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Figure 1. (a) Illustrates the aircraft used for this research, (b) and (c) displays the setup of cameras at different perspectives inside the
aircraft, (d) shows the manually defined region of interest on a frame, (e) showcases the annotation label created by ALINA on a frame.

Abstract

Labels are the cornerstone of supervised machine learn-
ing algorithms. Most visual recognition methods are fully
supervised, using bounding boxes or pixel-wise segmen-
tations for object localization. Traditional labeling meth-
ods, such as crowd-sourcing, are prohibitive due to cost,
data privacy, amount of time, and potential errors on large
datasets. To address these issues, we propose a novel
annotation framework, Advanced Line Identification and
Notation Algorithm (ALINA), which can be used for la-
beling taxiway datasets that consist of different camera
perspectives and variable weather attributes (sunny and
cloudy). Additionally, the CIRCular threshoLd pixEl Dis-
covery And Traversal (CIRCLEDAT) algorithm has been
proposed, which is an integral step in determining the pix-
els corresponding to taxiway line markings. Once the pixels
are identified, ALINA generates corresponding pixel coordi-
nate annotations on the frame. Using this approach, 60,249
frames from the taxiway dataset, AssistTaxi have been la-

beled. To evaluate the performance, a context-based edge
map (CBEM) set was generated manually based on edge
features and connectivity. The detection rate after testing
the annotated labels with the CBEM set was recorded as
98.45%, attesting its dependability and effectiveness.

1. Introduction
With the advancement of sensors, hardware and intelli-
gent software, autonomous vehicles have become the cen-
ter of attention for computer vision and robotics research.
Among the several components of autonomous vehicles, the
camera-based lane detection plays a crucial role in perceiv-
ing the lines and then assisting autonomous vehicular sys-
tems in making decisions to follow the correct path/lanes
[11].

It is envisioned, as we gain confidence in the correctness
of the design of autonomous systems, it will pave the way
for the integration of learning based technologies in assist-
ing safety critical systems such as, autonomous aircraft for
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urban air mobility or aerial delivery [6, 28]. As a result, this
has increased the need for an advanced perception system,
equipped with precise line identification capability. In fu-
ture, it can assist pilots in the aircraft, especially when navi-
gating the airport taxiway. As stated by the Aviation Safety
Network [16], approximately, 33.33% of the aircraft acci-
dents, between the years 2015 and 2022, happened during
the taxiing phase. The common causes of taxiway accidents
include poor weather conditions and high traffic on the taxi-
way. In order to address these issues, some researchers have
formulated solutions for assisting pilots during the taxiing
phase, including: light-based guidance systems, which have
been designed by the Federal Aviation Administration and
Honeywell [4, 36], computer vision based taxiway guid-
ance techniques [5], Airport Moving Maps [22], and sen-
sors, such as LIDAR and cameras mounted on an aircraft
[26, 38]. This research builds on the work of Ganeriwala et.
al [18], particularly with the contour-based detection and
line extraction method (CDLEM). They introduced Assist-
Taxi dataset, which incorporates more than 300,000 frames
of taxiway and runway instances. The data was collected
from Melbourne (MLB) and Grant-Valkaria (X59) general
aviation airports.

In this research, we introduce an Advanced Line Identifi-
cation and Notation Algorithm (ALINA), which is an anno-
tation framework developed to detect and label taxiway line
markings from video frames (Fig. 1). ALINA establishes
a uniform trapezoidal region of interest (ROI) by utilizing
the initial frame, that is consistently applied across all sub-
sequent frames of the video. The ROI is then geometrically
modified and the color space is transformed to produce a bi-
nary pixel map. ALINA pinpoints pixels representing taxi-
way markings through the novel CIRCular threshoLd pixEl
Discovery And Traversal (CIRCLEDAT) algorithm, leading
to frame annotations and coordinate data files. A context-
based edge map (CBEM) set was generated for comparison
to ensure accuracy in marking detection. ALINA was tested
on a subset of AssistTaxi dataset - 60,249 frames extracted
from three distinct videos with unique camera angles. The
focus of this research had been on 60,249 frames out of a
vast 300,000-frames AssistTaxi dataset, as the motivation
was to lay down a rigorous yet tractable foundation for the
empirical validation of ALINA’s efficacy, paving the way
for its scalability to larger datasets in future. Through this
research, we primarily aim to reduce the intensive, expen-
sive and error-prone manual labeling [17], and provide la-
beled data to enhance taxiway navigation safety.

Our contribution include the following four main as-
pects:
• To reduce the intensive, expensive, and error-prone man-

ual labeling process, thus contributing to the efficient
combination of automated and manual creation of la-
belled datasets.

• Development of the Advanced Line Identification and
Notation Algorithm (ALINA) providing a robust frame-
work for precise detection and labelling of continuous
video datasets, particularly focusing on taxiway line
markings.

• Introduction of a novel algorithm, CIRCLEDAT, tailored
to pinpoint pixels representing taxiway/road markings
with high accuracy, ensuring precise labeling across con-
tinuous video frames.

• Establishing a systematic approach based on change in
perspective of scenario to justify the sample size of
ground truth which is a subset from the AssistTaxi dataset
[18].

The remainder of the paper is organized as follows: In
Sec. 2, related research works have been discussed. Sec. 3
entails the detailed methodology of ALINA, Sec. 4 presents
the experimental results. Finally, Sec. 5 provides the con-
clusion and outlines the directions for future work.

2. Literature Review
While the research in classification of taxiway line mark-
ings is still in its preliminary stages, the domain of car lane
detection has seen substantial advancements in road label-
ing techniques. The knowledge derived from detecting car
lanes not only provides fundamental perspectives that guide
our comprehension of detecting taxiway markings but also
highlights research gaps in car lane labeling methods which
can be avoided and guide innovative approaches for taxiway
marking detection. Therefore, this section begins by pre-
senting notable works from the car lane detection domain
and highlights their research gaps.

Some researchers have used classification techniques for
lane detection, where images are segmented into grids for
row-based lane location identification [10, 32, 42]. How-
ever, these methods lack precision and might miss some
lanes. To ensure consistent lane detection, techniques such
as parametric curve modeling [15, 25, 31, 37, 39] and key-
point association [33, 40, 41] have been used. Even though
these methods acquire high results, they can struggle in ad-
verse weather conditions. Andrei et al. [3] have utilized
probabilistic Hough transform and dynamic parallelogram
region of interest (ROI) to develop a lane detection system.
It was implemented on video sequences with manual ROI
definition but encountered challenges with capturing curved
line endpoints, which are crucial for complete lane bound-
ary delineation in real-world scenarios. Chen et al. [8] de-
tected road markings using machine learning with binarized
normed gradient detection and principal component analy-
sis (PCA) classification, achieving an accuracy of 96.8%.
However, the dependency on PCA limited the adaptability
for dynamic scenarios and challenging environments. Sim-
ilarly, the method proposed by Ding et al. [13], which com-
bined PCA and support vector machine (SVM), achieved a
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detection accuracy of 94.77%. However, it struggled to de-
tect road markings due to the failure of the ROI extraction,
in the case of reflection, occlusion and shadow.

Gupta et al. [20] introduced a real-time framework for
camera-based road and lane markings, using techniques
such as spatio-temporal incremental clustering, curve fit-
ting, and Grassmann manifold learning. The real-time na-
ture of this approach brings challenges in processing effi-
ciency and speed, especially with increasing dataset com-
plexities. Jiao et al. [23] proposed an adaptive lane iden-
tification system using the scan line method, lane-voted
vanishing point, and multi-lane tracking Kalman filtering,
achieving a 93.4% F1-Score. This approach lacked the
adaptability to diverse conditions across different datasets
and real-world scenarios.

Kiske [24] developed an autonomous labeling system for
identifying highway lane markings using Velodyne lidar,
HDR video streams, and high-precision GPS. However, the
reliance on multiple data sources makes it less cost-effective
and more complex for wide-scale implementations. Mutha-
lagu et al. [27] proposed a vision-based algorithm for lane
detection in self-driving cars, which used polynomial re-
gression, histogram analysis, and a sliding window mecha-
nism for detecting both straight and curved lines. The algo-
rithm achieved notable accuracy, but its high computational
demand poses scalability issues, and its limitation in detect-
ing steep foreground curves presents challenges in dynamic
terrains.

Contour-based detection and line extraction method
(CDLEM) was initially used for labeling the taxiway line
markings from AssistTaxi dataset [18]. The Canny edge
detection identified the line marking’s edges. Subsequently,
the Hough transform, Ramer-Douglas-Peucker, and Bresen-
ham’s algorithms were utilized to identify and label both
straight and curved taxiway line markings. The limitation
this approach posed was the requirement to outline an ROI
around taxiway line marking for every scenario shift.

While labeling car lanes has provided a guiding example
for an end to end lane detection system [2, 29, 43], a direct
comparison of lane detection to labeling taxiway line mark-
ings is not being made in this research. The distinct seman-
tics and attributes associated with the car lane datasets and
airport taxiways dataset pose different set of challenges. For
example, the airport taxiway dataset has different layouts,
diverse markings, and presence of aircraft on airport taxi-
ways. Transfer learning can be one of the approaches to ad-
dress the differences and identify the commonalities within
the two datasets [19], however it requires the taxiways to
be extensively labeled. Therefore, our research emphasizes
creating and evaluating algorithms for labeling specific to
airport taxiways, rather than contrasting them with car lane
datasets.

3. Methodology
In this section, we provide a detailed overview of the
ALINA framework using Fig. 2 (each subsection elaborates
elements from the figure), and we discuss its steps referenc-
ing image instances from Fig. 3 and Fig. 4.

3.1. Frame Representation

While reading a frame, ALINA stores each x, y coordi-
nate and its red, green, blue (RGB) channel values from
the frame into a multi-dimensional array, as represented in
Eq. (1).

A[i, j, k] = I[i, j, k] (1)

where, i, j, and k denote the row, column, and channel in-
dices of the frame, respectively. This formula copies the
pixel values of the frame at location (i, j) in the kth color
channel into the corresponding location in the array.

3.2. Interactive ROI Definition on the Initial Frame

The user provides source points to ALINA for creating a
trapezoidal region of interest (ROI) on the initial frame of
the video, as shown in Fig. 3 (a), (e), (f). It is drawn in
the vicinity of where the camera expects to see the taxi-
way’s line markings. ALINA treats the ROI as a constraint
to limit the search area for taxiway’s line markings, re-
sulting in reduced computational complexity and improved
detection accuracy [21]. The source points, which cor-
respond to the vertices of ROI, are denoted as follows:
[x1, y1], [x2, y2], [x3, y3], [x4, y4].

3.3. Perspective Transformation of the ROI

The next step in ALINA is warping the perspective. The
trapezoidal ROI is warped into a bird’s eye view. Fig. 3
(b), (f), (j) illustrates this transformation. The destina-
tion points, which correspond to the vertices of a rect-
angle defining the bird’s eye view, are represented as:
[x′

1, y
′
1], [x

′
2, y

′
2], [x

′
3, y

′
3], [x

′
4, y

′
4].

It enables a more comprehensive and consistent view of
the taxiway and its features, allowing for improved detec-
tion of line markings irrespective of their orientation or cur-
vature [1].

Given the pairs of source and destination points, a ma-
trix M is derived by solving a system of linear equations
formed from the pixel correspondences. The matrix essen-
tially maps any pixel in the trapezoidal ROI to its corre-
sponding pixel position in the bird’s eye view.

The matrix M is represented in Eq. (2):

M =

m11 m12 m13

m21 m22 m23

m31 m32 1

 (2)

with each mij computed based on the defined system of
equations.
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Figure 2. Framework of ALINA

Once M is computed, it’s applied to each pixel in the
trapezoidal ROI to achieve its position in the bird’s eye
view. This transformation is attained using Eq. (3):

t(x, y) = s

(
M11x+M12y +M13

M31x+M32y +M33
,
M21x+M22y +M23

M31x+M32y +M33

)
(3)

Where t(x, y) and s(x, y) denote pixel coordinates in the
bird’s eye view and trapezoidal ROI respectively.

3.4. Color Feature Normalization

To accurately distinguish line markings within the ROI,
ALINA performs normalization of color characteristics.
The normalization phase consists of the following key steps:
1. RGB to HSV Conversion: The RGB color space of

ROI is transformed to the hue, saturation, and value
(HSV ) color space. Given a pixel’s RGB values, de-
noted by (R,G,B), the transformation into the HSV
space is depicted as (R,G,B)→ (H,S, V ). This trans-
formation is performed because HSV factors in varia-
tions induced by lighting conditions and intrinsic color
properties, providing a robust representation of color in
an image [35].

2. Component Decomposition: The HSV is decomposed
into its individual channels: H,S, V .

3. Normalization: Every component X , where X ∈
{H,S, V }, undergoes 8-bit min-max normalization as
shown in Eq. (4):

Xnorm =
X −min(X)

max(X)−min(X)
× 255 (4)

where min(X) and max(X) denote the minimum and
maximum values of the component X , respectively. This
ensures the values are scaled to fit within the [0, 255]
range.

4. Component Recombination: The normalized compo-
nents, denoted as Hnorm, Snorm, Vnorm, are recombined

to form the normalized HSV ROI, represented as
HSVnorm.
Following this normalization process, the color features

of the frame are standardized, as illustrated in Fig. 3 (c), (g),
(k). This ensures uniform contribution from each feature to
the final representation, facilitating precise color threshold-
ing for taxiway line marking detection in the subsequent
step.

3.5. HSV-based Color Thresholding

Color thresholding is an essential technique in image seg-
mentation, leveraging color information to partition im-
age pixels into meaningful regions [9]. In the context of
ALINA, this technique finds its application in isolating the
taxiway line markings from the rest of the regions within the
ROI, using the HSV color space. Hue captures the wave-
length of color, while saturation measures the intensity, and
value quantifies the brightness.

Determining the precise range for HSV that corre-
sponds to the taxiway line markings necessitated a series of
empirical tests. Multiple frame samples were analyzed and
a frequency distribution of HSV values for taxiway line
marking regions were plotted. Peaks in this distribution,
indicative of dominant HSV values for taxiway line mark-
ings, helped in ascertaining the lower and upper bounds of
H,S, V , i.e. (0, 70, 170) and (255, 255, 255), respectively.

For a pixel p with HSV values denoted by H(p), S(p),
V (p), the color thresholding function Θ(p)is defined in
Eq. (5):

Θ(p) =


255 if 0 ≤ H(p) ≤ 255

and 70 ≤ S(p) ≤ 255

and 170 ≤ V (p) ≤ 255

0 otherwise

(5)

Here, Θ(p) produces a binary outcome for each pixel in
the ROI: a value of 255 (white) indicates a pixel belonging
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Figure 3. (a),(e),(i): ROI Definition, (b),(f),(j): Perspective Trans-
formation, (c),(g),(k): Color Feature Normalization, (d),(h),(l):
HSV-based Color Thresholding

to the taxiway line marking, while 0 (black) denotes a pixel
that does not. However, after applying HSV-based color
thresholding, some non-taxiway line marking pixels within
the ROI still matched the specified range, as shown in Fig. 3
(d), (h), (l). ALINA addresses this in the subsequent step.

3.6. Histogram-based Analysis of the Thresholded
ROI

The histogram analysis focuses on the vertical projection of
white pixels in the thresholded ROI, analyzing the spatial
distribution and density of the taxiway line markings.

For a thresholded ROI with dimensions W × H , where
W represents the width (number of columns) and H repre-
sents the height (number of rows), the binary representation
of a pixel at position i, j is defined in the Eq. (6), where i is
the column index and j is the row index:

B(i, j) =

{
1 if pixel at (i, j) is white
0 otherwise

(6)

The vertical histogram, denoted as Hvert(i), quantifies
the column-wise distribution of white pixels and is calcu-
lated using Eq. (7):

Hvert(i) =

H∑
j=0

B(i, j) (7)

For each column i, this equation aggregates the presence
of white pixels across all rows j, offering a count of white
pixels for that column. When plotted against the column
index i, the histogram produced accentuates the density of
white pixels along the y-axis. Peaks in this histogram, de-
note the presence and spatial positioning of taxiway line
markings within the ROI.

Figure 4. (a),(d),(g): CIRCLEDAT, (b),(e),(h): Frame Unwarping,
(c),(f),(i): Taxiway Line Marking Annotation

3.7. Identifying Line Markings and Mitigating False
Detections

The histogram peak value, represented by Hp, indicates the
highest density of white pixels in a particular column of the
histogram. It was important to identify whether a peak in
the histogram truly represents a taxiway line marking or in
contrast, is a result of noise or other disturbances. We iden-
tified the presence of a taxiway line marking in the ROI
using a threshold value.

3.8. CIRCLEDAT: Circular Threshold Pixel Dis-
covery and Traversal Algorithm

The CIRCLEDAT algorithm assists in isolating the pixels
that correspond to the taxiway line markings, irrespective of
their dimension or curvature, and eliminate all other pixels
from the ROI. For an ROI I with dimensions W × H , an
initial coordinate pair (x, y), a radius θ, a set V for recording
visited pixels, and an array L for collecting taxiway line
marking pixels, the algorithm executes as follows:
1. Initialization: The starting point (x, y) is pushed onto a

stack S and recorded in V . A setR is created containing
all pixel coordinates within the circular distance.

2. Exploration: While S is not empty, the top coordinate
(x, y) is popped. If I[y][x] = 255, which indicates a
white pixel, (x, y) is added to L. For each offset (i, j) in
R:
• Calculate new coordinates (xnew, ynew) = (x+i, y+j).
• If (xnew, ynew) ∈ V or (xnew, ynew) is outside 0 ≤
xnew < W and 0 ≤ ynew < H , continue to the next
offset.

• Otherwise, push (xnew, ynew) onto S and record in V .
3. Result: Once S is exhausted, the algorithm returns L,

representing all the white pixels, which correspond to
the taxiway line markings.
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The Fig. 4 (a), (d), (g) represent the output generated
after applying the CIRCLEDAT algorithm (1) within the
ROI. Through a depth-first search approach, CIRCLEDAT
ensures a comprehensive exploration of pixels pertaining
to the taxiway line markings. The V set aids in efficient
traversal by preventing revisits, and the use of R ensures a
circular-based neighborhood exploration.

Algorithm 1 Circular Threshold Pixel Discovery and
Traversal

1: function CIRCLEDAT(image)
2: stack ← [(x, y)]
3: visited.add((x, y))
4: circular range ← list(product(range(−θ, θ +

1), repeat← 2))
5: circular range.remove((0, 0))
6: while stack is not empty do
7: x, y ← stack.pop()
8: if image[y][x] = 255 then
9: add (x, y) to line marking pixels

10: for i, j ← circular range do
11: x new ← x+ i
12: y new ← y + j
13: if (x new, y new) = visited then
14: continue
15: end if
16: if x new, y new <

0 or x new, y new ≥ image.width, image.height
then

17: continue
18: end if
19: add (x new, y new) to stack
20: visited.add((x new, y new))
21: end for
22: end if
23: end while
24: return line marking pixels
25: end function

3.9. Frame Unwarping and Annotating the Taxiway
Line Marking Pixels

The final stage of labeling the frame involves an inverse per-
spective transformation that returns the warped ROI to its
original view, as shown in Fig. 4 (b) ,(e), (h). After obtain-
ing the unwarped ROI, white pixels are located and mapped
onto the original frame using color red to clearly identify
the taxiway line markings, as illustrated in Fig. 4 (c), (f), (i).
This representation provides a precise and clear depiction of
the taxiway line markings in the original frame. In addition,
a text file is generated containing the x, y coordinates of all
pixels corresponding to the taxiway line markings.

Having completed the labeling of the video’s initial

frame, ALINA proceeds to label the subsequent frames us-
ing the same process and the ROI established for the first
frame, as illustrated in Fig. 2.

4. Experimental Results

4.1. ALINA Performance: Specifications and Sce-
narios

The detailed processing time breakdown for ALINA when
labeling a frame is presented in Tab. 1. On average, ALINA
requires 50.9 milliseconds (ms) to label a single frame,
yielding a rate of approximately 19.65 frames per second
(fps). In the course of our systematic labeling process,
ALINA effectively labeled 60,249 frames on a Linux sys-
tem equipped with an Intel Core i7-9700K CPU clocked
at 3.60GHz and 15GB RAM, operating on Ubuntu 22.04.1
LTS. The algorithm was developed in the PyCharm IDE
with Python 3.8.15, harnessing essential libraries such as
OpenCV, NumPy, MatPlotLib, and statistics.

Table 1. Processing time analysis of ALINA (in Milliseconds).

Process Time (ms)

Perspective Transformation 4.41
Color Feature Normalization 5.91
HSV-based Color Thresholding 1.05
Histogram Analysis 28.71
CIRCLEDAT 3.33
Projection Remapping 6.68

Total 50.09

As mentioned earlier, we applied ALINA on a subset
of the AssistTaxi dataset, consisting of 60,249 frames ex-
tracted from three distinct videos, each with unique camera
angles. Fig. 3 and Fig. 4 demonstrates ALINA’s consis-
tent labeling performance across these frames, unaffected
by differing camera angles or weather conditions. Specifi-
cally, in Fig. 3 (a) from the first video, ALINA labeled the
taxiway line marking between two aircrafts. In Fig. 3 (e)
from the second video, it labeled three directional taxiway
line markings: left, straight, and right. Lastly, in Fig. 3
(i) from the third video, ALINA labeled the taxiway line
marking in front of the aircraft, which is situated between
stationary aircraft on the left and grassy area on the right.

4.2. Ablation Study on Threshold Value

Initially, the decision was kept binary, in which there was
no set threshold, as shown in Eq. (8). This approach con-
sidered even a slight peak in the histogram as a taxiway line
marking, leading to a high percentage of false positives, as
shown in Tab. 2.
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∆(p) =

{
1 if Hp > 0

0 otherwise
(8)

Here ∆(p) indicates the presence (1) or absence (0) of
the taxiway line marking.

Through empirical testing and histogram analyses, we
identified that true taxiway line markings consistently
yielded peak values significantly above sporadic noise. As
shown in Tab. 2, setting a threshold at 75 led to a substan-
tial fall in the percentage of false positives, but by raising
the threshold to 150, the false positives were dropped to 0.
Hence, the Toptimal was established at 150, using the equa-
tions 9 and 10. This was primarily because true taxiway line
markings consistently resulted in columns extending well
over 150 white pixels, while disturbances never reached this
level.

Table 2. Threshold Value Comparison

Threshold Value False Positives (%)

0 83.33
75 22.22
150 0

Toptimal = argmin
T

(Ffalse positive(T )− Ftrue positive(T )) (9)

∆(p) =

{
1 if Hp >= Toptimal

0 otherwise
(10)

Once the taxiway line marking is detected using
∆150(p), ALINA extracts its centroid coordinate, initializ-
ing the subsequent CIRCLEDAT algorithm. In contrast, if
there is no taxiway line marking in the ROI, ALINA simply
stores the frame along with an empty text file, signifying
that there is no taxiway line marking present in the frame,
as shown in Fig. 2.

4.3. Generating a Context-based Edge Map Set

To assess ALINA and CDLEM’s effectiveness, we man-
ually created a set of context-based edge maps (CBEM),
which emphasize the edge pixel presence, edge corner lo-
calization, thick edge occurrence, and edge connectivity
[7]. We prioritized the detection of the edges of a taxiway
line marking as our primary validation metric, because this
alone provides precise information into the line marking’s
position within the frame. Our approach for developing the
CBEM was as follows:
1. Outlining the Contour Region: The taxiway line mark-

ings in the frames were outlined manually to create an
accurate reference without including any other edge de-
tails from the frame.

Figure 5. (a) Manually Outlined Contour Region (b) CBEM

2. Pre-processing: The contour region was transformed to
grayscale and then subjected to Gaussian blur, which
helped in reducing the visual noise and improved the
clarity of edges. Consequently, the gradient amplitude
and direction were calculated and non-maximum sup-
pression was applied to eliminate the non-edge pixels.

3. Edge Detection with the Canny Algorithm: We used
the Canny algorithm for precise edge extraction of taxi-
way line markings. We also employed an automated
method for selecting the upper and lower thresholds [34].
This method computes the median pixel intensity v of an
image and subsequently determines the thresholds using
equations 11 and 12:

lower = max(0, (1.0− σ)× v) (11)

upper = min(255, (1.0 + σ)× v) (12)

where σ is a coefficient, defaulting to 0.33, for refining
the thresholds.
The process of manually outlining the contour region

around the taxiway line marking and generating CBEM for
a frame is illustrated in Fig. 5 (a) and (b) respectively. The
Fig. 1 (e) shows the output of ALINA on the same frame.

From the 60,249 frames, we selected a set of 120 frames
to construct the CBEM’s. The 60,249 frames spanned from
three videos with durations of 11.47, 1.34, and 3.23 min-
utes. Our objective was to identify the frames representing
scenario shifts. Instead of conducting a granular frame-by-
frame analysis, we reviewed the videos comprehensively
and marked the specific frames that captured the scenario
shifts, amounting to a total of 120 images.

Our selection is underpinned by the Law of Large Num-
bers (LLN), as illustrated in Eq. (13):

X̄n → µ as n→∞ (13)

where X̄n represents the sample mean and µ is the expected
population mean [14]. This indicates that our subset, if rep-
resentatively selected, provides a reliable approximation of
the comprehensive dataset’s attributes.

Furthermore, the Central Limit Theorem (CLT) [14] also
reinfornces our approach, as expressed in Eq. (14):

Sn − nµ

σ
√
n
→ N(0, 1) (14)
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where Sn = X1 + X2 + . . . + Xn and Xi are indepen-
dent, identically distributed random variables, n is the sam-
ple size, µ is the population mean, and σ is the standard
deviation. The CLT’s cornerstone assertion, relevant in our
context, is that with a sufficiently extensive sample size, the
sample mean’s distribution gravitates towards a normal dis-
tribution. This holds irrespective of the originating popu-
lation’s distribution. Therefore, the mean distribution ex-
trapolated from all possible 120-frame subsets is poised to
achieve normality. Leveraging the Central Limit Theorem,
our diverse 120-frame sample is statistically representative
of the entire 60,249-frame dataset. With the backing of both
LLN and CLT, our method ensures a robust evaluation of
ALINA and CDLEM using CBEM set.

4.4. Sliding Window Vs CIRCLEDAT

In the study by Muthalagu et al. [27], a sliding window
(SW) search algorithm detected lane line marking pixels
with a time complexity of O(m × n), where m and n
represent the height and width of the frame, respectively.
In contrast, our work introduces the innovative CIRCLE-
DAT algorithm, which pinpoints line marking pixels with
a significantly reduced time complexity of O(k), where k
is number of pixels corresponding to the line marking in a
given frame. Prior to introducing CIRCLEDAT, we used the
SW search algorithm to detect taxiway line marking pixels.
Tab. 3 compares the performance of both algorithms when
tested on the taxiway dataset frames.

Table 3. Comparative Analysis of Pixel Detection Algorithms

Algorithm Time Complexity Processing Time (ms)

SW Search O(m× n) 10.90
CIRCLEDAT O(k) 3.33

4.5. Performance Evaluations

We evaluated ALINA’s performance against CDLEM using
CBEM set. By comparing x and y coordinates from both
the CBEM and ALINA or CDLEM, we calculated true pos-
itives (TP) and false negatives (FN). TP indicates accurate
identification of taxiway line marking pixels, while FN de-
notes missed pixels that should have been identified as part
of the taxiway line marking.

The recall or detection rate, essential for evaluating ob-
ject detection algorithms, gauges an algorithm’s accuracy
in identifying the particular objects in a frame [30] [12]. In
airport taxiway line marking detection, missing a marking
can pose safety risks, underscoring the importance of com-
prehensive identification. The detection rate is calculated as
the ratio of TP values to the sum of TP and FN values, as
shown in Eq. (15).

Detection Rate (Recall) =
TP

TP + FN
(15)

ALINA and CDLEM achieved detection rates of 98.45%
and 91.14%, respectively, as shown in Tab. 4. Addition-
ally, in terms of processing time, ALINA processed a frame
in 50.09 ms, corresponding to approximately 19.65 fps,
whereas CDLEM took 120.35 ms per frame, translating to
roughly 8.30 fps.

ALINA’s superior performance is attributed to several
key features. Its perspective transformation provides a
bird’s-eye view of taxiway, eliminating distortions and of-
fering clarity in distinguishing line markings from anoma-
lies—a challenge for CDLEM due to varying distances and
angles. Unlike CDLEM, which may miss essential pixels
using the Hough Transform and curve fitting, ALINA’s shift
to the HSV color space, prioritizing H, S, and V compo-
nents, enhances taxiway line marking detection even un-
der varying weather. The CIRCLEDAT algorithm within
ALINA swiftly captures all crucial pixels of taxiway mark-
ings, regardless of their shape or fragmentation. A notable
limitation of CDLEM is its need to define a new ROI for
each scenario shift, resulting in 120 scenarios for 60,249
frames, demanding extensive video pre-viewing. In con-
trast, ALINA only requires an ROI for the initial frame of a
video, applied consistently to all following frames, leading
to just 3 ROIs for the same number of frames.

Table 4. Comparing ALINA Vs CDLEM

Algorithm Detection Rate (%) Processing Time (ms)
ALINA 98.45 50.09
CDLEM 91.14 120.35

5. Conclusion
In this work, we propose ALINA, a novel annotation frame-
work, primarily designed for labeling pixel coordinates in
taxiway datasets. This approach streamlines the annota-
tion process, significantly reducing cost and manual labor
needed for precise labeling in these contexts. We also
propose a traversal algorithm CIRCLEDAT, which deter-
mines the pixels corresponding to the taxiway line mark-
ings. We provide a comparative analysis with the sliding
window search algorithm and evaluate the performance of
the framework on a subset of the AssistTaxi dataset. We
have tested ALINA with labels generated for 60,249 frames,
and evaluated it with a context-based edge map (CBEM) set
which was generated manually. We also provide theoretical
analysis and a comparative study for ALINA to Contour-
Based Detection and Line Extraction Method (CDLEM).
In the future, we aim to evaluate ALINA for annotating
car lane datasets, with the CIRCLEDAT algorithm being
utilized to identify pixel coordinates of road lane mark-
ings.
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