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1. Proposed method in details
1.1. Implementation Details

In terms of the implementation details for our anomaly backbone, all training images undergo resizing and center-cropping
to dimensions of 256×256 and 224×224, respectively. We employ ResNet 18 as the primary backbone. During the training
phase, we utilize an SGD optimizer with a learning rate of 1e-4. The training process spans 200 epochs with a batch size of
512, executed on an NVIDIA GeForce RTX 4090 with 24GB of memory.

For our CLIP model, we use the ViT-B/16 as the backbone, which is trained on the LAION-400M dataset [8]. Particularly,
our text encoder adopts the transformer-based architecture present in the CLIP model, with specific parameters set at 512 for
the dimensionality of the hidden state in the transformer, 8 heads, and 12 layers.

1.2. Algorithm

In this section, we elucidate our proposed Text-Align Anomaly Backbone (TAB) method, as referenced in the main paper
and Algorithm 1. We ensure consistency in mathematical notations with those used in the main paper. The culmination of
the pre-training flow is the weight of our convolutional neural network image encoder. We substitute the encoder weight of
previous work with ours and faithfully re-implement prior work by adhering to their paper’s training strategies and anomaly
scoring functions, as delineated in the experiment section.

1.3. Similarity Matrix

In our proposed anomaly-text-aware pre-training strategy, we align visual image and text features, as depicted in Figure
4. The similarity matrix, represented in this figure, has rows corresponding to input batch anomaly images and columns
corresponding to training class names, sentence groups, and averaged pooling text features. Higher and lower similarity
scores are denoted by red and blue colors, respectively.

For instance, our objective is to enhance the similarity scores between the anomaly ’Bottle’ image features and the ’Bottle’
sentence features, while minimizing the similarity scores with other text feature groups. This is crucial because even without
specific defect types for synthetic anomaly images, the image should exhibit higher similarity to corresponding abnormal text
sentences containing the same class names. By considering both normal and abnormal similarity matrices during pre-training
optimization, the model can effectively explore the diversity of normal and abnormal feature insights.

2. Prompt Samples
This section elucidates the association prompt phrases utilized in the Industrial Domain Prompt Association (IDPA), as
detailed in Section 3.2 of the main paper. The two prompt states, namely ’prompt normal’ and ’prompt abnormal’, are
delineated in Subsections 2.1 and 2.2, respectively. Subsection 2.3 describes the industrial domain prompt template. A
prompt sentence is constructed by integrating a prompt template, a prompt state, and the name of the training class. The
prompt template facilitates the replacement of the prompt state in the template, selecting from Subsection 2.1 for normal
instances and Subsection 2.2 for abnormal instances. A few examples are provided below for further clarity:
• ’A photo of the damaged transistor.’
• ’A cropped photo of the transistor with damage.’

2.1. prompt normal
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• ’good {class name}’
• ’unblemished {class name}’
• ’normal {class name}’
• ’perfect {class name}’

• ’good condition {class name}’
• ’{class name} without flaw’
• ’{class name} without defect’
• ’{class name} without damage’

2.2. prompt abnormal

• ’not good {class name}’
• ’blemished {class name}’
• ’abnormal {class name}’
• ’imperfect {class name}’
• ’damaged {class name}’
• ’broken {class name}’
• ’{class name} with flaw’
• ’{class name} with defect’
• ’{class name} with damage’

• ’{class name} with distortion’
• ’{class name} with stains’
• ’{class name} with missing parts’
• ’{class name} with broken parts’
• ’{class name} with bumpy surfaces’
• ’{class name} with dirty background’
• ’{class name} with scratch’
• ’{class name} with hole’

2.3. industrial domain prompt template

• ’a photo of a {prompt state}.’
• ’a photo of the {prompt state}.’
• ’an industrial photo of a {prompt state}.’
• ’an industrial photo of the {prompt state}.’
• ’an manufacturing photo of a {prompt state}.’
• ’an manufacturing photo of the {prompt state}.’
• ’a high reflection industrial photo of a {prompt state}.’
• ’a high reflection industrial photo of the {prompt state}.’
• ’an industrial photo of a rotated {prompt state}.’
• ’an industrial photo of the rotated {prompt state}.’

• ’a manufacturing cropped photo of a {prompt state}.’
• ’a manufacturing cropped photo of the {prompt state}.’
• ’a photo of the rotated {prompt state}.’
• ’a closed-up photo of the {prompt state}.’
• ’a blurry photo of the {prompt state}.’
• ’a photo of the small {prompt state}.’
• ’a photo of the big {prompt state}.’
• ’a low resolution photo of the {prompt state}.’
• ’a photo of one {prompt state}.’
• ’a photo of multiple {prompt state}.’

3. Additional qualitative results
3.1. Cross-dataset

In this study, we further demonstrate the generalization capabilities of our Anomaly Backbone weights, as shown in Figures
5 and 6. These weights are pre-trained on the MVTecAD[1] dataset and fine-tuned and tested on two other datasets, BTAD[7]
and KSDD2[2]. Our proposed method, as depicted in Figure 5, effectively highlights anomalous regions with minimal false
positives, particularly in classes 01 and 02 (rows 1 to 4). In Figure 6, our method significantly enhances RD4AD[4] by
accurately localizing anomalous regions in industrial surface inspections, demonstrating the effectiveness and precision of
our approach.

3.2. Defect classification

In the defect classification experiment, we utilize the MixedWM38 dataset (Figure 1). The dataset is split into a training
set and a test set in an 8:2 ratio, and the backbone is trained in a supervised manner using the provided labels. We further
illustrate the extracted test-set features for defect classification in Figure 2, demonstrating the capability of our weights and
ImageNet to comprehend various defect types. For ease of visualization, we focus on eight basic defect types out of a total
of 38.

As depicted in Figure 2, our initial model exhibits superior startup performance and understanding of varying wafer
defects compared to ImageNet(initial), generating a distinct features cluster. After fine-tuning, Ours(Fine-tuned) provides a
compact features cluster for each defect in the feature space, proving that our proposed weights offer superior insight and
understanding than ImageNet in industrial defect classification scenarios.



3.3. Feature representation in latent space

In this section, we delve deeper into the influence of feature representation with varying backbone weights on the MVTecAD
dataset, as depicted in Figure 7. These visualizations offer a more tangible understanding of the impact these factors have on
the performance of our model, thereby providing valuable insights for future optimization and strategy development.

3.4. Industrial dataset

In this study, we introduce a meticulously curated manufacturing visual inspection dataset, referred to as the Industrial
dataset. This dataset was constructed by selectively aggregating open-source datasets from global websites and official
public conference workshops. The Industrial dataset encompasses 30 categories, including 15 object categories and 15
texture categories, amounting to a total of 17,393 images. Notably, the Industrial dataset exclusively comprises normal
images. Representative image samples for each category are depicted in Figure 3.

4. Detailed quantitative results
In this section, we undertake a thorough analysis of the anomaly detection and localization results, with a specific focus
on each category within the MVTecAD dataset. We draw insightful comparisons with established methodologies such as
PaDiM[3] (ICPR’20), RD4AD[4] (CVPR’22), SimpleNet[6] (CVPR’23) and RegAD[5] (ECCV’22). The outcomes of this
comparative study are systematically tabulated in Table 2 and 3, which concentrate on detection and localization metrics,
respectively.

In addition, we broaden our analysis to encompass a detailed performance evaluation across the KSDD2[2] and BTAD[7]
datasets. The specifics of this cross-dataset analysis are encapsulated in Table 4. This comprehensive examination not
only deepens our understanding of the performance metrics across various categories but also illuminates potential areas of
improvement for the evaluated methodologies.

The comparison of different augmentation techniques is mentioned in the main paper. We adopt the FID metric as the
method to evaluate the quality of the generated image and compare it with the real defect images. As Table 1 indicates, NSA
has the best-generated image quality with the lowest FID score.

Mask Perlin CutPaste NSA
FID 120.10 98.36 76.49 64.00

Table 1. Experiment of comparing the FID score of four synthetic methods.
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Algorithm 1: Text-align Anomaly Backbone pre-training pseudo-code
# ET:Text Encoder (Frozen)
# EV :Visual Encoder (Trainable)
# labels:images class name list
# class names: training data class names
# Xn, Xa:normal, abnormal images
# Tn, Ta:normal, abnormal text sentences
# fT

n , fT
a :normal, abnormal text features

# fV
n , fV

a :normal, abnormal vision features
# LCE:cross entropy loss
Input: {Xn, class names}
Xn = [X1, X2, ..., XN]
class names = [screw, cable, ...]
Xn, Xa = generate synthetic(Xn)
Tn, Ta = generate prompt(class names)
fT
n , fT

a = ET(Tn), ET(Ta)
fT
n , fT

a = norm(fT
n ), norm(fT

a )
for epoch in range(epochs):

for (Xn, Xa labels) in data loader:
#
fV
n , fV

a = EV (Xn), EV (Xa)
# Normalize
fV
n , fV

a = norm(fV
n ), norm(fV

a )
# Calculate Similarity Matrix, logits
normal logits = temperature * inner(fV

n , fT
n )

abnormal logits = temperature * inner(fV
a , fT

a )
#
loss normal = LCE(normal logits, labels).mean()
loss abnormal = LCE(abnormal logits, labels).mean()
#
loss = (loss normal + loss abnormal)/2
loss.backward()

# end for
# end for
Output: {EV .weights}



Figure 1. The samples of wafer MixedWM38 dataset. The MixedWM38 dataset is a mixed-type wafermap defect dataset formed by some
real wafer patterns and synthetic samples. It contains 1 normal pattern, 8 basic single defect patterns, and 29 mixed defect patterns, a total
of 38 defect patterns



Figure 2. Visualization of features in the wafer MixedWM38 for defect classification.



Figure 3. The samples of our well-organized Industrial dataset samples. It contains 30 categories, and only normal images are included.



Figure 4. Similarity Matrix of images and text features are aligned in our Anomaly Backbone.



PaDiM[3] RD4AD[4] SimpleNet[6] RegAD(4shots)[5] RegAD(8shots)[5]

Pre-trained ImgN. TAB ImgN. TAB ImgN. TAB ImgN. TAB* ImgN. TAB*

carpet 98.40 99.30 99.90 99.85 100.00 97.57 97.90 98.00 98.50 98.20
grid 89.80 93.19 99.80 100.00 99.50 99.77 91.20 85.90 91.50 91.70

leather 98.90 99.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
tile 95.90 94.43 98.20 99.37 95.40 96.93 95.50 98.70 97.40 98.80

wood 99.00 99.10 99.30 99.85 100.00 99.93 98.60 99.40 99.40 99.40

Texture Avg. 96.40 97.19 99.44 99.81 98.98 98.84 96.64 96.40 97.36 97.62

bottle 99.60 99.23 100.00 100.00 100.00 100.00 99.40 99.60 99.80 99.80
cable 85.50 88.23 99.20 99.52 99.00 96.77 76.10 76.70 80.60 83.30

capsule 87.00 87.80 95.30 95.50 94.90 95.77 72.40 75.20 76.30 78.00
hazelnut 84.10 85.17 99.90 98.75 99.29 98.67 95.80 97.40 96.50 97.70
metal nut 97.40 98.83 100.00 100.00 99.95 100.00 94.60 97.60 98.30 98.20

pill 86.90 90.57 97.00 97.60 93.90 96.57 80.80 81.30 80.60 85.20
screw 74.50 77.37 93.90 95.01 70.10 90.57 56.60 61.80 63.40 70.30

toothbrush 94.70 96.83 96.70 98.25 100.00 97.47 90.90 87.90 98.50 98.10
transistor 92.50 93.80 97.10 97.20 97.70 97.53 85.20 87.50 93.40 87.30

zipper 74.10 85.83 96.20 96.31 99.20 99.63 88.50 91.00 94.00 93.10

Object Avg. 87.63 90.37 97.53 97.81 95.40 97.30 84.03 85.60 88.14 89.10

Overall Avg. 90.55 92.64 98.17 98.48 96.60 97.81 88.23 89.20 91.21 91.94

Table 2. Comparison of TAB(Ours) and ImageNet pre-trained weights on SOTA methods for the image-level anomaly detection perfor-
mance on MVTecAD[1] dataset. The abbreviation ‘ImgN.’ denotes ‘ImageNet’. The results are reported in AUROC(%). Bold indicates
the best performance. Please note that the asterisk (*) indicates using a pre-trained Industrial dataset to prevent overlap in the few-shot
setting.



PaDiM[3] RD4AD[4] SimpleNet[6] RegAD(4shots)[5] RegAD(8shots)[5]

Pre-trained ImgN. TAB ImgN. TAB ImgN. TAB ImgN. TAB* ImgN. TAB*

carpet 98.80 98.63 99.90 99.48 86.80 97.20 98.90 98.70 98.90 98.70
grid 93.60 93.43 99.20 99.14 98.10 98.40 85.70 87.20 88.70 89.40

leather 99.00 98.97 99.20 99.35 98.56 98.67 99.10 99.30 98.90 99.20
tile 91.70 93.20 93.10 96.30 86.90 91.77 94.90 94.70 95.20 94.30

wood 94.00 93.83 93.70 93.40 89.90 90.83 94.70 94.60 94.60 96.40

Texture Avg. 95.42 95.61 97.02 97.53 92.05 95.37 94.66 94.90 95.26 95.60

bottle 98.10 98.23 98.50 98.74 97.02 97.37 98.40 98.50 97.50 98.40
cable 94.90 95.60 97.10 98.42 93.90 90.90 92.70 93.50 94.90 96.10

capsule 98.20 98.10 98.30 99.15 97.20 98.37 97.60 98.00 98.20 98.20
hazelnut 97.90 97.20 98.70 99.60 95.21 93.37 98.00 98.10 98.20 98.70
metal nut 96.70 96.40 95.70 97.83 95.57 96.40 97.80 97.50 96.90 98.50

pill 94.60 96.03 97.30 98.40 97.20 97.23 97.40 96.70 97.80 98.50
screw 97.20 97.27 99.20 99.05 97.30 96.43 95.00 95.50 97.10 97.00

toothbrush 98.60 98.73 99.00 98.52 98.10 97.00 98.50 98.10 98.70 98.40
transistor 96.80 96.63 89.90 96.01 90.20 88.97 93.80 93.00 96.80 95.50

zipper 97.60 98.07 98.90 98.77 97.70 98.77 94.00 98.40 97.40 98.20

Object Avg. 97.06 97.23 97.26 98.45 95.94 95.48 96.32 96.73 97.38 97.75

Overall Avg. 96.51 96.69 97.18 98.14 94.64 95.44 95.77 96.12 96.67 97.03

Table 3. Comparison of TAB(Ours) and ImageNet pre-trained weights on SOTA methods for the pixel-level anomaly localization perfor-
mance on MVTecAD[1] dataset. The abbreviation ‘ImgN.’ denotes ‘ImageNet’. The results are reported in AUROC(%). Bold indicates
the best performance. Please note that the asterisk (*) indicates using a pre-trained Industrial dataset to prevent overlap in the few-shot
setting.

Detection Localization
Category ImageNet TAB ImageNet TAB

PaDiM (ICPR’20)

KSDD2 68.90 70.30 94.90 95.50
01 99.90 99.10 97.00 95.60
02 83.80 84.70 95.20 95.30
03 99.30 99.50 96.90 95.60

BTAD Avg. 94.33 94.43 96.37 95.50

SimpleNet (CVPR’23)

KSDD2 70.24 70.47 79.32 88.04
01 96.99 98.74 95.75 94.66
02 84.52 85.08 95.67 96.44
03 98.51 99.53 93.08 95.20

BTAD Avg. 93.34 94.45 94.83 95.43

RD4AD (CVPR’22)

KSDD2 92.50 95.60 97.30 97.60
01 94.60 95.57 96.80 96.85
02 77.40 84.20 96.80 96.90
03 96.60 94.83 97.20 97.45

BTAD Avg. 89.53 91.53 96.93 97.07

Table 4. Cross-dataset experiment was set up with a pre-training phase on all normal samples from the MVTecAD dataset, followed by
testing on the KSDD2 and BTAD datasets. The BTAD Avg. refer to the mean of classes 01, 02, and 03.



Figure 5. Visualization of RD4AD[4] localization results on BTAD dataset[7] with different backbone weights.From left to right column,
Defect Image, ImageNet, Ours, Ground Truth respectively



Figure 6. Visualization of RD4AD[4] localization results on KSDD2 dataset[2] with different backbone weights.From left to right column,
Defect Image, ImageNet, Ours, Ground Truth respectively



Figure 7. Visualization representation of ImageNet and TAB(Ours) on MVTecAD dataset. Ours can make feature representation discrimi-
nate between normal and anomaly features.
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