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7.1. Dynamics of Anomaly Weight σ(ℓ) in Model
Training (Methodology Supplementary)

To delve deeper into the dynamics of our model’s training,
it is imperative to scrutinize the behavior of the anomaly
weight σ(ℓ), which serves as a crucial variable in the gen-
eration of pseudo-anomalous frames. This parameter, σ(ℓ),
is not merely a static coefficient but a dynamic element that
evolves during the training process, reflecting the model’s
progressing ability to discern between normal and anoma-
lous instances.

As training progresses, the trend in the anomaly weight
σ(ℓ) reflects the model’s adaptation and learning curve. Ini-
tially, σ(ℓ) may experience fluctuations, including a rapid
increase as the model begins to differentiate between nor-
mal and anomalous patterns - as it has in Figure 5 when
training the C3DSU model on the Ped2 Dataset. This early
rise in σ(ℓ) is crucial as it indicates the model’s initial phase
of learning to handle more pronounced anomalies. As the
model’s ability to reconstruct and identify anomalies im-
proves, we observe a subsequent decline and eventual sta-
bilization of σ(ℓ), suggesting that the model is settling on
an optimal threshold for anomaly detection without being
overly influenced by the injected noise levels.

The crux of training with σ(ℓ) lies in pinpointing the
minimal anomaly magnitude that still allows our model f to
reliably differentiate anomalous from normal. This thresh-
old is the ’sweet spot’ where σ(ℓ) is neither too insubstantial
to be deemed noise nor too dominant to mask the underlying
structure of the data. It’s at this juncture that our model f
is optimally trained to flag deviations from normalcy, while
remaining anchored enough to not be swayed by random
perturbations or outliers.

In essence, the evolution of σ(ℓ) during the training is a
barometer of the model’s growing intelligence in anomaly
detection. By carefully calibrating this parameter, we em-
power our model f to identify the minimum anomaly re-
quired to discern abnormalities, a testament to its analytical
prowess and the culmination of a successful training regi-
men.

7.1.1 Visualizing the Effects of Training

To further illustrate the success of our training process and
the dynamic adjustment of the anomaly weight σ(ℓ), Fig-
ure 4 presents a visual comparison. These images encapsu-
late various aspects of our model’s performance, including
the original middle frame Xt, the reconstruction from the

normal input f(X), the pseudo-anomalous middle frame
Xt

A, the reconstruction from the pseudo-anomalous input
f(XA), and the respective reconstruction errors ∥Xt −
f(X)∥, ∥Xt

A − f(XA)∥, and ∥Xt − f(XA)∥.
This visual representation demonstrates the impact of

our training methodology. Particularly, the comparison be-
tween ∥Xt

A − f(XA)∥ and ∥Xt − f(XA)∥ reveals a crit-
ical insight: the discrepancy between the reconstruction of
the pseudo-anomalous frame and the normal frame is sig-
nificantly less than that between the reconstruction of the
pseudo-anomalous frame and its corresponding anomalous
input. This outcome underscores the model’s capability to
more closely align the reconstructed output with the normal
frame rather than perpetuating the anomalies present in the
pseudo-anomalous input.

7.2. Rationale Behind Weighted Noise for Simulat-
ing Anomalies (Methodology Supplementary)

The efficacy of employing weighted noise to simulate
a range of human-defined anomalies – such as skipped
frames, duplicate frames, random patches, and the inser-
tion of foreign shapes or objects – is rooted in the fun-
damental operating principles of convolutional neural net-
works (CNNs) employed in reconstruction-based anomaly
detection methods. These networks are adept at learning
and reconstructing patterns observed in the training data,
which predominantly consists of normal behavioral patterns
within video sequences.

When confronted with anomalies, the convolutional ker-
nels of a CNN do not perceive these as distinct types of
irregularities per se, but rather as inputs lacking the regu-
lar patterns or structures they have been trained to recog-
nize and reconstruct. From the perspective of these kernels,
anomalies disrupt the spatial and temporal consistency of
the input data, rendering them as pattern-less examples –
essentially, noise. This perception is crucial for understand-
ing why weighted noise can serve as a universal proxy for
various anomalies in training anomaly detection models.

The concept of weighted noise as a universal anomaly
proxy is further justified by the intrinsic adaptability and
learning mechanisms of CNNs. These networks, through
their deep architecture, are designed to capture and encode
complex patterns in the data they process. The introduction
of weighted noise challenges these networks in a unique
way, compelling them to discern between the ‘normal’ pat-
terns they’ve learned to reconstruct and the ‘abnormal’ pat-
terns represented by the noise. This challenge is akin to



Figure 4. Visual Comparison of Model Training Effects: This figure provides a comprehensive visualization of the model’s performance
across different frames and stages of reconstruction. It features the original middle frame Xt, the reconstructed frame from normal input
f(Xt, the pseudo-anomalous middle frame Xt

A, the reconstructed frame from the pseudo-anomalous input f(XA), and the reconstruction
errors ∥Xt − f(X)∥, ∥Xt

A − f(XA)∥, and ∥Xt − f(XA)∥.

exposing the network to a wide variety of anomalies with-
out the need for explicit enumeration or replication of each
possible anomalous event, which in real-world applications
is infeasible due to the vast and unpredictable nature of such
events.

7.3. C3DSU Architecture (Results Supplementary)

The design of our Conv3DSkipUNet (C3DSU) model in-
corporates a Conv2D UNet structure, enhanced with custom
ConvBlocks for both the Encoder and Decoder components,
and augmented by the integration of Conv3D layers within
the skip connections for handling the temporal dimension.

A ConvBlock in this context is engineered to facilitate
multi-headed convolution. Specifically, it comprises four
Conv2D layers, each employing ”same” padding to main-
tain dimensional consistency and a kernel size of 3 for cap-
turing spatial details. These layers are executed in paral-

Figure 5. Evolution of the anomaly weight σ(ℓ) during the training
of the C3DSU model on the Ped2 Dataset for 10 epochs.

Figure 6. Schematic illustration of an Encoder ConvBlock within
the C3DSU architecture, highlighting the multi-headed convolu-
tion process. This diagram details the structure and flow through
the ConvBlock, including the initial parallel Conv2D layers, con-
catenation, batch normalisation, ReLU activation, dimension re-
duction, and final Conv2D layer, followed by another round of
batch normalisation and ReLU activation.

lel and their outputs are concatenated along the channel di-
mension, ensuring a rich feature representation. Following
the concatenation, the process involves batch normalisation
and activation through the ReLU function, aiming to stabi-
lize learning and introduce non-linearity, respectively. The
output is then restructured to reduce the Height and Width
dimensions, the output is then passed through an additional
Conv2D layer with ”same” padding, followed by another
round of batch normalisation and ReLU activation. The En-
coder ConvBlock’s operational flow is depicted in Figure 6



for visual clarification.

Figure 7. Visual anomaly detection comparison in the Ped2 dataset
featuring a cyclist riding a bicycle. From left to right: the origi-
nal frame, reconstruction without Dynamic Distinction Learning
(DDL), reconstruction with DDL, and beneath the residual differ-
ence highlighting the anomaly.

The overarching UNet architecture is assembled with
eight such ConvBlocks, evenly split between the Encoder
and Decoder. Each ConvBlock in the Encoder is paired with
a corresponding ConvBlock in the Decoder via skip con-
nections. These connections are uniquely designed to pass
through Conv3D layers, thereby incorporating the temporal
aspect into the spatial information flow. This mechanism
ensures that while individual frames are initially processed
as separate images by the Conv2D layers in the Encoder and
Decoder, the Conv3D layers within the skip connections fa-
cilitate the integration of temporal information, essential for
effective video analysis.

7.4. Qualitative Results (Ablations Supplementary)

To complement the quantitative analysis, qualitative assess-
ments were conducted to visually inspect the model’s per-
formance in identifying anomalies within the Ped2 and Av-
enue datasets. These assessments provide insight into the
model’s ability to reconstruct scenes and highlight anoma-
lous activities when DDL is applied versus when it is not.

Figure 7 showcases a visual comparison of anomaly de-
tection in a scenario involving a cyclist riding a bicycle, an
anomalous event within the Ped2 dataset. The sequence dis-
plays the original frame, followed by reconstructions with-
out and with DDL, and finally, the residual differences be-
tween the reconstructions and the original frame. Notably,
the application of DDL results in a reconstruction where
the bicycle is almost entirely erased, signifying the model’s
training to poorly reconstruct unfamiliar shapes. This il-
lustrates DDL’s effectiveness in forcing the model to focus
on normal patterns, thereby making anomalies, such as the

Figure 8. Visual anomaly detection comparison in the Avenue
dataset illustrating a boy skipping. From left to right: the origi-
nal frame, reconstruction without Dynamic Distinction Learning
(DDL), reconstruction with DDL, and beneath the residual differ-
ence emphasizing the anomaly.

bicycle in this case, more pronounced.
Similarly, Figure 8 presents a visual analysis involving

a boy skipping, an anomalous event in the Avenue dataset.
The illustration includes the original frame along with re-
constructions without and with DDL, supplemented by the
residual differences highlighting the anomaly. The compar-
ison clearly demonstrates that with DDL, the anomaly of
the boy skipping is accentuated more effectively than with-
out DDL. This enhancement is evident in the residual im-
ages, where DDL’s reconstruction struggles more with the
skipping motion, thereby amplifying the distinction from
normal activity.


