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This is the supplementary document of our paper, en-
titled "BMAD: Benchmarks for Medical Anomaly Detec-
tion". It includes 4 sections, providing detailed information
on datasets, supporting AD algorithms, experimental repro-
ducibility, and evaluation metrics.

6. Datasets in BMAD
Our BMAD benchmark consists of six datasets sourced from
five distinct medical domains, including brain MRI, reti-
nal OCT, liver CT, chest X-ray, and digital histopathology.
Due to the absence of specific anomaly detection datasets
in the field of medical imaging, we construct these bench-
mark datasets by reorganizing and remixing existing medical
image sets proposed for other purposes such as image classi-
fication and segmentation. Moreover, our codebase includes
functionality for data reorganization, enabling users to gen-
erate new datasets tailored to their needs. In the this sections,
we mainly focus on an overview of the original datasets and
our data reorganization procedure.

6.1. Brain MRI Anomaly Detection and Localiza-
tion Benchmark

The brain MRI anomaly detection benchmark is reorganized
from the BraTS2021 dataset [3, 4, 40].

6.1.1 BraTS2021 Dataset

The original BraTS2021 dataset is proposed for a multimodel
brain tumor segmentation challenge. It provides 1,251 cases
in the training set, 219 cases in validation set, 530 cases
in testing set (nonpublic), all stored in NIFTI (.nii.gz) for-
mat. Each sample includes 3D volumes in four modali-
ties: native (T1) and post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery
(T2-FLAIR), accompanied by a 3D brain tumor segmenta-
tion annotation. The data size for each modality is 240 *240
*155.

Access and License: The BraTS2021 dataset can be ac-
cessed at http://braintumorsegmentation.org/. Registration
for the challenge is required. As stated on the challenge
webpage, "Challenge data may be used for all purposes, pro-
vided that the challenge is appropriately referenced using
the citations given at the bottom of this page."

6.1.2 Construction of Brain MRI AD benchmark

After analyzing the BraTS2021 dataset, we built the brain
MRI AD benchmark from the 3D FLAIR volumes. All data
in our Brain MRI AD benchmark is derived from the 1,251

cases in the original training set. To account for variations
in brain images at different depths, we specifically selected
slices within the depth range of 60 to 100. Each extracted
2D slice was saved in PNG format and has an image size
of 240 * 240 pixels. According to the tumer segmentation
mask, we selected 7,500 normal samples to compose the
AD training set, 3,715 samples containing both normal and
anomaly samples (with a ratio of 1:1) for the test set, and a
validation set with 83 samples that do not overlap with the
test set. Fig. 4 illustrates the specific procedure we followed
for data preparation, and Fig. 5 provides examples of our
brain MRI AD benchmark.

6.2. Liver CT Anomaly Detection and Localization
Benchmark

We structure this benchmark from two distinct datasets,
BTCV [30] and LiTS [10]. The anomaly-free BTCV set
is taken to constitute the normal train set in this benchmark
and CT scans in LiTs is exploited to form the evaluation and
test data.

6.2.1 BTCV Dataset

BTCV [30] is introduced for multi-organ segmentation.
It consists of 50 abdominal computed tomography (CT)
scans taken from patients diagnosed with colorectal can-
cer and a retrospective ventral hernia. The original scans
were acquired during the portal venous contrast phase and
had variable volume sizes ranging from 512*512*85 to
512*512*198 and stored in nii.gz format.

Access and License: The original BTCV
dataset can be accessed from ’RawData.zip’ at
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753.
Dataset posted on Synapse is subject to the Creative Com-
mons Attribution 4.0 International (CC BY 4.0) license.

6.2.2 LiTS Dataset

LiTS [10] is proposed for liver tumor segmentation. It origi-
nally comprises 131 abdominal CT scans, accompanied by a
ground truth label for the liver and liver tumors. The original
LiTS is stored in the nii.gz format with a volume size of
512*512*432.

Access and License: LiTS can be down-
loaded from its Kaggle webpage at
https://www.kaggle.com/datasets/andrewmvd/liver-tumor-
segmentation. The use of the LiTS dataset is under Creative
Commons Attribution-NonCommercial-ShareAlike(CC
BY-NC-SA) [11].

http://braintumorsegmentation.org/
https://www.synapse.org/#!Synapse:syn3193805/wiki/217753
https://www.kaggle.com/datasets/andrewmvd/liver-tumor-segmentation
https://www.kaggle.com/datasets/andrewmvd/liver-tumor-segmentation


Figure 4. Diagram illustration of data preparation for the Brain MRI AD benchmark from 3D brain scans in BraTS2021.

Figure 5. Visualization of our proposed Brain MRI benchmark.

6.2.3 Construction of Liver CT AD Benchmark

In constructing the liver CT AD benchmark, we made a
decision not to include lesion-free regions from the LiTS
dataset as part of the training set. This choice was based on
our observation that the presence of liver lesions in LiTS
leads to morphological changes in non-lesion regions, which
could impact the performance of anomaly detection. In-
stead, we opted to use the lesion-free liver portion from the
BTCV dataset to form the training set. The LiTS dataset, on
the other hand, is reserved for testing the effectiveness of
anomaly detection and localization.

For both datasets, Hounsfield-Unit (HU) of the 3D scans
are transformed into grayscale with an abdominal window.
The scans are then cropped into 2D axial slices, and the
liver’s Region of Interest is extracted based on the provided
organ annotations. We perform slide intensity normalization
with histogram equalization. To be more specific, for the
construction of the normal training set in the liver CT AD
benchmark, we utilized the provided segmentation labels
in BTCV to extract the liver region. From these scans, we
extracted 2D slices of the liver with a size of 512 * 512,
using the corresponding liver segmentation scans as a guide.
The 2D slices were then converted to PNG format to serve as
the final AD data. We selected 1542 slices to comprise the

Figure 6. Visualization of our proposed Liver CT benchmark.

training set. To prepare the testing and validation sets, we
sliced the data from LiTS and stored them in PNG format
with dimensions of 512 * 512. Our testing and validation
sets contain both healthy and abnormal samples. Fig. 6
demonstrates several samples in the Liver CT AD dataset.
Fig. 6 provides visualization of the constructed Liver CT
AD dataset.

6.3. Retinal OCT Anomaly Detection and Localiza-
tion Benchmark

The BMAD datasets includes two different OCT anomaly
detection datasets. The first one is derived from the RESC
dataset [26] and support anomaly localization evaluation.
The second is constructed from OCT2017 [29], Which only
support sample-level anomaly detection.

6.3.1 RESC dataset

RESC (Retinal Edema Segmentation Challenge) dataset [26]
specifically focuses on the detection and segmentation of
retinal edema anomalies. It provides pixel-level segmenta-
tion labels, which indicate the regions affected by retinal
edema. The RESC is provided in PNG format with a size of
512*1024 pixels.

Access and License: The original RESC dataset



Figure 7. The Retinal OCT benchmarks consist of two separate datasets, each representing different anomaly types. These datasets are used
to evaluate and benchmark various methods in the field of retinal OCT imaging. The datasets are designed to assess the performance of
algorithms in detecting and localizing specific anomalies in retinal images.

can be downloaded from the P-Net github page at
https://github.com/CharlesKangZhou/P_Net_Anomaly_Detection.
As indicated on the webpage, the dataset can be only used
for the research community.

6.3.2 OCT2017 dataset

OCT2017 [29] is a large-scale dataset initially designed
for classification tasks. It consists of retinal OCT images
categorized into three types of anomalies: Choroidal Neovas-
cularization (CNV), Diabetic Macular Edema (DME), and
Drusen Deposits (DRUSEN). The images are continuous
slices with a size of 512*496.

Access and License: OCT2017 can be downloaded at
https://data.mendeley.com/datasets/rscbjbr9sj/2. Its usage is
under a license of Creative Commons Attribution 4.0 Inter-
national(CC BY 4.0).

6.3.3 Preparation of OCT AD benchmarks

To construct the OCT anomaly detection and localization
dataset from RESC, we utilize the segmentation labels pro-
vided for each slice to get the label for AD setting. We select
the normal samples from the original training dataset and
adapt the original validation set into the AD setting for eval-
uation. The RESC is provided in PNG format with a size
of 512*1024 pixels. On the other hand, on the OCT2017
dataset, we specifically select the disease-free samples from
the original training set as our training data for the anomaly
detection task. The test set is further divided into evaluation
data and testing data for AD setting. Fig. 7 demonstrates
several examples in the two OCT AD datasets.

6.4. Chest X-ray Anomaly Detection Benchmark
6.4.1 RSNA dataset

RSNA [63], short for RSNA Pneumonia Detection Chal-
lenge, is originally provided for a lung pneumonia detection

task. The 26,684 lung images are associated with three la-
bels: "Normal" indicates a normal lung condition, "Lung
Opacity" indicates the presence of pneumonia, "No Lung
Opacity/Not Normal" represents a third category where some
images are determined to not have pneumonia, but there may
still be some other type of abnormality present in the image.
All images in RSNA are in DICOM format.

Access and License: RSNA can be accessed by
https://www.kaggle.com/competitions/rsna-pneumonia-
detection-challenge/overview. Stated in the section of
Competition data: A. Data Access and Usage, "... you may
access and use the Competition Data for the purposes of
the Competition, participation on Kaggle Website forums,
academic research and education, and other non-commercial
purposes."

6.4.2 Preparation of Chest X-ray AD Benchmark

We utilized the provided image labels for data re-partition.
Specifically, "Lung Opacity" and "No Lung Opacity/Not
Normal" were classified as abnormal data. The reorganized
AD dataset including 8000 normal images as training data,
1490 images with 1:1 normal-versus-abnormal ratio in the
validate set, and 17194 images in the test set. Examples of
the chest X-ray dataset are provided in Fig. 8.

6.5. Digital Histopathology Anomaly Detection
Benchmark

6.5.1 Camelyon16 Dataset

The Camelyon16 dataset [6] was initially utilized in
the Camelyon16 Grand Challenge to detect and classify
metastatic breast cancer in lymph node tissue. It comprises
400 whole-slide images (WSIs) of lymph node sections
stained with hematoxylin and eosin (H&E) from breast can-
cer patients. Among these WSIs, 159 of them exhibit tu-
mor metastases, which have been annotated by pathologists.
The WSIs are stored in standard TIFF files, which include

https://github.com/CharlesKangZhou/P_Net_Anomaly_Detection
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://www.kaggle.com/competitions/rsna-pneumonia-detection-challenge/overview
https://www.kaggle.com/competitions/rsna-pneumonia-detection-challenge/overview


Figure 8. Our proposed chest X-ray benchmark consists two types
of anomalies. These anomalies are clearly labeled in the images,
and all of them are considered as anomaly samples.

Figure 9. Examples of the digital histopathology AD benchmark.
Unlike other medical image AD benchmarks, histopathology im-
ages shows higher diversities in tissue components.

multiple down-sampled versions of the original image. In
Camelyon16, the highest resolution available is on level 0,
corresponding to a magnification of 40X.

Access and Licence: The original Camelyon16
dataset can be found at https://camelyon17.grand-
challenge.org/Data/. It is under a license of Creative
Commons Zero 1.0 Universal Public Domain Dedica-
tion(CC0).

6.5.2 Preparation of histopathology AD Benchmark

To ensure a comprehensive evaluation of anomaly detec-
tion models for histopathology images, considering their
unique characteristics such as large size, we opted to assess
AD models at the patch level. To construct the benchmark

dataset, we randomly extracted 5,088 normal patches from
the original training set of Camelyon16, which consisted of
160 normal WSIs. These patches were utilized as training
samples. For the validation set, we cropped 100 normal and
100 abnormal patches from the 13 testing WSIs. Likewise,
for the testing set, we extracted 1,000 normal and 1,000 ab-
normal patches from the 115 testing WSIs in the original
Camelyon16 dataset. Each cropped patch was saved as a
PNG image with dimensions of 256 * 256 pixels. Fig. 9
presents several examples in the constructed histopathology
AD benchmark.

7. Supported AD Models
Fig. 10 provides conceptual illustration of various AD ar-
chitectures from the feature embedding-based methods and
data reconstruction-based approaches. We conducted bench-
marking using the Anomalib [2] for CFA, CFlow, DRAEM,
GANomaly, PADIM, PatchCore, RD4AD, and STFPM. For
the remaining algorithms, we provided a comprehensive
codebase for training and inference with all proposed eval-
uation metrics functions. By utilizing these codebases and
following the instructions provided, researchers can replicate
and reproduce our experiments effectively. In addition to
the codebase, we also provide pre-trained checkpoints for
different benchmark on our webpage.

The specific experimental settings for each of the sup-
ported methods are specified as follows.
PaDiM [17] leverages a pre-trained convolutional neural
network (CNN) for its operations and does not require addi-
tional training. In our experiments, we separately evaluated
all benchmarks using two backbone networks: ResNet-18
and WideResnet-50. For the dimension reduction step, we re-
tained the default number of features as specified in the origi-
nal setting. Specifically, we used 100 features for ResNet-18
and 550 features for WideResnet-50. These default values
were chosen based on the original implementation and can
serve as a starting point for further experimentation and fine-
tuning if desired.
STFPM [67] utilized feature extraction from a Teacher-
student structure. In our experiments, we evaluated all bench-
marks separately using two backbone networks: ResNet-18
and WideResnet-50. We employed a SGD optimizer with a
learning rate of 0.4. Additionally, we followed the original
setting with a parameter with a momentum of of 0.9 and
weight decay of 1e-4 for SGD. These settings were chosen
based on the original implementation and can be adjusted
for further experimentation if desired.
Patchcore [46] is a memory-based method that utilizes core-
set sampling and neighbor selection. In our experiments, we
evaluated Patchcore using two backbone networks: ResNet-
18 and WideResnet-50. We followed the default hyper-
parameters of 0.1 for the coreset sampling ratio and 9 for the
chosen neighbor number. These values were chosen based

https://camelyon17.grand-challenge.org/Data/
https://camelyon17.grand-challenge.org/Data/
https://registry.opendata.aws/camelyon/


Figure 10. Conceptual illustration of various AD models. The one-class classification model, normalizing flow model, teaching-student
model and memory bank model detects anomalies in the embedding space, and the reconstruction based method takes a generative model as
its backbone for pixel-level anomaly comparison between the original query and reconstruction.

on the original implementation.
RD4AD [19] utilizes a wide ResNet-50 as the backbone
network and applies the Adam optimizer with a learning rate
of 0.005. In addition, we follow the defeat set of the beta1
and beta2 parameters to 0.5 and 0.99, respectively. For the
anomaly score of each inference sample, the maximum value
of the anomaly map is used. These settings were determined
based on the original implementation of RD4AD and can be

adjusted if needed.
DRAEM [73] is a anomaly augmentation reconstruction-
based method utilized U-Net structure. The learning rate
used for two sub network training is 1e-4, and the Adam
optimizer is employed. For the remaining settings, we follow
the default configurations specified in the original work.
CFLOW [22]is a normalizing flows-based method. We
utilized WideResnet-50 as backbone and Adam optimizer



with a learning rate of 1e-4 for all benchmarks’ experiments.
And we follow the original parameter settings, including the
selection of 128 for the number of condition vectors and 1.9
as clamp alpha value.
CFA [31] is also a memory bank-based algorithm. We em-
ploys a WideResnet-50 backbone and follows the parameter
settings outlined in the original paper. The method utilizes
3 nearest neighbors and 3 hard negative features. A radius
of 1e-5 is utilized for searching the soft boundary within
the hypersphere. The model is trained using the Adam op-
timizer with a learning rate of 1e-3 and a weight decay of
5e-4. These specific parameter configurations play a crucial
role in achieving the desired performance and effectiveness
of the CFA approach, as determined by the original research
paper or implementation.
MKD [53] utilizes the VGG16 backbone for feature extrac-
tion, and only the parameters of the cloner are trained. We
follow the defeat setting with a batch size of 64. The learning
rate is set to 1e-3 using the Adam optimizer. Additionally,
the _ value is set to 1e-2, which represents the initial amount
of error assigned to each term on the untrained network.
These parameter settings are have been chosen based on the
original research paper.
UTRAD [15] is based on Transformer backbone with a
ReLu activation function. We trained the model with a defeat
parameters setting: batch size of 8 and an Adam optimizer
with a learning rate of 1e-4. The parameter settings are have
been chosen based on the original research paper.
CutPaste [33] utilizes a Resnet-18 backbone. The backbone
is frozen for the first 20 epochs of training. We trained the
model using an SGD optimizer with a learning rate of 0.03.
And the batch size for training is following to the defeat
parameter, set to 64.
GANomaly [1] is trained using an Adam optimizer with a
learning rate of 2e-4. The V1 and V2 parameters of the Adam
optimizer are set to 0.5 and 0.999, respectively, following
the original work. The weights assigned to different loss
components are also set according to the original setting: a
weight of 1 for the adversarial loss, a weight of 50 for the
image regeneration loss, and a weight of 1 for the latent vec-
tor encoder loss. These parameter values have been chosen
based on the original research paper and are crucial for the
performance and effectiveness.
DeepSVDD [50] utilizes a LeNet as its backbone and is
trained using an Adam optimizer with a learning rate of 1e-4.
The model training follows the setting of weight decay as
0.5e-7 and a batch size of 200. These parameter values have
been chosen based on the original research paper or imple-
mentation.
f-AnoGAN [55] is a generative network that requires two-
stage training. During the training process, we use an Adam
optimizer with a batch size of 32 and a learning rate of 2e-4.
Additionally, the dimensionality of the latent space is set to

Benchmarks BraTS2021 BTCV + LiTs RESC

DRAEM [73] 19.31 ± 5.52 9.38 ± 0.78 33.51 ± 3.52

UTRAD [15] 7.27 ± 0.06 2.33 ± 0.06 22.81 ± 0.36

MKD [53] 28.89 ± 0.72 14.92 ± 0.23 43.53 ± 1.10

RD4AD [19] 28.28 ± 0.48 10.72 ± 2.50 33.51 ± 3.52

STFPM [67] 25.40 ± 0.82 8.87 ± 2.52 49.23 ± 0.23

PaDiM [17] 25.84 ± 1.20 4.50 ± 0.46 38.30 ± 0.89

PatchCore [46] 32.82 ± 0.59 10.49 ± 0.23 57.04 ± 0.21

CFA [31] 30.22 ± 0.32 14.93 ± 0.08 36.57 ± 0.18

CFLOW [22] 19.50 ± 2.73 7.58 ± 3.16 44.83 ± 1.78

SimpleNet [39] 28.96 ± 1.73 12.26 ± 2.41 30.28 ± 1.64

Table 3. Anomaly detection performance quantified by DICE over
BMAD. The top method for each metric are underlined. Note that
Dice is a threshold-dependent metric. The results in the table is
obtained with threshold of 0.5. By adjusting the threshold for each
result, it is possible to achieve higher performance.

100. These parameter settings have been chosen based on
the original research paper.
CS-Flow [48] is trained using specific hyper-parameter set-
tings. During the flow process, a clamping parameter of 3
is utilized to restrict the values. Gradients are clamped to a
value of 1 during training. The network is trained with an
initial learning rate of 2e-4 using the Adam optimizer, and
a weight decay of 1e-5 is applied. These hyper-parameter
settings have been determined through a process of optimiza-
tion and are considered optimal for the CS-Flow method.
SimpleNet [39] was trained using the original hyper-
parameters and includes two main modules. We retained the
original parameters for the adapter and the Gaussian noise
generation module. The results are based on the best per-
formance achieved on the validation set during the top 40
training epochs, following the original settings.

8. Evaluation Metrics
8.1. AUROC
AUROC refers to the area under the ROC curve. It provides a
quantitative value showing a trade-off between True Positive
Rate (TPR) and False Positive Rate (FPR) across different
decision thresholds.
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- To calculate the pixel-level AUROC, different thresholds
are applied to the anomaly map. If a pixel has an anomaly
score greater than the threshold, the pixel is anomalous. Over
an entire image, the corresponding TPR and FPR pairs are
recorded for a ROC curve and the area under the curve is
calculated as the final metric.
- To calculate the image-level AUROC, each model indepen-
dently calculates an anomaly score from the anomaly map as



a sample-level evaluation metric. Then different thresholds
are applied to determine if the sample is normal or abnormal.
Then the corresponding TPR and FPR pairs are recorded for
estimating the ROC curve and sample-level AUROC value.

8.2. Per-Region Overlap (PRO)
We utilized PRO, a region-level metric,to assess the perfor-
mance of fine-grained anomaly detection. To compute PRO,
the ground truth is decomposed into individual unconnected
components. Let � denote the set of pixels predicted to
be anomalous. For connected components : , ⇠: represents
the set of pixels identified as anomalous. PRO can then be
calculated as follows,
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where # represents the total number of ground truth compo-
nents in the test dataset.

8.3. DICE score
The Dice score is an important metric in medical image
segmentation, evaluating the similarity between segmented
results and reference standards. It measures the pixel-level
overlap between predicted and reference regions, ranging
from 0 (no agreement) to 1 (perfect agreement). Higher Dice
scores indicate better segmentation consistency and accuracy,
making it a commonly used metric in medical imaging for
comparing segmentation algorithms. It should be noted that
the Dice score is a threshold dependent metric. It requires
different threshold values for different models and datasets
to better suit the specific task. Therefore, we opted to not
include the DICE comparison in the main experimentation.
[Remark:] Due to the significance of DICE in medical seg-
mentation, our codebase also includes a Dice function for
its potential usage. For reference, Table 3 provides the Dice
scores for the suppoeted AD methods with the threshold 0.5.
By adjusting the threshold for each result, it is possible to
achieve higher performance.
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