Tracklet-based Video Anomaly Localization
(Supplemental material)

Ashish Singh!?*

ashishsingh@cs.umass.edu

In this supplemental material, we will discuss the run-
ning time of our algorithm, discuss methods for speeding up
the nearest neighbor search used for exemplar selection and
anomaly detection, provide result videos showing anomaly
detections for some of the test videos that we evaluate on,
discuss our result videos, show some failure cases, discuss
our tracking algorithm, provide more information about our
model complexity (number of exemplars), give more details
on the distance normalization constants, and finally give
more details on the training examples used in our Appear-
anceNet.

1. Computational Analysis

We analyze runtime performance of our framework on the
UCSD Ped2, CUHK Avenue and Street Scene datasets. We
compute and report the processing speed for the anomaly
detection stage for which the main computational expense is
object detection and optical flow computation. We present
our results in Table 1. We report our runtime speed in
frames per second. We used a single NVIDIA GeForce
RTX 3090ti GPU for feature extraction and Intel Xeon ES-
2680 v4 @ 2.40GHz CPU for nearest neighbor computa-
tions.

For the anomaly detection stage the total time consists of
the time to compute tracklets and the time for nearest neigh-
bor search. The time to compute tracklets consists almost
entirely of the time for object detection and optical flow in-
ference. The time for motion segmentation and trajectory
estimation (which is also part of tracklet computation) is
negligible in comparison. Furthermore, the time for object
detection in the table uses the fact that it is only run every
5th frame in our experiments. From the table it is clear that
the total time is dominated by optical flow inference.

The time for the exemplar detection stage is almost
identical to anomaly detection because they use the same
pipeline.

The main computational bottleneck for our method is
the optical flow computation and object detector inference.

*equal contribution, work done while A.S. was an intern at MERL

Michael J. Jones?*
ICICS, University of Massachusetts Amherst

mjones@merl.com

Erik G. Learned-Miller"
2Mitsubishi Electric Research Labs

elm@cs.umass.edu

’ Dataset \ NN \ Detection \ Flow \ Total ‘
Ped2 1463fps 251fps 10fps | 7fps
Avenue 1526fps 25fps 11fps | 8fps
Street Scene | 1277fps 25fps Ofps | 6fps

Table 1. Computational speed for individual components of our
pipeline. We report the speed in frames/second. (NN stands for
nearest neighbor search.)

We use the DINO [7] detector with SWIN transformer [4]
as backbone and RAFTv2 [6] for optical flow computa-
tion. We can improve the detector inference speed by us-
ing Resnet50 as the backbone which improves the detector
inference speed by 50%. Furthermore, with computational
deployment tools like [1], we believe the inference speed
for such pre-trained models can be improved significantly.
For our analysis, we report our runtime without the use of
such tools.

Compared to other methods, we take significantly less
time in model learning (training) because our method does
not require any training of neural networks to learn a model
of a new scene.

2. Efficient Nearest Neighbor Search

Our algorithm for selecting exemplars and our algorithm
for computing anomaly scores for test tracklets are both
based on nearest neighbor search among a set of tracklets.
There are many, many agorithms for efficient nearest neigh-
bor search in high-dimensional spaces. One possibility is
to use ball trees [5] which generally works well with spa-
tial data (an important component of a tracklet is its spatial
location). For the results in this paper, we implemented a
simpler method which also takes advantage of the spatial
location of tracklets.

For a particular dataset with a certain frame size, the ba-
sic idea is to use a data structure consisting of a grid of re-
gions of fixed height and width (we used height=width=60
pixels in our experiments) that tile a frame. Given a set of
exemplars, which are represented as tracklets, each exem-

plar is stored in the grid region that contains the first coor-
dinate of the exemplar’s trajectory. Then, in order to find
the nearest exemplar given a test tracklet, we find which
grid region the first coordinate of the test tracklet’s trajec-
tory falls in and do a brute force search over all exemplars
stored in that grid region as well as the 8 surrounding grid
regions. We need to search the 8 surrounding grid regions
as well because the coordinate could fall on the border of
a grid region and have very small distance to a neighboring
grid region.

This simple algorithm insures that we only search for
exemplars that are reasonably close spatially which means
that most of the exemplars do not need to be searched. This
on top of the fact that our models have relatively few ex-
emplars, makes our nearest neighbor search fast in practice.
In the case that the number of exemplars in a model grows
much larger (say tens or hundreds of thousands of exem-
plars), then a more sophisticated algorithm such as ball trees
could be used instead.

3. Discussion of result videos

Our supplemental material includes 5 result videos show-
ing the output of our video anomaly detection algorithm in
various scenarios. Each video shows green bounding boxes
around each normal object while objects detected as anoma-
lous are shaded red. Because our tracklets are 10 frames
long and we generate new tracklets (from new object de-
tections) every 5 frames, tracklets often overlap. We use
non-maximal suppression to remove overlapping bounding
boxes with lower anomaly scores.

In SS_Test023.mp4, a car making a u-turn is correctly de-
tected as anomalous. Next, a bike being walked by a woman
on the sidewalk is detected as anomalous for many frames.
When the woman and bike get closer to the top of the frame,
the bike is heavily occluded and is no longer recognized as
a bike which causes it to no longer be detected as anoma-
lous. A jaywalker is also correctly detected as anomalous.
A false positive on a pedestrian briefly occurs due to a track-
ing error.

In the Pedl_Test014.mp4 result video, four bikers are
correctly detected as anomalous as well as a golf cart. Pedl
frames are low resolution (240x160 pixels) which results in
pedestrians occurring in the top half of the frame (who are
further from the camera) to be too small to be detected. This
explains the lack of tracklets in the top half of the frame.
Despite this our method is still able to detect part of all
anomalous tracks with only a single false positive which
is caused by a tracking error.

In the Ped2_Test005.mp4 result video, an anomalous
biker is correctly detected. This video gives a good idea of
how our simple tracker works in crowded scenes. The vast
majority of pedestrians are well tracked despite frequent oc-
clusions. Occlusion does cause tracking to fail for a few

Test tracklet visualization:
(380, 238)

L=.35,P=.08,A=-0.88,5=-.09
Failure explanation:

The test tracklet (a biker) is a ground
truth anomaly because it is outside the
bike lane, but is not detected as such
because it is similar to a normal biker in
the bike lane.

Figure 1. Visualization example for missed detection of a “’biker
outside lane” anomaly in Street Scene explaining why our method
failed to detect it.

Test tracklet visualization:
(219, 110)

E = =4
[=-0.91, P=-0.14, A=-0.95, 5=-.22
Failure explanation:
The test tracklet (a skateboarder)isa
ground truth anomaly, but is not
detected as such because it hasvery
similar appearance and trajectorytoa
normal pedestrian.

Figure 2. Visualization example for missed detection of a skate-
boarder anomaly in Ped2 explaining why our method failed to de-
tect it.

frames on some pedestrians, but such pedestrians are usu-
ally tracked successfully again once the amount of occlu-
sion lessens. Furthermore, these short-term tracking fail-
ures usually do not result in anomaly detection mistakes.

In Avenue_Test006.mp4, a man who walks close to the
camera is correctly detected as an anomaly as well as a
backpack that is thrown into the air. This result video also
shows bags and backpacks that people are carrying usually
generate their own tracklets because they are detected by
the DINO object detector.

In SHT _Test001.mp4, a biker riding across the scene is
correctly detected as anomalous.

4. Failure cases

Figures 1 and 2 show examples of missed anomaly detec-
tions by our method. In Figure 1, the anomaly is a biker
riding outside of the appropriate bike lane. The only thing
that is anomalous about the biker is their location. The test
tracklet for the biker is visualized at the top, right of the
figure. The closest exemplar tracklet is visualized at the

Test tracklet visualization:
(270, 1.52:

L=0.13,P=1.02, A=-0.51,5=-.62
Failure explanation:

The test tracklet (a pedestrian) is
normal, but is detected as anomalous
because of a tracking error. The
pedestrian seems to walk to the right
and then change direction to the left.

Figure 3. Visualization example for false detection of a pedestrian.
A tracking error makes the pedestrian seem to walk to the right and
then abruptly change direction and walk to the left.

bottom, right of the figure and is also a biker traveling with
about the same trajectory as the test tracklet. The only dif-
ference is the location of the exemplar tracklet which is a
few feet over and inside the bike lane. The location distance
is small enough to be below the 1.0 anomaly threshold used
in our results, so an anomaly is not indicated. Such anoma-
lies are very difficult to detect because they are so similar to
normal activity.

In Figure 2, the test tracklet (visualized in the top, right
of the figure) is a skateboarder traveling at a similar speed
to normal pedestrians. The skateboard itself only occupies
a small number of pixels and therefore the appearance rep-
resentation for the tracklet is very similar to a pedestrian.
The closest exemplar tracklet (visualized in the bottom,
right of the figure) is a normal pedestrian. All of the dis-
tances (location, appearance, trajectory and size) are far be-
low the 1.0 anomaly threshold, so the test tracklet is judged
to be normal. To detect such anomalies, one possibility
would be to add more detailed motion information to the
model, such as tracking a person’s skeletal pose over time
which could distinguish normal walking pose changes from
a skateboarder’s pose changes.

In Figure 3, an example of a false detection due to a
tracking error is shown. The visualized test tracklet in the
top, right of the figure shows a pedestrian initially walking
to the right and then changing direction and walking to the
left. (The visualization is difficult to interpret, but the green
dot is the staring point and then subsequent points move to
the right before ending up to the left of the starting point at
the red dot.) The closest exemplar tracklet is a pedestrian
walking to the right and the only attribute with a large dis-
tance is the trajectory. The tracking error was caused by
another pedestrian walking in front of the initial pedestrian
and the track switching to the second pedestrian. This error
only persists for the 10 frames of this tracklet. Subsequent
tracklets which are initialized from new object detections

do not perpetuate the bad track.

These failure examples are typical of our method’s fail-
ure cases and serve to give a better idea of the challenges
remaining for our method.

5. Tracking discussion

Our tracking algorithm is motivated by a desire for sim-
plicity and the fact that tracklets only require tracking for a
small number of frames (10 frames in most experiments).
Furthermore, because our method is already using optical
flow to detect objects via motion segmentation, it is effi-
cient to use optical flow for tracking as well. The point of
this work is not to advance the state of the art in tracking,
but rather to show the effectiveness of tracklet-based video
anomaly detection even when a relatively simple tracking
method is used. We could swap in a more sophisticated
tracker instead, but we leave this idea for future work.

Our tracker handles static objects that are detected by the
DINO object detector. The optical flow displacements on a
static object will all be near zero, which will result in near
zero displacements in the track. Thus static object tracking
is handled very naturally by our tracker.

One issue that long-term object trackers need to handle is
ID switches caused by an object moving behind another ob-
ject. Because we are only tracking objects for a few frames
and initializing new tracks every 5 frames based on object
detections, the problem of ID switches is a minor issue. It is
possible for our tracker to track an object for a few frames
and then have it disappear behind another object at which
point the track will switch to the other object. However,
this tracking error will only persist for a few frames (be-
cause each track only lasts 10 frames). New tracks will be
initialized from new object detections in subsequent frames.
Our method does not try to associate track IDs from frame
T to track IDs from frame 7"+ 5 or T + 10. etc. Thus, any
ID switches caused by occlusion can only persist for a small
number of frames.

In our method, a frame can have any number of tracklets
in it (each initialized by a different object detection). Each
tracklet is compared to all exemplars in the model to find
the nearest neighbor. The distance to the nearest neighbor
exemplar is the anomaly score for each tracklet. Thus, any
number of tracklets in a frame can be handled.

Our simple tracker is not perfect (nor is it intended to be),
but it works well in practice. Developing a new state-of-the-
art tracker is not the point of this work. In our result videos,
tracking mistakes can be found, and these sometimes re-
sult in VAD errors but these are infrequent enough that our
method achieves excellent VAD accuracy on 5 different test
sets.

6. Model complexity

For Singh et al., they report the total number of exemplars in
the models they use for Ped1 and Ped2 are 4201 and 4270,
respectively. Our models for Pedl and Ped2 use 2133 and
673 exemplars, respectively. In the case of Ped2 this is over
6 times fewer exemplars. Furthermore, their exemplars con-
sist of 513 floating point numbers, while ours consist of 152,
mainly due to the much more compact motion representa-
tion (10 2-d coordinates in our case vs. 3 128-length feature
vectors in their case).

7. More details on distance normalization con-
stants

In practice, we found that some of the distance distributions
have very long tails when computed over all possible pairs
of normal tracklets, resulting in very large normalization
constants which effectively underweights those distances.
Just because two tracklets are normal does not mean they
are similar. To avoid this, we use pairs of tracklets that are
typically similar in order to focus on tracklet pairs with rel-
atively small distances. We find such pairs by comparing
tracklets that are close spatially since those tend to be sim-
ilar in terms of appearance, trajectory and size as well. For
each dataset, we use this strategy to estimate a set of dis-
tance normalization constants for that dataset using only the
nominal (training) video.

8. More details on AppearanceNet training
data

As discussed in the main paper, the training images used
to train our AppearanceNet (a modified ResNext-50 archi-
tecture) came from multiple sources: MS-COCO [3] and
VOC2012 [2] as well as publicly available surveillance
video that we annotated. We used a variety of sources in
order to create an object recognizer that would generalize
to many different video anomaly detection datasets. We
used five object classes for training: person, car, bicycle,
dog, and fire hydrant. We did not use all examples for these
classes that are available from MS-COCO and VOC2012,
but rather manually curated a set of examples for which
the desired class is clearly visible (some examples in these
datasets include images for which the desired object is dif-
ficult to see). We will publicly release the 128x128 pixel
example images that we used for training.

As discussed in the main paper, we also tested Open-
CLIP features in place of our AppearanceNet features.
OpenCLIP is trained on a much, much larger training set
and includes a very large number of object classes. Open-
CLIP also yields good video anomaly detection results, but
not as good as AppearanceNet (see Table 6 in the main pa-
per). We think this is most likely due to the fact that Ap-

pearanceNet is specialized to the object classes that are most
commonly seen in video anomaly detection datasets.

References

[1] Nvidia tensorrt. https://developer.nvidia.com/
tensorrt. 1

[2] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. L.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98-136, Jan. 2015. 4

[3] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Com-
puter Vision—-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pages 740-755. Springer, 2014. 4

[4] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 10012-10022, 2021. 1

[5] Stephen Omohundro. Five balltree construction algorithms.
Technical Report TR-89-063, International Computer Science
Institute (ICSI), 1989. 1

[6] Deqing Sun, Charles Herrmann, Fitsum Reda, Michael Rubin-
stein, David J Fleet, and William T Freeman. Disentangling
architecture and training for optical flow. In Computer Vision—
ECCV 2022: 17th European Conference, Tel Aviv, Israel, Oc-
tober 23-27, 2022, Proceedings, Part XXII, pages 165-182.
Springer, 2022. 1

[7] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object detec-
tion. arXiv preprint arXiv:2203.03605, 2022. 1

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

	. Computational Analysis
	. Efficient Nearest Neighbor Search
	. Discussion of result videos
	. Failure cases
	. Tracking discussion
	. Model complexity
	. More details on distance normalization constants
	. More details on AppearanceNet training data

