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Figure 7. Analysis of edge manipulation. Improper anomaly
edges cause collapse of edge-to-image generation.

6. Ablation study

Edge manipulation. Given the pre-trained edge-to-image
generator, it is supposed to generate anomaly images from
the modified edge maps. Even though the generator is
trained with carefully augmented data, it still produces
global collapsed results if the input edge maps are out-of-
distribution. Fig.7 illustrates the failure generations given
anomaly edge maps from 5 different modifications. Over-
all, the modifications are based on the concerns of adding
and/or removing different scales of edges. As shown in
Fig.7(2), the edges forged by large brush are obviously dif-
ferent from the real edges. Fig.7(4)-(5) show that scale mat-
ters. Either numerous nor enormous modified edges make
anomaly synthesis successfully. As the most of the original
edges remained, the generator derives not perfect but bet-
ter anomaly images from Fig.7(1) and (3). It indicates that
a suitable portion of anomaly edges is the key to generate
high quality anomaly images.

Region selection. Along with synthetic anomaly im-

Figure 8. Analysis of region selection. Different foreground ex-
tractions may cause the inconsistency between original normal im-
age and the synthetic anomaly image.

ages, the ground truth for training anomaly localization
module is simultaneously generated. Whether the ground
truth conforms to logic is another issue that needs to be
considered. Fig.8 demonstrates examples of this problem.
Given a normal image Fig.8(a), two possible generated
anomaly images are shown in Fig.8(f)and (i) respectively.
Due to largely replacement of original edges, the generated
anomaly images of Fig.6(f) and (i) are almost completely
unrelated with the input normal image Fig.8(a). Consider-
ing the underline logic of normal data, the ground truth of
Fig.8(f) should indicate the missing parts base on Fig.8(f)
rather than the Fig.8(a). The anomaly localization module
will be confused to learn from these kinds of training pairs.
An extreme example is the replacement of entire edge map
with another one.

Different with above mentioned situations, the synthetic
anomaly image shown in Fig.8(l) having the consistency
with the normal image and can provide a reasonable ground
truth Fig.8(k) for the anomaly localization training. The



Figure 9. Comparison of anomaly localization. We compare our localization map (g) with the difference maps (d)(f) that are produced
by calculating SSIM between generated images (c)(e) and input (a). (c) is generated by the edge-to-image generator. (e) is generated by
our reconstruction sub-network. The pixel AUC-sPro of the class(breakfastBox) are illustrated in lower left corners.

success of Fig.8(l) is due to its effective foreground re-
striction, as shown in Fig.8(c), extracted with a larger
threshold(thr2>thr1). Due to edges caused by background
reflection, such as plastic packaging, it is difficult to pre-
cisely extract the foreground from JND map with a simple
and costless method. The foreground extraction is not nec-
essary to be perfect but have to remain parts of the key com-
ponents to maintain consistency. Motivated by these obser-
vations, we construct anomaly edges based on region selec-
tion strategies that avoids generation collapse and maintains
consistency.

Anomaly localization. Fig.9 illustrates the advance per-
formance of our localization sub-network comparing di-
rectly using SSIM metric to spot anomaly regions. Fig.9c
and Fig.9d indicate that the edge-to-image generator con-
verts edge maps (b) to color images (c) with little sense of
anomalies. It is barely impossible to use it indicate anomaly
regions, especially the logical anomaly. On the contrary,
our reconstruction images (e) reveal more vivid corruption
in the anomaly regions.9e.

7. Loss functions
The total loss L consists of reconstruction Lrec and seg-
mentation Lseg losses. For both JND map and normal im-
age reconstruction, we not only use MSE loss to supervise
the pixel-to-pixel recovering but also the structural similar-
ity (SSIM) [24] loss to yield plausible local consistency.

L = Lrec + Lseg (2)

Lrec = Limg + Ljnd + Ledge (3)

Limg = L2(I, Irec) + Lssim(I, Irec) (4)

Ljnd = L2(J, Jrec) + Lssim(J, Jrec) (5)

where I and J are input normal image and corresponding
JND map, Irec and Jrec are output reconstructions.

Following PiDiNet [21], we adopt the annotator-robust
loss function proposed in [16] for the reconstructed edge
maps. For the ith pixel in the jth edge map with value pji ,
the loss is calculated as:

Ledge =


α · (log(1− pj)), if y = 0

0, if 0 < y < η

β · (logpj), otherwise
(6)

where y is the ground truth edge probability generated by
PiDiNet [21], η is the binary threshold, β = 1.1 is the per-
centage of negative pixel samples and α = 1.0 is the per-
centage of positive pixel samples.

To handle the unbalance of normal and anomaly, we use
focal loss [14] to supervise the predicted anomaly localiza-
tion.

Lseg = Lfocalloss(M,Mseg) (7)

8. Anomaly synthesis
Fig.10-Fig.12 visualize the synthetic anomalies of
MVTecAD [1], VisA [34] and MADsim [33] datasets
respectively. We randomly apply region selection and edge
modification strategies to generate anomaly edge maps for
all datasets. We also randomly apply colorjitter to VisA
[34] and TPS warping to MADsim [33] datasets.



Figure 10. Visualization of synthetic anomaly for MVTecAD [1].

Figure 11. Visualization of synthetic anomaly for VisA [34].

9. Qualitative evaluation
Fig.13-Fig.14 visualize the synthetic anomalies of VisA
[34] and MADsim [33] datasets respectively.



Figure 12. Visualization of synthetic anomaly for MADsim [33].



Figure 13. Qualitative illustration of our anomaly detection results on VisA [34].



Figure 14. Qualitative illustration of our anomaly detection results on MADsim [33].


