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Abstract

Blurry images usually exhibit similar blur at various lo-
cations across the image domain, a property barely cap-
tured in nowadays blind deblurring neural networks. We
show that when extracting patches of similar underlying
blur is possible, jointly processing the stack of patches
yields superior accuracy than handling them separately.
Our collaborative scheme is implemented in a neural ar-
chitecture with a pooling layer on the stack dimension. We
present three practical patch extraction strategies for im-
age sharpening, camera shake removal and optical aber-
ration correction, and validate the proposed approach on
both synthetic and real-world benchmarks. For each blur
instance, the proposed collaborative strategy yields signifi-
cant quantitative and qualitative improvements.

1. Introduction
Image deblurring is the problem of predicting sharp images
from blurry ones. In the most common case, a single blurry
image is available, and the goal is to predict its sharp ver-
sion. Except in rare situations where the blur is known, e.g.,
via embedded hardware [36] for camera shake, or via lens
calibration [5] for lens blur, we have little information on
the blur. This blind setting is highly ill-posed and requires
priors over both the latent sharp image and the blur to be
solved [29]. Classical approaches to blind deblurring lever-
age image and blur kernel priors to first estimate the blur
kernel, and second estimate a sharp image via non-blind de-
blurring. The best priors for doing so, e.g., [34], are based
on picking the salient edges across the image that provide
high-quality hints on the blur [22].

Yet, ever since the introduction of large corpora of
sharp/blurry image pairs such as the GoPro dataset [33],
neural networks achieve state-of-the-art deblurring results.
They are trained to predict a sharp image directly from a
blurry input, without requiring the intermediate estimation
of the blur kernel. To do so, the network may need to ex-
tract some relevant features of the blur in order to predict

correctly the missing high frequencies. The hints needed to
determine the blur (the edges [22]) are usually spread across
larger regions of the image than what is captured by the re-
ceptive fields of convolutional networks. This a reason why
the multi-scale architectures [10, 33] are so widespread for
this task. Self-attention [41] can collect such widespread
hints, however they are too expensive to deploy in realistic
scenarios with large images [30]. Despite impressive re-
sults, none of these approaches truly leverage the existing
image processing expertise. These sparse hints are well ex-
ploited by classic methods either by exploiting the global
property of the Fourier transform [20] or by analyzing the
directional gradient histogram of the image [16].

In this work we propose to feed the network the relevant
hints needed to improve the ability of the model to extract
the blur from the representation of the blurry image. We
propose a collaborative scheme where the network jointly
processes several patches with the same underlying blur as
a way to disambiguate the blur. Increasing the number of
patches increases the probability of collecting all the use-
ful information needed to deblur. Collaboration happens
by a sort of “attention-without-attention” module, which
amounts to selecting relevant patches for the task at hand.
For instance, in the case of motion deblurring, patches com-
ing from the same moving object. Note that the patches
can come from locations thousands of pixels apart, which is
in practice hardly achievable by convolutions or attention.
We show that collecting such sets of patches sharing simi-
lar underlying blur is straightforward for three practical in-
stances of blur: camera shake [44], optical aberrations [39]
and mild blurs [16]. Within the network, this collaboration
is achieved by processing the patches in parallel and by in-
serting pooling layers that foster the collaboration between
the encoded features. Our experiments show that this col-
laborative processing boosts the deblurring accuracy of the
network. This strategy can be applied to a variety of archi-
tectures. A practical application of our technique illustrated
in this paper is designing lightweight yet efficient blind de-
blurring networks.

Our contributions are summarized as follows: (1) We
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(a) Average of the 8 kernels from [29].
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(b) The fourth kernel from [29].

Figure 1. Illustration of the collaborative scheme with the kernels from [29]. We report the PSNR and the kernel similarity (KSIM) as
defined in [45] on the left and the KSIM for each qualitative kernel on the right. Combining more sharp/blur pairs dramatically improves
the accuracy of the kernel support, with saturation occuring at N = 8.

propose a collaborative strategy that consists in gathering
a stack of patches with similar underlying blur in an image,
and jointly processing them in a neural network upgraded
with a layer pooling along the stack dimension. (2) We
show its practicality for three instances of blur: camera
shake, optical aberrations and mild blurs. (3) We provide
theoretical elements to connect the proposed approach to
existing classical blind deblurring methods. (4) We show
on both real-world and synthetic data the efficiency of the
approach for the three sorts of blur listed above, and validate
two elements of design: how many patches should collabo-
rate and which pooling function to use.

2. Related work

Classic blind image deblurring algorithms alternate be-
tween a kernel-estimation step, and a non-blind deblurring
step [29]. At each step the estimated kernel is used to re-
cover a sharper image by the non-blind deblurring, which
in turn is used to refine the kernel prediction. The kernel
prediction makes use of domain knowledge such as smooth-
ness and sparsity of camera shake [44], approximate sym-
metry of optical aberration [39], the Gaussian shape of de-
focus blur [21] or translational motions in street photogra-
phy [12]. The work of Nah et al. [33] adopts instead a black-
box paradigm by learning from a large dataset of aligned
blurry and sharp image pairs a multi-scale CNN that pre-
dicts from a single blurry image a restored variant, without
the need for traditional image priors or any explicit struc-
ture on the family of blur to remove. The properties on the
blur are now determined by the training dataset, for instance
camera shake [38], defocus [1] or dynamic motions [33].
Subsequent architectures follow this trend by introducing
recurrent layers [40], additional skip connections [19, 35],
attention modules [10, 42], adversarial losses [24], patch-
aware normalization layers [11], and more recently diffu-

sion models [14, 43]. Similar deep learning-based strate-
gies have been since proposed for defocus [1] and opti-
cal aberration [9] correction. These strategies involve both
collecting large real-world supervisory datasets and design-
ing ad-hoc models. In this work, we combine knowledge
of a certain kind of blur, e.g., camera shake, out-of-focus
blur, optical aberration, and blind deblurring networks by
grouping patches from an input blurry image. We explic-
itly make them interact within an architecture whose design
is inspired by the burst deblurring approach of [3], yet for
restoring a single image.

Using multiple images or patches from a single image to
disambiguate restoration is common in image processing.
Image collaboration is crucial for system-specific degra-
dation such as vignetting correction [27], camera calibra-
tion [46] or fixed pattern noise estimation [8]. Neverthe-
less the most notable example of collaborative image pro-
cessing is the BM3D [13] denoising algorithm that gathers
patches with similar aspect to denoise them together. In
the same spirit burst deblurring methods [3, 15] combine
multiple frames depicting the same underlying sharp image
but different blurs. Our approach is a single-image method
that can be seen as the dual problem of burst deblurring:
we select patches of different underlying sharp contents but
sharing identical or similar blurs. This aims at obtaining
information on the blur in as many directions as possible
thanks to a greater variety of directional gradients from the
different images/patches to better predict a blur kernel, a
general idea considered in previous works [16, 17, 20, 32].
To our knowledge this philosophy is explicitly applied to
single-image blind deblurring via neural networks for the
first time in this paper.
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3. Theoretical background
To motivate our approach we review the problem of kernel
estimation from several samples. Let x1, x2, . . . , xN be N
sharp images, y1, y2, . . . , yN corresponding blurry images
where yn = k ∗ xn + εn for n in {1, . . . , N}, k a blur ker-
nel, and the εn’s instances of noise. From the pairs (xn, yn)
(n = 1, . . . , N ), we estimate the blur kernel k by minimiz-
ing a regularized ℓ2 energy function:

min
k

1

N

N∑
n=1

∥yn − k ∗ xn∥22 + λ∥k∥22. (1)

Its unique minimizer is obtained in the Fourier domain by

K̂ =

N∑
n=1

X∗
nYn/

(
N∑

n=1

X∗
nXn + λN

)
, (2)

where the capital letters Xn, Yn and K denote the Fourier
transforms of xn, yn and k, the ∗ superscript denotes
the complex conjugate, and λ is a positive regularization
weight. In the Fourier domain, the multiplication and divi-
sion are entrywise. In this setting, even if one image Xn

has a zero at a given frequency, the average of several im-
ages would likely not be zero, unless the frequency is re-
moved by the blur kernel. When N = 1 instead, if there is
ambiguity at some frequencies (the blur may be oriented in
the same direction as an edge for instance), then it is nearly
impossible to recover the correct frequency of the blur ker-
nel. On the spatial domain, considering more images thus
boils down to gathering as much information on the ori-
ented gradients as possible to disambiguate the blur from
the signal, a strategy at the core of certain blind deblurring
techniques [16, 20].

Let us illustrate how important it is to use N image pairs
together using Eq. (2). We select the 512×512 central crops
of the 64 first RGB test images from the DIV2K dataset [2]
as sharp images xn (n = 1, . . . , 64) in order to have all the
images at the same format. We blur them with the 8 kernels
from the Levin dataset [29], and add 1% white Gaussian
noise. Figure 1 illustrates the increase of the accuracy of the
kernel support with respect to N for the 8 kernels from [29].
The results confirm that as the number of images in the stack
increases, the performance improves significantly, leading
to a nearly perfect reconstruction, even for a challenging
motion blur kernel. Notably, the performance saturates at a
relatively small stack size of N = 8. This analysis high-
lights the dramatic improvement that collaboration among
images with the same blur can bring towards better deblur-
ring.

4. Proposed method
In this section we address the more realistic blind deblurring
case, where only the blurry images y1, · · · yN are available.

Conv 3x3 Conv 1x1 Pooling ResBlock Down Up
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Figure 2. Upgraded UNet we use for our experiments. At each
stage in the encoder and decoder we add a pooling layer follow-
ing [3]. The pooling strategy is implemented with either averag-
ing, a lambda layer [6] or a self-attention layer [41].

We thus cannot rely directly on Eq (2) to improve the ker-
nel estimation. We instead leverage the collaboration of N
blurry images, as highlighted in the previous section, in or-
der to better capture the structure of the blur while at the
same time deblurring. This collaborative processing results
in an efficient single-image blind deblurring neural network.

4.1. Collaborative architecture

We propose a neural network fθ with parameter θ that fea-
tures two notable changes compared to typical single-image
blind deblurring networks, e.g., [33]: (i) N inputs and out-
puts instead of a single one, and (ii) an inner collaboration
layer combining the N feature maps. When N is 1, the pro-
posed framework boils down to the classical single-image
blind deblurring approach.

Input and output. We propose a neural network that
processes in a single forward pass N images YN =
{y1, . . . , yN} containing similar blurs (not necessarily the
exact same for each image), and predicts N sharp versions
X̂N = {x̂1, . . . , x̂N}. In practice these sets are imple-
mented as 4D tensors concatenating all the RGB images of
the stacks, the first dimension being of size N . Let f be
such a network and θ its parameter, then the inference reads

X̂N = fθ (YN ) . (3)

During training, the N restored patches have collaborated
and can thus be supervised individually since what matters
in the end is the quality of each individual image x̂n (n =

1, . . . , N ). Provided training pairs of sets X (m)
N and Y(m)

N

(m = 1, . . . ,M), we learn the parameter θ by minimizing:

min
θ

1

MN

M∑
m=1

N∑
n=1

ℓ(x̂(m)
n , x(m)

n ), (4)

where ℓ is a pixelwise loss. In this work, we adopt the ℓ1
distance as supervising loss function. The images x̂(m)

n and
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(a) Camera shake [38]. (b) Optical aberration [5]. (c) Fusion blur [25].

Figure 3. Three real instances of blur: camera shake from the RealBlur dataset [38] (scene 118, image 2), a subset of the local calibrated
optical aberrations from the Canon EF24mm f/1.4L USM opened at f/2.8, calibrated in [5], and the result of the ×2 multi-frame super-
resolution online demo of [25]. For shake the light streaks suggest the blur is roughly the same everywhere, thus patches can be sampled
uniformly. The same holds for fusion blur where the fused image globally lacks of sharpness. The aberrations are all unique but roughly
follow a central symmetry, thus easy to sample.

y
(m)
n are the n-th elements of respectively X̂ (m)

N and Y(m)
N .

Inner collaboration. We follow the approach of Aittala
and Durand [3]. This approach applies the same convolu-
tion layers to each one of the N images of the stack and
combine the knowledge from different images in the same
stack via pooling of the individual blurry images’ represen-
tations after a given convolutional or attention layer in a
network. Let en be the representation of the n-th blurry
image yn (n = 1, . . . , N ) after this given layer of fθ. We
implement the inner collaboration layer by a pooling func-
tion p operating on the en along the stack dimension, and
that returns a global representation g of the stack:

g = p({e1, . . . , eN}). (5)

The feature g has the same dimension as an individual lo-
cal feature en (n = 1, . . . , N ). In [3], in the context of
burst deblurring, g is supposed to extract a representation
of the underlying sharp signal since all the blurry frames
in the burst have different blurs but share the same under-
lying sharp content. In our case the roles of the images
and blurs are reversed: we have images of different con-
tents sharing similar blurs in our stack. Consequently, we
expect the global information compiled in g via the pooling
function p to be related to the blur. Lastly, the local features
en (n = 1, . . . , N ) are updated through the merge with the
global representation g via a 1× 1 convolution layer:

en ← conv1×1({en, g}), ∀n ∈ {1, . . . , N}. (6)

That way, we expect the upgraded feature map en to be
guided by some information on the blur, ultimately improv-
ing the deblurring ability of fθ.

The function p has not been explicitly defined so far on
purpose. Such a function should take a stack of spatial fea-
ture maps and return a single spatial feature map. Since no

assumption is made on p, it can be either learning-free or
learnable. Classical pooling strategies such as the mean or
max functions are used in [3] and are drop-in candidates to
extract g in our context. We also explore in this paper how to
learn p by implementing it with the lambda layer from [6]
or the self-attention (SA) module [41]. The learning-free
approach is important to build small models that may be de-
ployed on devices like smartphones [31], whereas the learn-
able modules aim at better performance at the cost of ad-
ditional computations. We benchmark the different candi-
dates for p in Section 5. Figure 2 illustrates the upgraded
architecture with the pooling strategy.

4.2. Gathering images with similar underlying blurs

The theoretical background of the previous section and its
proposed integration within a neural network assume that
N images yn (n = 1, . . . , N ) degraded with similar blurs
are given. For camera shake [44], mild blurs [16] (covering
out-of-focus and sharpening), and optical aberrations [18],
such patches may be handpicked from a single image. For
camera shake the blur smoothly varies across the field of
view [44], and for “reasonable” shake like small transla-
tions featured in the Realblur dataset [38], it boils down to a
uniform blur kernel applied to the whole image. Rough uni-
formity of the blur is also a typical assumption for modeling
lack of sharpness in the image, e.g., because of a failing aut-
ofocus or the interpolation blur of a preceding multi-frame
algorithm [28].

For instance, inevitable blur may come from optical
aberrations [17, 23], for this radial blur very similar blurs
may be found at symmetric locations on the field of
view [39]. Sharpening is another instance of important
brick in most ISP pipelines nowadays [16], and consists in
removing small Gaussian-like blurs caused by slight out-
of-focus or multi-frame fusion algorithms. The blur may
vary but it may be considered roughly similar across the
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Table 1. Average PSNR over 400 images blurred with isotropic
Gaussian blur. UNet-T achieves the same performance as UNet
for N ≥ 4 despite having 4 times more parameters.

N UNet UNet-T

1 32.75 32.46 (-0.29)

2 32.91 32.75 (-0.16)

4 32.92 32.92 (+0.00)

8 33.12 33.13 (+0.01)

16 33.02 33.07 (+0.05)

field of view, for instance to remove the fusion blur in-
troduced by multi-frame algorithms [17]. A third com-
mon category is camera shake [44] during exposure, re-
sulting in global motion blur across the image. A single
blur kernel [38] or smoothly varying blurs [44] may model
the whole shake, thus validating the assumption of similar
kernels across the image. An illustration is shown in Fig-
ure 3. In the three common sorts of blur list above, grouping
patches with similar blur is thus feasible by leveraging the
properties of the blur. Collecting patches that way amounts
to finding the most relevant patches for a given deblurring
task, which is a sort of handcrafted attention or “attention-
without-attention”. This patch selection could be done us-
ing CNNs or attention, but at the cost of either very deep
models or important computation (corresponding patches
may be hundreds or thousands of pixels apart), all that for
computing something that could be known in advance.

Note that we have not discussed defocus blur where lo-
cal kernels of similar aspect might be easily grouped if the
depth of the scene is known [21]. Although depth estima-
tion could be provided by recent monocular depth estima-
tors, e.g., [37], we keep this multimodal approach for future
work and focus instead on blurs where the grouping can be
done manually grouping can be done manually as for the
examples in Figure 3.

5. Experiments

Experiments were all run on a single 16Gb NVIDIA V100
graphic card.

5.1. Collaborative model

In this work, we use a UNet model that is a general archi-
tecture used as the foundation of many practical deblurring
models, e.g., [9, 26]. Since it is an all-purpose model, it has
no specific bias for removing blur in contrast to the state-of-
the-art CNNs [10, 40]. It is thus an adequate model to mea-
sure the impact of the proposed collaborative scheme. We
introduce two variants called UNet and UNet-T (for tiny)
embedding respectively 4 and 3 downsampling/upsamling
layers in the encoder/decoder: The initial number of feature
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Figure 4. PSNR of UNet and UNet-T for 3 widths. N is in paren-
thesis. For each width, the models with N = 8 are above. The
plain red curve is covered by the orange one.

maps C is 64 and the respective bottleneck sizes of these
models are 512 and 256 channels. These models have re-
spectively around 17M and 4.3M parameters. Before each
down/upsampling module we place a pooling p to enforce
collaboration.

So far we have only presented the broad idea that fea-
tures should be shared within p, but we did not delve into
details. We compare the max pooling approach of [3] for
burst deblurring, the lambda layer [6] and a self-attention
(A) layer as in the Transformer architecture [41]. The
lambda layer is implemented with 4 feature channels. The
three-layer perceptron of the self-attention layer is shaped
as an inverted bottleneck. We also evaluated the feature
mean to implement p but observed, as in [3], that it leads
to the same results as the max pooling.

5.2. Validation on anisotropic Gaussian blur

We start with 2D anisotropic Gaussian blur kernels that
may approximate several instances of real-world blur such
as lens blur [23], defocus [21], and translational motion
blur [16]. Evaluating our approach on Gaussian blur is thus
a simple manner to validate our approach in a controlled
setting that corresponds to many real-world blurring sce-
narios. We train UNet and UNet-T on 128× 128 crops ran-
domly sampled from the 800 training images of the DIV2K
dataset [2]. We randomly flip and rotate the patches prior
to blurring them with Gaussian blur kernels of standard de-
viation along the two principal axes uniformly sampled in
[0.3, 4]2, i.e., up to a 33×33 blur spot, and the orientation is
uniformly sampled in [0, 2π) (same model as in [16]). We
add moderate Gaussian noise with standard deviation ran-
domly sampled in [0.5, 2]/255 after blurring.

Image stack size N . In order to evaluate the choice of the
stack size N , we train networks with input stacks of blurry
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(a) Blurry. (b) UNet-T. (c) UNet-T (A). (d) UNet (A). (e) MIMOUNet. (f) Target.

Figure 5. An example from Realblur-J [38] deblurred with UNet-T, the versions of UNet and UNet-T embedding attention with N = 16
and MIMOUNet [10]. The collaboration improves the deblurring accuracy of UNet, to match that of MIMOUNet.

images sharing the same blur with a unique stack size N in
{1, 2, 4, 8, 16}. We choose the max pooling strategy to not
introduce additional learnable parameters, and isolate the
impact of using several patches together. We train the mod-
els for 250k iterations with the Adam optimizer and initial
learning rate of 5 × 10−5 that is reduced by 0.5 after each
40k iteration until reaching 10−6 where we observe con-
vergence. We evaluate the models on sets of 100 images
blurred with an anisotropic Gaussian blur kernel with stan-
dard deviation σ in {1, 2, 3, 4}, and with additional 0.5/255
Gaussian noise. We show in Table 1 that the performance of
both models (UNet and UNet-T) grows with N . For N ≥ 4,
the performance of both models is similar despite UNet hav-
ing 4 times more parameters than UNet-T. All the results are
averaged over 3 shuffles of the test images to draw different
images per N -sized stack across different runs, but the error
bars are marginal and thus not reported.

Reducing UNet. Since using N images instead of 1 ac-
tually compensates the difference of depth and parameters
between UNet and UNet-T for N ≥ 4, we also verify that
by reducing the width of the UNet, using N = 8 images
helps to maintain good performance. Besides training UNet
(resp. UNet-T) with the original number of channels per
feature like in the previous experiment, we propose the Slim
and Extra-Slim variants dubbed UNet-S and UNet-X (resp.
UNet-TS and UNet-TX) where the number of channels for
each feature map is respectively divided by 2 and 4, i.e., the
bottleneck layer of UNet initially having 512 channels has
now respectively 256 and 128 channels. For N = 1, these
models have respectively 4.4M, 1.1M, 1.1M and 270K pa-
rameters, and about 5% more for N > 1 (because of the
1 × 1 convolution layers in Eq. (6)). We train the four new
variants of UNet and UNet-T with the same procedure, eval-
uate them on the same 400 test images as previously, and
show the average PSNR per value of σ in Figure 4. It can
be seen that the models with N = 8 systematically achieve
better results than their N = 1 counterparts. Remark that
UNet-TX for N = 8 achieves results similar to models that
have ×4 more parameters, and is between +0.3 and +0.8dB
above its N = 1 counterpart. This observation suggests
that the learning-free max pooling operation helps to design

lightweight blind deblurring networks with performance on
par with larger ones. UNet-TX has a number of param-
eters comparable to that of the lightweight demosaicking
networks proposed in [31], which is akin to edge comput-
ing. This suggests that UNet-TX may be a valid candidate
to replace mild blur deblurring algorithms, e.g., [16, 17], in
terms of parameters and thus energy consumption. More
quantitative results are in the supplementary material.

5.3. Practical applications

We illustrate the method on the three practical problems
listed in Figure 3: optical aberration correction, camera
shake compensation, and image sharpening.

Camera shake. An important source of blur in personal
photography (especially with handheld cameras) is camera
shake. We train on the RealBlur-J dataset [38], composed
3760 sharp/blurry image pairs of static scenes taken with
complex natural camera motions, a UNet with and without
the collaborative layer (training for N = 1), and the MI-
MOUNet [10] specifically designed for this task.

Our goal here is not to propose new state-of-the-art mo-
tion blur models, but rather use the RealBlur dataset as a
real-world quantitative benchmark to quantify the impact
of the proposed collaborative scheme. We show in Table 2
quantitative results on the test sets of the RealBlur datasets
composed of 980 blurry/sharp image pairs. We run UNet
and UNet-T by splitting 512 × 512 random crops from the
training set into a unique stack of size N in {1, 4, 16} with
25% of overlap to take into account the patches will be
stitched back into a full-sized image for evaluation with the
protocol of [38]. During training, we supervise each patch
of the stack with the corresponding patch in the target with
the loss (4). At test time, we start from the full image, slice
it into N patches, and stitch together the predicted sharps
variants into a full sharp estimate with the same windowing
approach as in [39].

We benchmark different choices of pooling layer p: max
(M), lambda (L) and self-attention (A). We use the same
training strategy as MIMOUNet and also retrain the latter
for fair comparison: We train for 1k epochs with the Adam
optimizer with initial learning rate set to 0.0001 and de-
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Table 2. Results on Realblur-J [38]. The models with ∗ are those
reported in [38] and are used as setters of the expected ballpark
of metrics. MIMOUNet [10] is retrained following our protocol.
Bold and underlined numbers indicate which variants of UNet are
the best and second-to-best per UNet model. The difference with
the corresponding UNet(-T) with N = 1 is shown in parenthesis.

Method PSNR SSIM LPIPS Params

DeblurGan-v2∗ [24] 29.69 0.870 - -
SRN∗ [40] 31.38 0.909 - 6.8M
MIMOUNet [10] 30.32 0.897 0.097 6.8M

UNet-T (N = 1) 29.30 0.870 0.133 4.3M
UNet-T (N = 4, M) 29.88 0.883 0.121 4.6M
UNet-T (N = 16, M) 30.33 0.893 0.108 4.6M
UNet-T (N = 4, L) 29.96 0.885 0.117 5.6M
UNet-T (N = 16, L) 30.45 0.896 0.104 5.6M
UNet-T (N = 4, A) 30.13 0.888 0.111 6.4M
UNet-T (N = 16, A) 30.63 0.900 0.098 6.4M

UNet (N = 1) 30.16 0.893 0.104 17.7M
UNet (N = 4, M) 30.45 0.897 0.104 18.7M
UNet (N = 16, M) 30.62 0.900 0.099 18.7M
UNet (N = 4, L) 30.61 0.900 0.098 22.9M
UNet (N = 16, L) 30.78 0.904 0.094 22.9M
UNet (N = 4, A) 30.73 0.904 0.092 26.4M
UNet (N = 16, A) 30.98 0.908 0.087 26.4M

cayed by 0.5 every 200 epoch. The batch size is set to 8. We
see that increasing the stack size N within the same patch
and more refined pooling p benefit the deblurring accuracy
for all metrics when using a UNet not initially designed for
deblurring, in contrast to [40] and [10]. For instance Re-
mark a 17M-parameter UNet cannot beat MIMOUNet [10],
but after being upgraded, the performances are boosted by
a margins up to +1.33dB. UNet-T with p implemented with
self-attention and N = 16 notably beats MIMONet with
less parameters. We also observe that both refining p and
increasing N increase the performance, validating our hy-
pothesis. An example is shown in Figure 5.

Optical aberrations. We leverage the near central sym-
metry of aberrations around the optical center of the
lens [39] by sampling at N = 4 locations on the field
of view, one for each quadrant of the Cartesian plane,
(see Figure 3). Since no real-world pairs of aberrated and
aberration-free image dataset exists, we generate synthetic
data from two of the 70 PSFs calibrated in [5]. Each PSF
consists of about 4,000 local RGB kernels accounting for
both monochromatic and chromatic aberrations. We select
the Canon EF16-35mm f/2.8L USM EI at shortest focal
length and maximal aperture and the Canon EF24mm f/1.4L
USM that are prone to aberrations after visual inspection,
the former being poorer than the latter. We dub these lenses

Table 3. Optical aberration removal for two lenses calibrated in
[5]. The PSNR is reported from three different locations on the
field of view: the edge E, the intermediate I and the central C
regions. The difference between using 1 or 4 images is shown in
parenthesis. Setting N to 4 helps compensating the reduction of
the width and parameters.

Loc. Method Lens #1 Lens #2 Params

E UNet-TX (N = 1) 30.58 32.83 270K
E UNet-TX (N = 4, M) 31.02 33.45 284K
E UNet-TS (N = 1) 31.60 34.10 1.1M
E UNet-TS (N = 4, M) 31.82 34.57 1.1M
E UNet-T (N = 1) 32.21 34.88 4.3M
E UNet-T (N = 4, M) 32.27 35.32 4.6M

I UNet-TX (N = 1) 34.45 34.89 270K
I UNet-TX (N = 4, M) 34.79 35.03 284K
I UNet-TS (N = 1) 35.12 35.55 1.1M
I UNet-TS (N = 4, M) 35.49 35.73 1.1M
I UNet-T (N = 1) 35.89 36.22 4.3M
I UNet-T (N = 4, M) 36.12 36.23 4.6M

C UNet-TX (N = 1) 36.94 36.71 270K
C UNet-TX (N = 4, M) 37.57 36.92 284K
C UNet-TS (N = 1) 38.02 37.93 1.1M
C UNet-TS (N = 4, M) 38.38 37.96 1.1M
C UNet-T (N = 1) 39.10 38.99 4.3M
C UNet-T (N = 4, M) 39.28 38.99 4.6M

“Lens #1” and “Lens #2” respectively in our experiments.
We convert from JPEG to pseudo-linear RGB images the
128× 128 patches from the DIV2K images with the proto-
col of [7], and blur each color channel with the correspond-
ing one from local filters sampled at random in the given
PSF. We add 0.5/255 Gaussian noise to account for noise
residual after demosaicking in an ISP pipeline. We train for
each PSF UNet-T, UNet-TS and UNet-TX for N = 1 and
N = 4 with max pooling as collaborative strategy since
in an ISP pipeline within a handheld camera, each module
should be as lightweight as possible. We train for 500k iter-
ations with the Adam optimizer with batch size of 16, and
an initial learning rate of 10−4 decayed by 0.2 after 200k
and 400k iterations.

Table 3 shows the PSNR for three locations on the lens
field-of-view with growing loss of quality from the center
to a corner. For both lenses the collaborative variant is al-
ways above the model with N = 1 with significant margins
between +0.2 and +0.6dB for UNet-TX. We observe more
important improvements for the 16mm lens than the 24mm.
Since the former is a zoom lens, it has in average a poorer
quality than a prime lens, thus benefiting more from col-
laboration, especially for UNet-TX, validating the assump-
tion that collaboration helps to design practical lightweight
networks. We can reasonably expect that on devices with
worse optical quality like smartphones, collaboration may
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(a) Blurry. (b) Unsharp mask. (c) Polyblur [16]. (d) UNet-TX.

Figure 6. Sharpening on the heritage image from [39]. The two classical methods have hyper-parameters to tune whereas our UNet-TX
with N = 8 has not and produce a halo-free sharp result.

help even further.

Sharpening. In the absence of any benchmark evaluating
sharpening algorithms, we simply run a qualitative compar-
ison for sharpening. Since mild blurs may be reasonably ap-
proximated with Gaussians [17], we select the lightweight
UNet-TX trained in Section 5.2 and compare it with Poly-
blur [16] and the unsharp mask algorithm, two approaches
used on-device, for instance to postprocess multi-frame al-
gorithms like in the context of super-resolution or high-
dynamic range imaging [28]. The comparison is run on a
heritage photograph from [39], and shown in Figure 6.

Discussion and limitations. We have shown that the hy-
pothesis that similar blurs exist in blurry images and may
be gathered is verified, and leads to improvements in each
situation. Second, these improvements are obtained for a
learning-free max pooling layer that leads to lightweight ef-
ficient models for sharpening and optical aberration correc-
tion. In these cases, N = 4 or N = 8 similar patches
are enough. For more diverse blur families such as camera
shake, learning-based pooling strategies and more impor-
tant stack sizes, e.g., N = 16 instead of 4, lead to signif-
icant boost, suggesting that in this case, the more patches
and pooling capacity, the better.

Nevertheless the proposed approach has limits. Find-
ing patches with similar blurs is not straightforward when
the blur may vary non-continuously, in particular with
segmentation-aware blurs such as the dynamic blur fea-
tured in the GoPro dataset [33], or depth-depending defo-
cus blur [21]. Another problem may arise if not enough
patches with the same blur are collected. We remarked dur-
ing our experiments that important noise alters the collab-
oration, thus limiting the benefits of our approach in high-
noise regimes. Yet, deblurring in such regime is an objec-

tive [4] beyond the scope of this paper. We have shown that
the method is effective for three realistic blurring scenarios.

6. Conclusion
In this paper, we have presented a simple modification of
existing CNNs for enhanced blind image deblurring. It con-
sists in processing together images with the same latent blur
to share the different features of the blur across the images
within a network which has internal collaborative layers
taking the form of feature maps pooling. Finding several
images having similar latent blurs is verified to be possi-
ble for a wide range of practical single-image blind deblur-
ring applications. Experiments on both synthetic and real-
world images covering camera shake removal, optical aber-
ration compensation and sharpening validate our approach
and highlight the versatility of possible collaborating layers
to design efficient models. This seems to establish a prac-
tical framework upon which building both lightweight and
state-of-the-art architectures.
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