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1. Datasets

Ped2 [6] dataset comprises of 16 training and 12 test videos
and all videos have the same scene in the background.
The videos with normal events consist of pedestrians only,
whereas the videos with anomalous events include bikes,
skateboards and carts apart from pedestrians.

Avenue [8] dataset comprises of 16 training and 21 test
videos with every video having the same background scene.
Normal events involve people routinely walking around
while the abnormal instances include abnormal objects such
as bikes and abnormal human actions such as unusual walk-
ing directions, running around or throwing things.

ShanghaiTech [9] dataset includes 330 training and 107 test
videos recorded at 13 different background locations with
complex lightning conditions and camera angles, making it
the one of the largest one-class anomaly detection datasets.
The test split captures a total of 130 anomalous events in-
cluding running, riding a bicycle and fighting.

UBnormal [1] is a synthetic dataset with multi-scene back-
grounds and a diverse set of anomalies. The dataset consists
of training, validation and test split with both normal and
abnormal events. The normal events include walking, talking
on the phone, walking while texting, standing, sitting, yelling
and talking with others. It is to be noted that abnormal events
in each of the train, validation and test split are different to
each other. The train split includes abnormal events like
falling, dancing, walking injured, running injured, crawling,
and stumbling walk. The validation split comprises fighting,
sleeping, dancing, stealing, and rotating 360 degrees. All
the evaluations are conducted on the validation set.

UBnormal data-split under OCC Setting. In order to use
this dataset in the one class classification (OCC) setting, we
train our model using only the normal 186 videos in the train-
ing split and the pseudo-anomalies (PAs) generated using
them (i.e. totally ignoring the abnormal samples provided in
the train set). We tested our model on all the videos in the
validation split, comprising of 64 videos with both normal
and abnormal events. Such a setting was chosen to keep
consistency in evaluation as with other datasets under the
OCC setting. The frame-level groundtruth annotation for
validation set of UBnormal [1] was created using the script1

provided by the authors.

1https://github.com/lilygeorgescu/UBnormal/tree/main/scripts

Figure 1. Qualitative Assessment : Visualisation of spatial and
temporal PAs for all 4 datasets. Here we only show segmentation
masks however the approach also works with random masks.

2. Additional Details and Insights

1: Pseudo-Anomaly Construction. We take an off-the-
shelf Latent Diffusion Model [13] (LDM2) pre-trained on
the Places dataset [16]. We do not perform any finetuning of
the LDM on any video anomaly dataset and therefore it is
“under-trained” on video data and hence capable of spatially
distorting them. For inpainting the masked out regions of
the images, 50 steps of inference were carried out. It is to
be noted that due to lack of computational resources we
did not experiment with other values of timesteps or any
end-to-end finetuning. A very low number of timesteps
may produce mostly noisy inpainting output while a very
high value might result in inpainted images very close to
the input image. The strategy for generation of random and
segmentation masks was adopted from the code3 provided
by the authors of LAMA [14]. If segmentation mask was not
detected for a frame, a random mask was selected instead.
Figure 1 depicts more examples of generated PAs.
2: Extracting ViFi-CLIP Features. For the training split
of the benchmark datasets and their corresponding spatial
pseudo-anomalies, we extract frame level features using the

2https://github.com/CompVis/latent-diffusion/tree/main
3https://github.com/advimman/lama/tree/main/saicinpainting

https://github.com/lilygeorgescu/UBnormal/tree/main/scripts
https://github.com/CompVis/latent-diffusion/tree/main
https://github.com/advimman/lama/tree/main/saicinpainting/evaluation/masks


Figure 2. During inference, aggregate anomaly score is computed
by calculating the weighted sum (eq 4) of all the three types of
anomaly information; reconstruction quality ω1 (eq 2), temporal
irregularity ω2 (eq 3) and semantic inconsistency ω3.

ViFi-CLIP [12] model. The input to the ViFi-CLIP model
has size : B′×T ′×3×224×224, where B′ (batch size) was
set to 1 and T ′ (# of frames) was set to 16. All frames were
passed into ViFi-CLIP in a sliding window fashion with a
stride of 16 therefore we obtain a 512-dimensional feature
for every frame. ViFi-CLIP uses the backbone of ViT-B/16
[4] and is pre-trained on Kinetics-400 [5]. It is to be noted
that the ViFi-CLIP model performs temporal pooling of the
CLIP [11] features, however we do not perform temporal
pooling and use the frame level representations as during
inference we evaluate our pipeline using frame level micro
AUC scores. For the frames of the videos in test split (Ped2,
Avenue, ShanghaiTech) and validation split (UBnormal), we
follow the same procedure for feature extraction.
3: Effect of changing the probability of sampling PAs.
We conduct an experimental study by varying the probability
of sampling spatial and temporal PAs (ps, pt) on Ped2 during
training between 0.1 to 0.5 and measuring micro AUC scores
during inference. Figure 4 shows that the model achieves
best performance when ps = 0.4 and pt = 0.5.

3. Evaluation Criteria

To measure the reconstruction quality, we follow the recent
works of [3, 7, 10], which utilised normalized Peak Signal to
Noise Ratio (PSNR) Pt between an input frame and its recon-
struction to calculate the anomaly score. This is illustrated
in the following equation.

Pt = 10 log10
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where xt is the input frame at time t, x̂t represents recon-
struction of xt, R denotes the total number of pixels in x̂t

and Mx̂t is the maximum possible pixel value of x̂t. The
anomaly score ω

(t)
1 is an indicator of reconstruction quality

of the input frame. For measuring the temporal irregularity,
we compute the normalised L2 loss between input optical
flow at time t and its reconstruction given by the equation:

ω
(t)
2 =
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R′ ||ϕ̂(xt,x(t+1))− ϕ(xt,x(t+1))||22, (3)

where ϕ(xt,x(t+1)) is the input optical flow frame calcu-
lated using consecutive frames xt and x(t+1), ϕ̂(xt,x(t+1))
represents the reconstruction of ϕ(xt,x(t+1)), R′ denotes
the total number of pixels in ϕ̂(xt,x(t+1)). To measure the
semantic inconsistency, the input frames sequence is fed into
D in a sliding window fashion with a window size of 16. The
output probability (ω(t)

3 ) of a frame at time t to be anomalous
is computed using its ViFi-CLIP feature representation.

A higher value of ω(t)
1 , ω(t)

2 and ω
(t)
3 represents higher

reconstruction error for frame and optical flow and high
anomaly probability at time t in the test videos during in-
ference. Alternatively, they are indicators of poor recon-
struction quality, temporal irregularity and semantic incon-
sistency and their aggregation can aid in determining real-
world anomalies. The aggregate anomaly score is given by
the following equation :
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where η1, η2, η3 are weights assigned to ω
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1 , ω(t)
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3

respectively. The values of η1, η2 and η3 lies in the interval
[0, 1] and their sum is equal to 1. We manually tune the val-
ues of η1, η2, η3 for all the datasets. The values of (η1, η2, η3)
for all the datasets are given by - Ped2 (0.65,0.25,0.1), Av-
enue (0.45,0.5,0.05), Shanghai (0.85, 0.13, 0.02) and UB-
normal (0.4, 0.5, 0.1). In all of the cases, any of the three
component can be excluded during evaluation by setting the
corresponding weight (η1, η2, η3) to zero.

Note : We also experimented with the learnt weights
for the three anomaly indicators but there was a marginal
decrease in the performance compared to manually tuning
their weights.
Evaluation Metric. For evaluation, we follow the standard
metric of frame-level area under the ROC curve (micro-
AUC) as in [15]. We obtain the ROC curve by varying the
anomaly score thresholds to plot False Positive Rate and
True Positive Rate for the whole test set for a given dataset.
Higher AUC values indicate better performance and more
accurate detection of anomalies.



Table 1. Discriminator (D) architecture details

Layers (Input size, Output size)
Linear Layer 1 (512,128)

ReLU -
Linear Layer 2 (128,1)

Table 2. Autoencoder (As and At) architecture details

Layer Input Channels Output Channels Filter Size Stride Padding Negative Slope

Encoder

Conv3D 3 96 (3,3,3) (1,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

Conv3D 96 128 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

Conv3D 128 256 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

Conv3D 256 256 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

Decoder

ConvTranspose3D 256 256 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

ConvTranspose3D 256 128 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

ConvTranspose3D 128 96 (3,3,3) (2,2,2) (1,1,1) -
BatchNorm3D - - - - - -
LeakyReLU - - - - - 0.2

ConvTranspose3D 96 3 (3,3,3) (1,2,2) (1,1,1) -
Tanh - - - - - -

Figure 3. Qualitative Assessment : Visualization of anomaly score over time for sample videos in Ped2 (left) and UBnormal (right).
Compared with other PAs generator and reconstruction based methods in LNTRA [2] - patch and skip-frame based.



(a) (b)

Figure 4. Comparison of micro-AUC scores on Ped2 dataset calculated from output of As (At) trained on a range of values of ps (pt)
between {0.1,0.5}. We observe that setting ps = 0.4 and pt = 0.5 yields the best performance as shown in (a) and (b) respectively. These
probability values are fixed for all other experiments.
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