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7. Appendix

7.1. Implementation Details

Training the Unet is conducted for 300 epochs using the
AdamW optimizer [23]. We set a learning rate of 0.0001
and weight decay to 0.01. The noise schedule is from
0.0015 to 0.0195 and we set T = 1000. For the ResNet-
34, we set the dynamic conditioning feature blocks J to
2 whereas for anomaly map computation, features are ex-
tracted from blocks 2 and 3. The guidance temperature is
either 0 (indicating no guidance) or within the range 7-10.
We set the number of epochs γ for fine-tuning the feature
extractor in the range 0 to 3. The weighting parameter λ
for the anomaly maps is set to 0.85 and the final anomaly
map is smoothed with a Gaussian filter with σ = 4. The
pretrained VAE from [31] is used without further training.

7.2. Additional Details and Ablations

7.2.1 Noiseless Reconstruction

We studied the influence of the ’noiseless’ and only scaled
input on performance of the VisA benchmark. In fig-
ure 13, we provide different fractions of noise influence
and the corresponding metrics. We tested fractions ω ∈
{0, 0.1, 0.2, ..., 1} of the noise as follows:

xt =
√
ᾱtx0 + ω

√
1− ᾱtϵ where ϵ ∼ N (0, I) (12)

We perceived best performance with our proposed noise-
less scaling (ω = 0) with a declining performance as ω
increases. In addition, we conducted a qualitative analysis
to compare the visual impact of image-level perturbations
in the forward diffusion process (as outlined in Equation 1;
refer to Figures 10 and 11). Our tests extend up to the 400th
time step, revealing that introducing noise degrades the vi-
sual quality of the signal rapidly. Furthermore, Figure 12
illustrates the effect of noiseless scaling over an extended
period, up to the 800th time step. To provide a more trans-
parent comparison, we executed these disturbance analyses
in the pixel space rather than in the latent space. Figure
14 shows the anomaly map construction and reconstruction
with varying perturbance levels for noiseless scaling ver-
sus noising. The Figure shows similar segmentation perfor-
mance with slightly less artifacts in the anomaly map cre-
ated by noiseless scaling, while for high perturbance levels
(T=240,320) the noising paradigm is prone to hallucinations
in the reconstruction as highlighted by a red circle.

7.2.2 Additional quantitative analysis

We extend the analysis of MVTec provided in Table 3 with
a more detailed Table 7. While showcasing decent perfor-
mance on diverse categories, we got unexpectedly weak re-
sults for the Screw category. We don’t think this results
are inherently due to our proposed approach but could be
solved with further hyperparameter tuning. Table 8 shows
the localization performance measured by P-AUROC on the
VisA benchmark.

7.2.3 Additional qualitative analysis

In Figure 8, we present a side-by-side comparison of
our method’s reconstruction capabilities against those of
DRAEM [41]. This comparison underscores a notable im-
provement in reconstruction quality achieved by our ap-
proach. Moreover, Figure 9 provides additional instances
of anomaly segmentation, further illustrating our method’s
efficacy. Notably, Figure 7 encompasses both reconstruc-
tion and segmentation outcomes. The remarkable segmen-
tation results are attributed to our method’s robust recon-
struction abilities and the utilization of domain-adapted fea-
ture signals. Our method’s strength in reconstruction is bol-
stered by initially estimating the anomaly size, which al-
lows for the effective scaling of large anomalies, as illus-
trated in rows 3-5 of Figure 7. Additionally, our approach
demonstrates impeccable reconstruction of smaller defects,
as shown in rows 1, 2, and 6-9, thanks to the selection of
appropriate scaling levels. This aspect is further corrobo-
rated by Table 5 in the main document. The implementation
of a noiseless, scaled latents further enhances these effects,
as detailed in Figure 13 and discussed in Appendix section
7.2.1. Furthermore, the domain-adapted feature extractor
effectively learns the subtleties of the target domain, effi-
ciently filtering out any artifacts that may arise during the
reconstruction process.

7.2.4 Computational analysis

Lastly we present an evaluation on inference time and the
frames per second (FPS) rate, as detailed in Table 9. We
compare to various representation and reconstruction-based
methods and achieve competitive performance. All experi-
ments were carried out on one Nvidia Quadro 8000 graph-
ics card, with a set batch size of 30. The evaluation for the
baseline methods got performed with the Anomalib pack-
age [4].



Table 7. A detailed comparison of Anomaly Classification and localisation performance of various methods on MVTec benchmark [6] in
the format of (I-AUROC, P-AUROC, PRO). Best results are highlighted in bold.

Representation-based Reconstruction-based

Method PatchCore [32] SimpleNet [22] RD++ [38] SkipGANomaly [3] DRAEM [41] Ours

Carpet (98.7,99.0,96.6) (99.7,98.2,-) (100,99.2,97.7) (70.9,-) (97.0,95.5,92.9) (94.2,97.6,95.1)
Grid (98.2,98.7,96.0) (99.7,98.8,-) (100,99.3,97.7) (47.7,-) (99.9,99.7,98.4) (100,99.2,96.9)

Leather (100,99.3,98.9) (100,99.2,-) (100,99.4,99.2) (60.9,-) (100,98.6,98.0) (98.5,99.4,98.1)
Tile (98.7,95.4,87.3) (99.8,97.0,-) (99.7,96.6,92.4) (29.9,-) (99.6,99.2,98.9) (95.5,94.7,93.6)

Wood (99.2,95.0,89.4) (100,94.5,-) (99.3,95.8,93.3,) (19.9,-) (99.1,96.4,94.6) (99.7,95.9,91.0)

Bottle (100,98.6,96.2) (100,98.0,-) (100,98.8,97.0) (85.2,-) (99.2,99.1,97.2) (100,98.6,96.0)
Cable (99.5,98.4,92.5) (99.9,97.6,-) (99.2,98.4,93.9) (54.4,-) (91.8,94.7,76.0) (97.8,93.3,87.3)

Capsule (98.1,98.8,95.5) (97.7,98.9,-) (99.0,98.8,96.4) (54.3,-) (98.5,94.3,91.7) (96.6,97.9,90.7)
Hazelnut (100,98.7,93.8) (100,97.9,-) (100,99.2,96.3) (24-5,-) (100,99.7,98.1) (98.0,98.8,91.8)
Metal nut (100,98.4,91.4) (100,98.8,-) (100,98.1,93.0) (81.4,-) (98.7,99.5,94.1) (98.9,96.1,89.7)

Pill (96.6,97.4,93.2) (99.0,98.6,-) (98.4,98.3,97.0) (67.1,-) (98.9,97.6,88.9) (99.2,98.2,96.2)
Screw (98.1,99.4,97.9) (98.2,99.3,-) (98.9,99.7,98.6) (87.9,-) (93.9,97.6,98.2) (83.9,99.0,95.5)

Toothbrush (100,98.7,91.5) (99.7,98.5,-) (100,99.1,94.2) (58.6,-) (100,98.1,90.3) (100,99.0,94.6)
Transistor (100,96.3,83.7) (100,97.6,-) (98.5,94.3,81.8) (84.5,-) (93.1,90.9,81.6) (96.8,95.6,86.9)

Zipper (99.4,98.8,97.1) (99.9,98.9,-) (98.6, 98.8,96.3) (76.1,-) (100,98.8,96.3) (98.2,98.3,95.3)

Average (99.1,98.1,93.4) (99.6,98.1,-) (99.4,98.3,95.0) (60.2,-) (98.0,97.3,93.0) (97.2,97.4,93.3)

Table 8. Localization performance (P-AUROC) of various methods on VisA benchmark. The best results are highlighted in bold.

Method SPADE PaDiM RD4AD PatchCore DRAEM Ours

P-AUROC 85.6 98.1 96.5 98.8 93.5 97.9

Table 9. Inference time for one image in seconds and frames-per-second (FPS) of selected models on VisA benchmark.

Representation-based Reconstruction-based

Method RD4AD PatchCore DRAEM Ours

FPS (4.8) (4.8) (4.3) (2.9)
Inference Time (0.21) (0.21) (0.23) (0.34)
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Figure 7. Reconstruction and segmentation performance of our approach of various categories of the VisA and MVTec benchmark.



Figure 8. Reconstruction comparison with DRAEM [41] on various MVTec categories.



Figure 9. Additional examples from anomalies across all scales from the VisA and BTAD benchmark.



Figure 10. Visualization of the forward diffusion process in pixel space on various categories of the VisA benchmark.

Figure 11. Visualization of the noiseless-forward scaling process in pixel space on various categories of the VisA benchmark.



Figure 12. Visualization of the noiseless-forward scaling process in pixel space up to the time step t = 800 on the capsules category of the
VisA benchmark.

Figure 13. Impact of adding a fraction of the total noise on the VisA benchmark. Showcasing a decline in performance with increasing
fraction of the noise.
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Figure 14. Impact of noiseless scaling versus noising on reconstruction and anomaly map construction on Categories Capsules and PCB1 of
VisA and Hazelnut of MVTec. Failed reconstructions are circled in red. The disturbed image level columns are only added for visualization,
our approach performs scaling/noising on the latent level.



Figure 15. Binning distributions for the training and test set for all categories of the VisA and BTAD benchmark.
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