconstructing the anomalous re-
gions, thus rendering the distinction loss redundant, as
shown in Figure 3 (b).

However, striking the right balance for σ(ℓ) is essential:
it should be low enough so that the model, f , is able to
reconstruct normality from a pseudo anomalous frame, but
not so low where the pseudo-anomalous frame is too similar
to the normal frame; causing Ldist ≈ 1. The adjustment of
σ(ℓ) is carried out through backpropagation during training,
allowing the model to iteratively find the optimal balance to
maximize its proficiency in anomaly detection, aiming to
pinpoint the smallest discernible anomaly from normalcy.

3.4. Inference

During the inference phase, the components involved in
training, specifically the anomaly weight, object detection

and tracking, and the Pseudo Anomaly Creator, are not uti-
lized. The inference stage is streamlined to function through
a conventional reconstruction approach. This process en-
tails imposing a sliding window across each video, then
submitting a sequence of video frames directly into the re-
construction model, which then processes these frames to
output a reconstructed version of the middle frame.

4. Datasets
Our investigation utilizes a suite of video datasets to eval-
uate the adaptability and effectiveness of our proposed
pseudo-anomalous loss approach in more complex sce-
narios. Specifically, we focus on three prominent video
datasets: Ped2, CUHK Avenue, and ShanghaiTech. These
datasets, with their varied and intricate anomaly instances,
offer a robust testing ground to assess the performance of
our model under diverse conditions.

The Ped2 dataset [25], sourced from pedestrian area
surveillance footage, is notable for its range of anomalous
events such as biking, skating, or irregular movement pat-
terns. This dataset provides video clips with a frame resolu-
tion of 360×240, enabling a diverse sampling environment
for anomaly detection research.

The CUHK Avenue dataset [32], originating from
surveillance systems at the Chinese University of Hong
Kong’s Avenue, documents typical anomalies like running,
loitering, and object throwing. These activities are un-
usual for the setting, making it an ideal dataset for testing
anomaly detection models. Videos in this dataset are pre-
sented at a resolution of 640× 360, offering a detailed view
for analysis.

Comprising surveillance footage from a variety of indoor
and outdoor scenes, the ShanghaiTech dataset [21] intro-
duces a wide range of anomalies, including burglary, climb-
ing, and fighting. The dataset’s videos feature a resolution
of 856×480, with variable frame numbers across clips. This
diversity makes the ShanghaiTech dataset a comprehensive
platform for challenging and evaluating the capabilities of
anomaly detection systems.

5. Results
Our experimental setup and performance evaluation, align-
ing with established benchmarks in anomaly detection,
leverages FastRCNN [13] for object detection and OC-
Sort [6] for object tracking during the training phase. No-
tably, our Conv3DSkipUNet (C3DSU) model processes se-
quences of 3 frames. We benchmark our model against
leading competitors identified in the comprehensive review
by Astrid et al. [3], implementing a median window fil-
tering approach with a window size of 17, as effectively
demonstrated by Liu et al. [22]. It is crucial to note that,
while our innovative approach leverages object detection to
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generate pseudo-anomalies during the training phase, the
core functionality of our model during inference strictly ad-
heres to the principles of reconstruction-based anomaly de-
tection. Though object detection methods have shown su-
perior performance on the datasets described in Section 4,
they are limited in practical application due to their inca-
pability of detecting non-object related anomalies, such as
explosions or debris falling off of buildings. Therefore, we
strictly compare our methodology to other reconstruction-
based methods. This strategic choice differentiates our
work from methods reliant on object detection or frame pre-
diction techniques for anomaly identification.

To quantitatively assess the performance of our model
in video anomaly detection tasks, we employ a detailed
anomaly scoring mechanism. Each frame’s anomaly score
is derived by computing the Euclidean distance at the pixel
level between the frame and its reconstructed counterpart.
To refine this evaluation, the calculated distances are seg-
mented into patches sized 16 × 16, with the frame score
determined by the highest mean value among these patch
scores.

Method Year Ped2 Avenue SHT
AE-Conv2D [15] 2016 90.00 70.20 60.85
AE-Conv3D [42] 2017 91.20 71.10 -
AE-ConvLSTM [27] 2017 88.10 77.00 -
TSC [26] 2017 91.03 80.56 67.94
StackRNN [26] 2017 92.21 81.71 68.00
MemAE [14] 2019 94.10 83.30 71.20
MNAD [30] 2020 90.20 82.80 69.80
PseudoBound [3] 2023 98.44 87.10 73.66
MAMC [29] 2024 96.70 87.60 71.50
C2Net [20] 2024 98.00 87.50 -
C3DSU with DDL Ours 98.46 90.35 74.25

Table 1. Comparative AUC Scores across Ped2, Avenue, and
ShanghaiTech datasets. The table presents the AUC performance
of our DDL model against a range of competing methodologies,
highlighting the best performing results in bold.

The performance of our proposed methodology, as quan-
tified through the Area Under the Curve (AUC) scores
across three benchmark datasets, demonstrates its superior
capability in detecting anomalies within video sequences.
Table 1 showcases a comparative analysis of our model, de-
noted as C3DSU with DDL, against a variety of established
methods in the field.

On the Ped2 dataset [25], our approach achieves an AUC
score of 98.46%, surpassing the previous state-of-the-art,
PseudoBound [3], by a slight margin. This indicates an im-
provement in the model’s ability to detect anomalies, illus-
trating the effectiveness of the dynamic anomaly weight-
ing and distinction loss mechanism implemented in our
methodology.

In the context of the Avenue dataset [32], our DDL
model demonstrates a notable leap in performance, register-
ing an AUC score of 90.35%. This represents not only an
improvement over the PseudoBound method [3] but also a
substantial advancement compared to other reconstruction-
based approaches such as MemAE [14] and MNAD-
Reconstruction [30]. The results underscore our method’s
adeptness at handling the dataset’s complex anomaly sce-
narios, further establishing the efficacy of incorporating
pseudo-anomalies in training to enhance anomaly detection
accuracy.

For the ShanghaiTech (SHT) dataset [21], our model
achieves an AUC of 74.25%, representing the best perform-
ing model amongst those compared. It is important to note
that, in addressing the SHT dataset’s diverse and dynamic
anomaly instances, we trained a unique model for each
scene, acknowledging that each scene warrants a different
anomaly weight, σ(ℓ). This scene-specific approach allows
for a more tailored anomaly detection mechanism, catering
to the unique characteristics and challenges of each scene.
The median score of all scenes is then taken to represent the
overall performance on the SHT dataset. This methodolog-
ical nuance underscores the adaptability of our approach,
demonstrating its robustness across varied surveillance con-
texts despite the inherent challenges of the SHT dataset.

6. Ablation Studies
To elucidate the impact of Dynamic Distinction Learning
(DDL) on video anomaly detection, we conducted abla-
tion studies comparing the performance of two models,
UNet and Conv3DSkipUNet (C3DSU), on the Ped2 and
Avenue datasets, both with and without the implementa-
tion of DDL. The UNet model serves as a baseline, em-
ploying a traditional architecture without the convolutional
3D (Conv3D) layers between skip connections, and pro-
cesses single frames independently. In contrast, the C3DSU
model, designed for temporal data analysis, incorporates
Conv3D layers between skip connections to capture tem-
poral dynamics between frames.

The terminology used to describe the training configu-
rations of the models—specifically, ‘without DDL’, ‘with
SDL’, and ‘with DDL’—reflects the incorporation of our
Dynamic Distinction Learning (DDL) framework at differ-
ent levels. The ‘without DDL’ configuration represents the
standard reconstruction training process where the models,
UNet and Conv3DSkipUNet (C3DSU), are trained purely
on the task of reconstructing normal frames, leveraging
only the reconstruction loss and omitting the introduction of
pseudo anomalies. In contrast, the ‘with SDL’ (Static Dis-
tinction Learning) setup incorporates both the reconstruc-
tion loss and a static version of the distinction loss, where
the anomaly weight, σ(ℓ), is fixed at 0.5 and not subject to
training adjustments. This static distinction approach aims
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to introduce a consistent level of challenge in distinguish-
ing anomalies but lacks the adaptability of dynamic weight-
ing. Finally, ‘with DDL’ employs our proposed method-
ology, integrating the dynamic anomaly weighting mecha-
nism alongside the distinction loss into the training of the
models.

Model without DDL with SDL with DDL
UNet 86.90 95.28 97.76
C3DSU 95.55 97.12 98.46

Table 2. This table illustrates the performance improvement on
the Ped2 dataset facilitated by the Dynamic Distinction Learn-
ing (DDL) approach across two different architectures: UNet and
C3DSU.

As shown in Table 2, the implementation of DDL signif-
icantly enhances model performance. For the UNet model,
the Area Under the Curve (AUC) score increases from
86.90% without DDL to 95.28% with SDL and further to
97.76% with DDL, underscoring the effectiveness of DDL
in enhancing anomaly detection accuracy. The introduction
of a static distinction loss already marks a notable improve-
ment, demonstrating the value of integrating anomaly dif-
ferentiation into the training process. Similarly, the C3DSU
model benefits from the addition of DDL, with its AUC
score improving from 95.55% to 97.12% with SDL and
then to 98.46%. These results highlight the pivotal role of
DDL in refining the model’s ability to differentiate between
normal and anomalous frames, particularly when tempo-
ral dynamics are considered. The improvement seen with
SDL indicates the initial benefits of incorporating distinc-
tion mechanisms, which are significantly amplified upon
transitioning to dynamic weighting.

The impact of DDL is also evident in the performance on
the Avenue dataset, as depicted in Table 3. The UNet model
experiences an improvement in AUC score from 84.18%
without DDL to 87.06% with SDL and further to 88.96%
with DDL. The introduction of SDL showcases a tangi-
ble improvement, setting the stage for the more substan-
tial enhancements afforded by the dynamic approach. The
C3DSU model, however, showcases a more pronounced im-
provement, with the AUC score increasing from 82.54%
without DDL to 89.41% with SDL and then to 90.35% with
DDL. These findings demonstrate the utility of DDL across
different architectural frameworks and datasets, especially
in scenarios involving complex anomaly patterns. The step-
wise enhancements from static to dynamic distinction learn-
ing illustrate the methodological progression and its impact
on the models’ anomaly detection capabilities, highlighting
the critical role of adaptively learning the anomaly weight
for maximizing detection accuracy.

The ablation studies highlight the incremental value of-
fered by each component of our methodology. The intro-

Model without DDL with SDL with DDL
UNet 84.18 87.06 88.96
C3DSU 82.54 89.41 90.35

Table 3. This table presents a comparison of model performance
on the Avenue dataset, with and without the incorporation of Dy-
namic Distinction Learning (DDL), across UNet and C3DSU ar-
chitectures.

duction of the distinction loss with a static pseudo anomaly
weight significantly improves model performance by ex-
plicitly training the model to map pseudo anomalies towards
normality. Further refinement is achieved with the imple-
mentation of a dynamic anomaly weight, which empowers
our methodology to adaptively fine-tune and identify the
minimum level of anomaly that can be detected.

7. Conclusion

This paper introduced Dynamic Distinction Learning
(DDL), a novel approach designed to enhance the accu-
racy of video anomaly detection through the integration
of pseudo-anomalies, dynamic anomaly weighting, and a
unique distinction loss function. Our methodological inno-
vation lies in its ability to adaptively learn the variability of
normal and anomalous behaviors without relying on fixed
anomaly thresholds, thereby significantly improving detec-
tion performance.

Our experiments, conducted on benchmark datasets such
as Ped2, CUHK Avenue, and ShanghaiTech, have demon-
strated the superior performance of the DDL framework.
The model achieved remarkable AUC scores, outperform-
ing existing state-of-the-art methods on the Ped2 and Av-
enue datasets, and delivering competitive results on the
ShanghaiTech dataset. These achievements underscore the
effectiveness of DDL in addressing the challenges of video
anomaly detection, offering a scalable and adaptable solu-
tion that can be tailored to specific scene requirements.

The ablation studies further highlighted the impact of in-
corporating DDL into different model architectures, includ-
ing UNet and Conv3DSkipUNet (C3DSU). The significant
improvements in anomaly detection accuracy with DDL un-
derscore its role in refining models’ ability to distinguish
between normal and anomalous events effectively, show-
casing its broad applicability across different architectural
frameworks and complex anomaly patterns.

In conclusion, Dynamic Distinction Learning represents
a significant advancement in the field of video anomaly de-
tection. Its ability to dynamically adapt and learn from
pseudo-anomalies, coupled with the distinction loss func-
tion, provides a robust framework for accurately identifying
anomalous events in video data.
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