Blind Localization and Clustering of Anomalies in Textures

Supplementary Material

S1. Summary

This supplementary material includes additional insights
regarding the proposed anomaly clustering method in the
form of visualizations, comparisons, evaluations, and details
useful for the reproducibility of our results.

S2. Detailed clustering evaluation

In Table 5, we present the metrics’ breakdown at the level
of texture classes for MVTec AD [10]. MTD and Leaves
datasets are not included since they contain a single texture
class only.

S3. Additional ablation results.

In Table 6, we present an ablation study in a similar manner
to Table 3 from the main text. The difference is that these
results are obtained under k-means clustering as the final
step instead of agglomerative clustering with Ward linkage.
The results show that our contributions hold independent
from a particular choice of feature-clustering method.

To develop our blind anomaly localization system, we
build on FCA [5] as a state-of-the-art zero-shot anomaly
localization method. We argue that this zero-shot detection
synergizes well with the VAE reconstruction, fully capital-
izing on the information in the residual maps (computed
according to Equation (1)). In Table 7, we substantiate our
decision by replacing FCA as the residual maps processor
with different ways to compare the original features to the
reconstruction. We compare against various approaches from
the relevant literature: L' and L2 norm [6, 14], SSIM [8],
and Rec-grad [51, 52].

There are, of course, many other levels on which we
could analyze our pipeline, including the effect of different
hyperparameters. However, we observe that most parameters
of our method, such as the number of layers in the VAE and
feature refiner H, number of neighbors k and margin for
contrastive learning, as well as the optimization parameters,
have limited effect on the final performance or may offer
benefits only for specific datasets. In any case, we did not
perform an exhaustive hyperparameter search, and a different
configuration could potentially yield better results.

S4. Automatic threshold estimation

Our contrastive learning formulation assumes binary anomaly
maps. In order to maintain a fully unsupervised method,
we propose an algorithm to estimate the threshold ¢ for
binarization. One can observe from the blind anomaly
localization results (Table 2) that image-level anomaly scores
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Figure 6. Visualization of the increase of purity with respect to
over-clustering. The purity is averaged over all MVTec AD textures.

are reasonably reliable (83% on MTD and almost a perfect
result on MVTec AD). Therefore, if we knew in advance
the proportion of normal samples in the input set, we could
estimate the threshold as the corresponding quantile in the
predicted image-level anomaly scores.

However, in a fully unsupervised scenario, this proportion
is also unknown. To estimate this value, we perform an initial
k-means clustering using descriptors D; (see Equation (2)).
We then find the normality cluster by taking the group with
the smallest average anomaly score. The size of this cluster
divided by the total number of images is finally used as the
ratio of normal images to compute the threshold ¢.

S5. Unknown number of anomaly types

The quantitative and qualitative results in the main paper are
obtained under the common assumption that the number of
anomaly types is known in advance. This is made primarily
to facilitate comparison across different methods. However,
in practice, the anomaly types residing in the input set might
be unknown.

We note that up to the final feature-based clustering,
our algorithm is not constrained to a predefined number of
classes!. This offers great flexibility as the image descriptors
can be used in other ways such as the automatic discovery of
the number of clusters or as a tool to reduce manual labeling
efforts (through over-clustering). We show this in Figure 6
by plotting the purity as a function of the number of clusters.



Method Carpet Grid Leather Tile Wood
NMI ARl F NMI ARl F NMI ARl  F NMI ARl F NMI ARl  F

SPICE [37] 0.202 0.031 0.231 0.197 0.033 0.166 0.373 0.153 0.016 0.284 0.490 0.176 0.284 0.130 0.282
STEGO [26] 0.271 0.167 0.402 0.123  0.002 0.282 0.338 0202 0.395 0.790 0.707 0.701 0423 0274 0.515
Average [42] 0.287 0.138 0.392 0.158 0.033 0.326 0.398 0218 0.465 0.288 0.157 0.444 0.231 0.066 0.384
Max. Hausdorff [42] 0.660 0.586 0.795 0.129 0.018 0.308 0.725 0.652 0.762 0932 0914 0.957 0.678 0.500 0.716
Weighted Average [42] 0.656 0.576 0.647 0.143  0.018 0.304 0.778 0.674 0.704 0.933 0921 0.957 0.860 0.815 0.921
Ours 0.617 0.458 0.590 0.710 0.620 0.718 0.832 0.779 0.823 0.947 0936 0.974 0.846 0.788  0.926

Table 5. Detailed breakdown of the metrics generated by different anomaly clustering methods on the MVTec AD [10] textures. The results

for the algorithms introduced by Sohn et al. are lifted from the original publication [42].

MVTec AD textures NMI ARI F

Ours w/o VAE, CL 0.667 0.589 0.745
Ours w/o VAE 0.773 0.678 0.801
Ours w/o CL 0.694 0.605 0.743
Ours 0.778 0.701 0.809
MTD NMI ARI Fi

Ours w/o VAE, CL 0.148 0.109 0.411
Ours w/o VAE 0.154 0.181 0.499
Ours w/o CL 0.201 0.253 0.560
Ours 0.211 0.347 0.649
Leaves NMI ARI F

Ours w/o VAE, CL 0.456 0.426 0.635
Ours w/o VAE 0.568 0.561 0.735
Ours w/o CL 0.484 0.412 0.659
Ours 0.689 0.704 0.801

Table 6. Ablation results when using k-means for the final feature-
level clustering.

MVTec AD textures PRO  AUROC, AUROC;
VAE + L! 95.24 97.73 98.41
VAE + L? 94.68  97.39 98.02
VAE + SSIM 96.73 98.73 99.77
VAE + Rec-grad 82.00 90.33 94.82
VAE + FCA (ours) 97.50 99.02 99.93

Table 7. Results for FCA ablation. The VAE feature reconstruction
yields the best results when combined with FCA as the residual
maps processor.

S6. Qualitative pixel-level results.

Our contrastive training enables us to leverage the improved
features for each pixel in the input image. In Figure 7, we
show that one can use the features to perform clustering
at a pixel level, essentially achieving multi-class anomaly
segmentation/localization. For this experiment we use unseen
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Figure 7. Qualitative comparison for pixel-level clustering on
unseen images. We depict the predicted anomaly types with the
following colors for wood: blue — hole, orange — scratch, red —
color stain, and for leaves: blue — cercospora, orange — miner, red —
phoma. In both cases white is used for pixels classified as normal.

images (not used for contrastive learning or training the VAE):
an image from the combined subcategory of the wood texture
in MVTec AD and a leaf texture that contains two different
anomaly types. The wood texture initially had two types of
anomalies; however, we cropped the image to include only
one type (holes) because the other (knot) was not part of the
fitting set (i.e., the subcategories: hole, scratch, color, liquid,
and normal).

To create the pixel-level labeling for new images at in-
ference time, we perform the following. The image-level
descriptors of the fitting set are clustered using k-means to
obtain the clusters’ centers. Afterward, we apply the feature
extractor F' on the new images and apply the additional layers
H trained using CL. These improved features are then com-
pared with the image-level cluster centers and assigned the
label corresponding to the closest point. We apply the analo-
gous steps to compare with the weighted average method of
Sohn et al. [42].
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Figure 8. Qualitative comparison on MVTec AD object classes.
The first three examples present structural defects that are reasonably
well identified despite the non-homogeneity of the images. In the
last column, there is a logical anomaly (wrong cable color) which
our method fails to detect.

S7. Discussion on the application domain

As reflected in the MVTec AD dataset [10], there are two
different classes of images on which anomaly detection is of-
ten applied: textures and generic objects. Depending on the
class, anomalies tend to manifest themselves in very different
ways; textures contain more subtle, structural anomalies,
whereas objects have more semantic or logical anomalies.
Structural anomalies, as found in textures, are better suited
for zero-shot [4, 5] and blind anomaly detection [50]. Our
blind anomaly localization algorithm is designed to work on
textures by employing a zero-shot anomaly localization ap-
proach (FCA) as a subroutine. Our VAE-based improvement
significantly enhances the zero-shot results, especially on
more complex textures; however, we still inherit the station-
arity assumption of the underlying zero-shot method. For
completeness, we show results on a few objects from MV Tec
in Figure 8. Our blind anomaly localization decidedly im-
proves upon the base zero-shot model. Nonetheless, the
background acts as a distractor and diminishes the capability
of the anomaly localization; our approach is also not suited to
detect logical anomalies such as the cable swap (last column
in Figure 8).

Importantly, our contrastive learning contribution is com-
plementary to the method used for blind anomaly localization.
If we assume the solution for generating the anomaly maps
A; is given, our feature fine-tuning method can be used to
perform anomaly clustering for arbitrary types of images.

S8. Details on the evaluation of baselines

In this section, we describe in detail how we obtained the
results for the prior work which we compare against in the
main paper experiments.

For the main comparison of clustering performance in
Table 1, we evaluate against seven methods. The results
for SelFormaly [32] are taken from the original paper as no
code is shared by the authors. We note that we outperform
SelFormaly despite their having a supervisory advantage.
The results for SCAN [44] and the approaches introduced by
Sohn et al. [42] for MVTecAD textures and MTD are taken
from [42], whereas the metrics for the Leaves dataset we
compute ourselves. We evaluate SPICE [37] using the public
official implementation shared by the authors. To ensure
fairness, use the same WideResnet [48] feature extractor
base for SCAN [44] and SPICE [37] as for our method. In
order to evaluate STEGO, which is an unsupervised semantic
segmentation method, we must design a mechanism to assign
a single label per image. Firstly, we find the most frequently
predicted (pixel-level) label and mark it as the normal class.
We then use the ground truth number of normal samples (K)
to the advantage of STEGO by taking the first K images with
most pixels assigned to the normal class; these images are
labeled as normal. For the rest of the dataset, we assign the
image label as the most frequent non-normal label predicted
by STEGO.

To evaluate blind anomaly localization (BAL), we compare
against the following baselines. DRAEM [49] and CFA [31]
as normality-supervised methods to analyze the performance
when the training set has anomaly contamination (= 75%,
depending on the dataset). For convenience, we use the
implementation from anomalib [1]. For ILTM [38] and the
method of Zhang er al. [50], we use the results from the
respective publications. ILTM was evaluated in a slightly
different way, as the authors used the test set to make train,
validation, and test splits and to control the ratio of anomalous
samples. Nonetheless, as Zhang et al. report the results
with 80% anomaly ratio, we argue that their evaluation
methodology is largely comparable to ours and the results are
representative. To compare with the anomaly maps generated
by the weighted average method of Sohn et al. [42], we use our
implementation of their paper. For this experiment, we run
their method at a higher resolution (512 X 512) as opposed to
the one suggested in the paper (256 x 256) since we observed
that this increases the fidelity of anomaly localization.



