
Supplementary Material

1. Overview
In section 2, we describe our Manifold DivideMix algorithm
with more details, then hyperparameter settings and experi-
mental results are explained in section 3. Finlay, in Section
4 more ablation studies are discussed.

2. Manifold DivideMix Algorithm
Algorithm1 delineates the full steps of our proposed method.
After training the backbone model in a self-supervised way,
and before warm-up training, we first apply KNN on the
embedding space to identify a small and constant percent-
age of the OOD samples (see hyperparameters settings in
Table1). Then, we add the classification head on top of the
backbone and perform warm-up training on the classifica-
tion layer, followed by fine-tuning of the backbone model
with a smaller learning rate. Subsequently, we initiate the
Semi-supervised learning step by applying sample selection
mechanisms to identify both ID and OOD labeled noise
samples, using GMM and KNN every 10 epochs.

2.1. Loss Functions

The Semi-SL loss function is computed based on the strongly
augmented copies as well as the MixUp augmentations of
the input and embedding spaces of samples as follows:

Lsemi = Lsup + λuLunsup + λcLself , (1)

where λu and λc are unsupervised loss coefficient and con-
trastive loss coefficient which set to 1 and 100, respectively
to balance the scale of each loss term in proposed loss func-
tion(1).

The supervised loss function (Lsup) consists of two sym-
metric cross-entropy loss terms on the mixed-up augmented
input (X ′) and the mixed-up augmented embedding spaces
(H′

x) of the labeled set. The symmetric cross-entropy pro-
posed in [12] as ℓsce = ℓce + ℓrce where ℓce is the cross-
entropy and ℓsce is the reverse cross-entropy defined as
follows:

ℓce = −
C∑

c=1

q(c|x) log p(c|x), (2)

ℓrce = −
C∑

c=1

p(c|x) log q(c|x), (3)

where q = q(c|x) represents the true distribution of class
labels for sample x and p(c|x) represents the predicted dis-
tribution of class labels based on a model consisting of a
backbone network f1 and a classifier f2. Both distributions
are conditional on the input sample x.

The unsupervised loss function (Lunsup) consists of two
Mean Squared loss terms. One of them defined on the mixed-
up augmented input (U ′) denoted as follows:

LU ′ =
1

|U ′|
∑

u′,q∈U ′

∥q − p(u′; θ, ϕ)∥22, (4)

where p(u′; θ, ϕ) is the probability output of our model with
parameter θ, ϕ for backbone and classification head, respec-
tively. The other Mean Squared loss defined on the mixed-up
augmented embedding spaces (H′

u) of the unlabeled set de-
noted as follows:

LH′ =
1

|H′|
∑

h′,q∈H′

∥q − p(h′;ϕ)∥22, (5)

The contrastive loss function (Lself ), defined in Equation
(1) in the submitted manuscript, is applied to the projection
head of the embedding spaces ofHx andHu.

2.2. ID and OOD Labeled Noise Detection

In Figure 1, the Area Under a Curve (AUC) is presented,
which shows the performance of clean/ID labeled noise de-
tection using GMM on the training data of CIFAR-100 cor-
rupted with ImageNet32 at various levels of ID and OOD
noise. The results indicate that warm-up training on top of
the pre-trained SSL model is highly effective in separating
clean and ID labeled noise samples, even in the first epoch
of the Semi-SL step when there are high levels of noisy
samples. This demonstrates the efficacy of the proposed
method in improving the performance of noise detection,
which is crucial for training robust and generalized model in
the presence of label noise.

The results presented in Figure 2 illustrate the effective-
ness of our OOD labeled noise detection mechanism in var-
ious noise settings. Our method consistently improves the
accuracy of OOD detection regardless of the level of noise
present. When high rates of OOD labeled noise are present,
the KNN algorithm often struggles to distinguish between
clean, ID, and OOD labeled noise samples. However, our ap-
proach of separating the OOD labeled noise samples proves
to be effective even in such challenging scenarios. As the
accuracy improves, the network learns more discriminative
features from labeled data and achieves better generalization
to unlabeled data by iteratively detecting ID labeled noise
and removing OOD labeled noise samples.

3. Training Details
Our proposed method uses consistent hyperparameter set-
tings where the majority of parameters remain constant
across different datasets, demonstrating its versatility. The
list of all hyperparameters settings of different steps of our
method described in Table 1. Additionally, we incorporate
the Cosine Annealing method as a learning rate scheduler.



Algorithm 1 Manifold DivideMix

Input: θ, ψ, ϕ ▷ Backbone, Projection head and classification head parameters
Input: (X ,Y) ▷ Training Data
Input: λu, λc ▷ Unsupervised and contrastive loss weights
Input: k, initRemoval, p ▷ Parameter of KNN, constant ratio for OOD removal, percentage of removal
Input: τ2, α ▷ GMM threshold, Parameter of Beta distribution for Mixup

1: θ, ψ ← SSLModel(X , θ, ψ)

2: OODScore← KNN(X , θ, ϕ, k) ▷ Compute OOD score based on the average distance of k-nearest neighbors
3: RemovalRate← initRemoval ▷ Initial sample removal rate
4: OODMask← TopScore(OODScore,RemovalRate) ▷ Select samples with highest OOD score to discard them

5: (θ, ϕ)← Warmup(X ,Y, θ, ϕ,OODMask) ▷ Warmup training of f2 and fine-tuning of f1

6: while e ≤MaxEpoch / 10 do

7: OODScore← KNN(X , θ, ϕ, k) ▷ Compute OOD score based on the average distance of k-nearest neighbors
8: RemovalRate← RemovalRate+ p ▷ Compute percentage of sample removal
9: OODMask← TopScore(OODScore,RemovalRate) ▷ Select samples with highest OOD score to discard them

10: W ← GMM(X ,Y, θ, ϕ,OODMask) ▷ Model per-sample loss distribution to obtain clean probability

11: for iter ← 1 to 10 do

12: X ← {(xi,yi, wi) : wi = p (xi = clean|ℓsup, γ) ≥ τ2,∀(xi, yi, wi) ∈ (X ,Y,W)} ▷ Construct labeled set
13: U ← {(xi,yi, wi) : wi = p (xi = clean|ℓsup, γ) < τ2,∀(xi, wi) ∈ (X ,W)} ▷ Construct unlabeled set

14: Lsemi ← Lsup + λuLunsup + λcLself ▷ Compute total loss
15: θ, ϕ = SGD(Lsemi, θ, ϕ) ▷ Update model parameters

4. Ablation Studies

In this section, we analyze the performance of proposed
method under different scenarios.

First, we compare our proposed pipeline with the most
previous works on Webvision dataset that used Inception-
ResNetV2 model [10] which has about 65M parameters,
while we train PreActResNet-50 which has about 25.6M
parameters. Compared to the state-of-the-art, our algorithm
performs on par with those methods that used two or an
ensemble of 2× larger model. We believe that by using the
self-supervised pre-training step and considering contrastive
loss during the semi-supervised step, the model learns more
generalizable features, which reduces the risk of overfitting
to noisy samples as well as overconfident prediction on the
semantically different class samples in the noisy real-world
dataset even with a smaller model. Also, while PropMix [3]
and SNCF [1] utilize contrastive learning based on the Incep-
tionResNetV2 model, Manifold DivideMix has comparable
performance using a smaller model with the idea of mixing
up the input and embedding spaces. As our method only

engages a single network, we highlight the methods that
utilise an ensemble model with“⋆” in the Table 2.

Second, to show the robustness of our method to deal with
label noise, we compare the training accuracy of our method
with the standard training method. In Figure 3, we observe
that with standard training (SSL+LC), the accuracy gradually
improves during training over different epochs, indicating
that the network is memorizing the label noise. In contrast,
our proposed method quickly saturates the training accuracy,
meaning that it prevents the network from memorizing the
incorrect labels at a later stage of training. As a result, with
the help of semi-supervised learning and ID/OOD labeled
noise detection, the performance of the model on the clean
test set increases( Figure 3b).

Third, Figure 4 shows the impact of varying k values on
the KNN model’s performance. The test-time performance
of the proposed model is found to be relatively consistent
across different k values. For training on the CIFAR-100
dataset corrupted by ImageNet32 with 20% ID and 20%
OOD labeled noise, we choose 10, 100, and 300 as potential
k values. Since these values result close and similar perfor-



Steps Hyperparameters CIFAR10/100 WebVision

All Optimizer SGD SGD

SSL
Initial Learning Rate 0.5 0.5

Total Epochs 1000 1000
Temperature (τ ) 0.1 0.1

Warmup

Initial Learning Rate (Classifier f2) 0.2 0.02

and

Initial Learning Rate (Backbone f1) 0.002 0.0002

Semi-Supervised

Momentum 0.9 0.9
Weight Decay 5e−4 5e−4

Mini-batch Size 64 32
Total Epochs 300 100

Warmup Epochs 20 20
Percentage of removal (p) 0.05 0.05

Initial OOD removal 0.1 0.1
GMM Threshold (τ2) 0.3 0.3

λC 1.0 1.0
λU 100 100

Sharpening Tempreture (T ) 0.5 0.5
κ-Neirest Neighbor 100 100

MixUp,Manifold MixUp α 4 4

Table 1. Hyperparameter settings for our proposed method.

0.96

0.97

0.98

0.99

A
U

C
 o

f 
ID

 L
ab

e
l N

o
is

e
 D

et
e

ct
io

n

First epoch Last epoch

𝑟𝑖𝑛 = 20%
𝑟𝑜𝑢𝑡 = 20%

𝑟𝑖𝑛 = 20% 𝑟𝑖𝑛 = 20% 𝑟𝑖𝑛 = 40%

𝑟𝑜𝑢𝑡 = 40% 𝑟𝑜𝑢𝑡 = 60% 𝑟𝑜𝑢𝑡 = 40%

Figure 1. AUC of clean/ID labeled noise detection using GMM
on training data of CIFAR-100 corrupted with ImageNet32. First
epoch means the first epoch of our Semi-Supervised learning step (
first epoch after warmup training) and last epoch means the final
last epoch of semi-supervised learning.

mance, we use k = 100 for all datasets regardless of the
number of classes, samples, noise type, and noise rate.

Forth, a t-SNE visualization[11] of embedding space of
training images is presented in Figure 5. We show the visual-
ization for three stages of our algorithm: (1) self-supervised
training (first column of Figure 5), (2) warmup training (sec-
ond column of Figure 5), and (3) semi-supervised learning
(third column of Figure 5). During self-supervised training
step, the visualization shows two separate clusters: one for
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Figure 2. Accuracy of OOD labeled noise detection during warmup
and semi-supervised learning steps for different level of in- and
out-of-distribution labeled noise.

ID labeled noise and clean images and another for OOD
labeled noise samples. In the warmup training stage, the
algorithm starts to learn how to classify the clean images.
This causes the ID and OOD labeled noise to scatter through-
out the embedding space. In the final stage of training,
the semi-supervised learning step, the algorithm is trained
with some labeled examples to improve its classification
performance. At this stage, the OOD labeled noise samples
are seen to scatter along the cluster boundary, while the ID
labeled noise samples form compact clusters with the clean
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Figure 3. Top1 Accuracy of CIFAR-100 corrupted with ImageNet32 at different noise rate for (a) training and (b) test data.
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Figure 4. Top1 Accuracy of CIFAR-100 corrupted with ImageNet32 (rin = 20% and rout = 20%) with three different K for (a) training
and (b) test data.

samples (Figure 5a). The separation between the clusters
becomes better as the OOD noise level decreases, but it be-
comes more difficult to separate the clean samples from the
ID and OOD labeled noise samples at higher levels of OOD
noise (Figure 5b and 5c). Overall, the t-SNE visualization

helps understand how the algorithm is learning during dif-
ferent stages of training and how it is able to separate clean
samples from ID and OOD labeled noise samples.



Method Top-1 Top-5
Mixup [13] 75.4 90.1
MentrorNet [5] 63.0 81.4
⋆Co-Teaching [4] 63.6 85.2
⋆DivideMix [7] 77.3 91.6
⋆ELR [8] 77.8 91.7
⋆UNICON [6] 77.6 93.4
ScanMix [9] 80.0 93.0
⋆DSOS [2] 78.8 92.3
SNCP [1] 78.2 92.6
Ours 78.4 92.0

Table 2. Comparison of classification accuracy with the state-of-
the-art methods on (mini)Webvision. “⋆” denotes algorithms using
an ensemble of networks to predict.
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Figure 5. T-SNE visualizations of embedding space of training images (CIFAR-100 corrupted with ImageNet32) with different ID and
OOD noise rate. From left to right, the graphs show distribution of samples after SSL training, after Warmup training and after Semi-SL
training(final model), respectively. During training, the distribution of samples mapped into 2D representation space changes in the way
that simple KNN model can detect majority of OOD labeled noise samples and remove them from training. The color “Blue” and “Red”
demonstrate the out-of-distribution samples and in-distribution samples (both clean and ID noise), respectively.
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