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Abstract

Visual Language Tracking (VLT) enhances single object

tracking (SOT) by integrating natural language descriptions

from a video, for the precise tracking of a specified object.

By leveraging high-level semantic information, VLT guides

object tracking, alleviating the constraints associated with

relying on a visual modality. Nevertheless, most VLT bench-

marks are annotated in a single granularity and lack a co-

herent semantic framework to provide scientific guidance.

Moreover, coordinating human annotators for high-quality

annotations is laborious and time-consuming. To address

these challenges, we introduce DTLLM-VLT, which auto-

matically generates extensive and multi-granularity text to

enhance environmental diversity. (1) DTLLM-VLT gener-

ates scientific and multi-granularity text descriptions us-

ing a cohesive prompt framework. Its succinct and highly

adaptable design allows seamless integration into various

visual tracking benchmarks. (2) We select three prominent

benchmarks to deploy our approach: short-term tracking,

long-term tracking, and global instance tracking. We of-

fer four granularity combinations for these benchmarks,

considering the extent and density of semantic informa-

tion, thereby showcasing the practicality and versatility of

DTLLM-VLT. (3) We conduct comparative experiments on

VLT benchmarks with different text granularities, evalu-

ating and analyzing the impact of diverse text on track-

ing performance. Conclusionally, this work leverages LLM

to provide multi-granularity semantic information for VLT

task from efficient and diverse perspectives, enabling fine-

grained evaluation of multi-modal trackers. In the future,

we believe this work can be extended to more datasets to

support vision datasets understanding.
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OTB Crowds Official annotation: “the rightmost pedestrian in white”

OTB Human5 Official annotation: “people on the right next to a big tree”
#1 #300 #600

#1 #100 #200

a

b

Misleading text

Misleading text Misleading text

No qualified target

OTB bolt-2 Sequence length: 293 Official annotation: “runner in the middle with white shirt”

#1 #300 #600

Multiple qualified target Multiple qualified target

LaSOT airplane-1 Sequence length: 2788 Official annotation: “white airplane landing on ground”

#1 #300 #600

Misleading text Multiple qualified target

#1 #2400 #11110

Complex text Complex text

MGIT  362 Sequence length: 12703 Official annotation: “A white goose walks to a room in the yard, 

and then the goose is fed by a man with blue jeans in the room. After that, the goose walks to a basin filled with water, and

plays in the basin. Then the goose walks to a small pond with many goldfish in the yard, and plays in the pond. Finally, the 

goose walks to a lake, and plays in the lake.”

Figure 1. Examples of video content and semantic descriptions

on OTB99 Lang [19], LaSOT [3], and MGIT [9] benchmarks.

The green bounding box (BBox) indicates ground truth, while the

red dashed BBox indicates other objects that satisfy the seman-

tic description. (a) and (b) are short sequences in OTB99 Lang

with simple narrative content. Besides, their semantic annotations

mainly describe the first frame, which may misguide the algo-

rithm. (c) Comparison of different text annotations, video length,

and content on three benchmarks. The VLT environment is com-

plex, variable and most of them suffer from issues of inconsistent

text styles and single annotation granularity.

1. Introduction

Single object tracking (SOT) is a crucial computer vision

task focused on tracking a moving object within a video

sequence. Researchers have consistently observed the lim-

ited performance of most trackers in long videos with more

complex video content. Moreover, relying solely on a vi-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
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sual modality greatly constrains the versatility of such sys-

tems. Consequently, several studies have begun providing

semantic annotations for the SOT task, leading to the emer-

gence of the visual language tracking (VLT) task. The pro-

posal of VLT task helps the research of SOT to be more

human-like and broaden its application prospects. Natural

language, in contrast to bounding boxes (BBox), provides a

more user-friendly and intuitive way of describing objects,

allowing for precise descriptions ranging from spatial lo-

cations to high-level semantic details to improve tracking

performance. When defining the VLT task, researchers in-

corporate text annotations from two main viewpoints:

(1) Short text annotation. Representative VLT bench-

marks such as OTB99 Lang [19], TNL2K [27], and LaSOT

[3, 4] primarily employ short text. This concise style of de-

scription is clear and uncomplicated, facilitating the learn-

ing and comprehension of VLT trackers. The utilization of

short text offers the benefit of simplicity and enhanced com-

prehension for VLT trackers. However, these methods are

prone to imprecise semantic descriptions and potential am-

biguities. As illustrated in Fig. 1 (a) and (b), the description

only captures the state of the object at the sequence begin-

ning. As the object moves, the positional constraint in the

semantic information becomes misleading. The reason lies

in the benchmark focus primarily on the initial state of the

object, neglecting changes in the object’s motion through-

out the video. Consequently, semantic descriptions may be-

come restrictive later in the sequence.

(2) Long text annotation. MGIT [9] adopts a multi-

granular semantic annotation strategy from the perspective

of more precise semantic descriptions, providing a way to

annotate complex spatio-temporal causal relationships in

long videos. Compared to other benchmarks, this style ex-

hibits two characteristics: longer text and periodic updates,

evolving from simple to dense, detailed descriptions. How-

ever, this approach faces challenges like time-intensive text

annotations and the need for algorithms with robust text

processing and multi-modal alignment capabilities to effec-

tively utilize the information. As shown in Fig. 1 (c), the

text in MGIT is overly long and complex. Clearly, although

the motivation of these works is to extend SOT task to multi-

modal one to enhance tracking performance, the disparate

styles and singular granularity across most studies not only

hinder algorithms from achieving the desired outcomes but

also escalate the complexity of research on VLT task.

In summary, diverse motivations in existing research re-

sult in varying approaches to integrating textual informa-

tion. In Fig. 1 (c), the three prominent benchmarks differ

in sequence length, text style, and annotation granularity.

Imposing a single standard mechanism for VLT research

appears impractical, given the inherent flexibility and vari-

ability in human comprehension and processing of multi-

modal information. Humans can adeptly leverage various

types of multi-modal information. Rather than enforcing

a rigid task format, optimal design should furnish algo-

rithms with comprehensive environmental data to explore

their capabilities and limitations.

By offering diverse text descriptions of the environ-

ment—encompassing short, long, sparse, and dense for-

mats—and evaluating algorithm performance across these

descriptions, we can effectively discern the strengths and

weaknesses of existing methods under different semantic

granularities, thereby guiding the enhancement of multi-

modal algorithms. What excites us is that the Large Lan-

guage Model (LLM) can facilitate the achievement of this

goal. By seamlessly integrating the LLM into the text gen-

eration process, we can offer a varied multi-modal environ-

ment conducive to VLT research.

Our work focuses on the aforementioned motivations

and designs DTLLM-VLT to achieve diverse text genera-

tion for tracking datasets. Specifically, we combine text

length and generation density to form four granularities

with a uniform style. Based on this, we select MMTrack

[34], a state-of-the-art (SOTA) VLT tracker, for experimen-

tal analysis to verify the impact of diverse texts on algorithm

performance. The experimental results not only demon-

strate that this diversified environment can assist in fine-

grained evaluation and analysis of algorithm capabilities but

also suggest the possibility of further enhancing the multi-

modal learning capabilities of algorithms using generated

data in the future.

The contributions of this paper can be summarized in the

following three aspects:

• We develop DTLLM-VLT, a model based on LLM, aimed

at efficiently generating high-quality scientific text for

tracking datasets at scale. DTLLM-VLT can seamlessly

apply to various tracking tasks.

• We generate diverse text for three prominent VLT bench-

marks, addressing four levels of granularity. This ap-

proach overcomes the limitations of previous bench-

marks, which focused on a single granularity and lacked

a unified semantic framework.

• We conduct an experimental analysis to evaluate the im-

pact of diverse texts on algorithm performance. The re-

sults highlight the benefits of a diversified environment

and indicate the potential for enhancing multi-modal

learning through generated text data.

2. Related Work

2.1. Single Object Tracking Benchmark

The SOT task involves initializing and tracking a specific

object within a video sequence. It begins by identifying the

object through its BBox in the first frame and then proceeds

to locate and follow the object across subsequent frames.

Since 2013, several benchmarks such as OTB [28, 29] and
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Table 1. Summary of current popular tracking benchmarks and Comparison number of language description between official and our

generated text. Italics indicate automatic generation. We provide far more diverse semantic information than the original annotations for

representative environments.

Dataset
Number of Videos Number of Language Description

Train Evaluation Official Dense Concise Dense Detailed Initial Concise Initial Detailed

OTB99 Lang [19] 51 48 99 596 596 99 99

LaSOT [3] 1,120 280 1,400 35.2K 35.2K 1,400 1,400

TNL2K [27] 1,300 700 2,000 12.4K 12.4K 2,000 2,000

MGIT1[9] 105 45 1,753 16.1K 16.1K 120 120
1 As the ground truth of the MGIT [9] test set is not open-sourced, we only generated text for 120 video of the training and validation sets.

VOT [14, 15] have been introduced, providing standard-

ized datasets and scientific evaluation mechanisms to sup-

port SOT research. However, with the advancements in

deep learning techniques, these short-term and small-scale

benchmarks have faced challenges in adequately accom-

modating data-driven trackers. Consequently, researchers

have started designing larger-scale datasets such as GOT-

10k [12] and TrackingNet [20]. Additionally, efforts have

been made to gather data featuring long videos, leading to

the creation of long-term tracking benchmarks like OxUvA

[24] and VOT LT [16, 17]. Some work has also focused

on SOT in drone scenarios, such as BioDrone [33], a vi-

sion benchmark for SOT based on bionic drones. Recently,

researchers have acknowledged that traditional approaches

to both short-term and long-term tracking are based on the

premise of constant movement, a factor that restricts test-

ing to situations involving a single camera view and a static

scene. To expand beyond these limitations, they have intro-

duced the global instance tracking task along with a novel

benchmark called VideoCube [10], which enables the track-

ing of arbitrary moving objects in various types of videos.

To scientifically evaluate the performance of trackers under

different challenging factors, researchers have introduced

SOTVerse [11], a user-defined space for SOT task.

2.2. Visual Language Tracking Benchmark

While visual benchmarks have undergone significant evo-

lution over the past decades, benchmarks integrating vi-

sual and semantic information, known as VLT benchmarks,

have only recently gained traction. OTB99 Lang [19]

stands out as the first VLT benchmark, enhancing sequences

from the OTB100 [29] benchmark with additional natu-

ral language descriptions. However, the limited scale of

the dataset has hindered the widespread adoption of the

VLT task. Subsequently, the release of LaSOT [3, 4], a

long-term tracking benchmark with natural language anno-

tations, marked a significant development. Concurrently,

researchers introduced the TNL2K [27] benchmark in the

same year, aiming to enhance object tracking flexibility

and accuracy through text descriptions. Following these

efforts, researchers proposed a new multi-modal bench-

mark named MGIT [9], which fully represents the complex

spatio-temporal and causal relationships present in long nar-

rative content through a multi-granular annotation strategy.

These three benchmarks have enriched the pool of available

data and facilitated the development of various VLT track-

ers.

2.3. Algorithms for Visual Language Tracking

VLT emerges as a burgeoning multi-modal task aiming to

achieve tracking by leveraging both a language descrip-

tion and an initial template patch. Following the prin-

ciple of similarity-matching, most existing VLT methods

[5, 6, 8, 18, 25, 26, 32] utilize language descriptions and

template patches as references to identify the most similar

object in the search frame. Among these methods, SNLT

[7] presents an adaptable language-based region proposal

network that improves tracking accuracy by employing a

dynamic aggregation mechanism. Meanwhile, MMTrack

[34] introduces a streamlined and effective tracking method,

treating the VLT task as a sequence of token generation.

However, these methods often fail to capture the dynamic

properties of the object, which becomes a critical issue for

robust tracking when the object’s appearance undergoes sig-

nificant changes. To overcome this shortcoming, some VLT

trackers have begun to integrate temporal data to establish

a more dynamic reference. For instance, GTI [30] and

AdaSwitcher [27] identify object by merging tracking and

localization outcomes at every time interval. JointNLT [35]

also takes a step towards this by including temporal infor-

mation as queries during the prediction phase.

Most benchmarks for VLT provide only one natural lan-

guage description per video. Additionally, the existing

benchmarks suffer from inconsistent text annotation styles,

leading to varied mechanisms for incorporating text in-

formation. These discrepancies hinder algorithm evalua-

tion and comprehension of video content. Moreover, these

works all provide semantic information in the form of man-

ually annotated data, which is a time-consuming and labor-

intensive process.
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Figure 2. Comparison of Manual Annotation and Automatic Generation and Framework of DTLLM-VLT. (a) Manual annotation relies

on human labor, only provides one text annotation for each video segment, and cannot guarantee a uniform style. The cost of large-scale

annotation is too high. (b) Automatic Generation can generate diverse text on a large-scale in a unified style. (c) The DTLLM-VLT can

provide dense concise/detailed text generation based on given video frames and BBox of object.

3. Text Generation by LLM

To provide diverse text generation for VLT datasets under

a unified prompt framework and provide algorithms with

more scientific text for evaluation and understanding video

content, we implement DTLLM-VLT to offer large-scale

automatic diverse generated text.

Number of words: 1,922,729

non-repetitive words: 14,822

Figure 3. The word cloud of semantic descriptions and word count

statistics.

3.1. Generation Strategy

The volume and linguistic annotations of the VLT dataset

determine the quality and generality of learned visual lan-

guage representations. Table 1 illustrates that the dataset

comprises only 3,649 videos, specifically 1,400 from La-

SOT [3], 2,000 from TNL2K [27], 99 from OTB99 Lang

[19], and 150 from MGIT [9], which are used for training

and testing. These videos are accompanied by 5,252 official

text descriptions. However, this amount of data is deemed

insufficient for algorithms to effectively learn.

These official annotation suffers from inconsistency in

style, and are only able to describe short-term changes for

the object. The varying annotation styles of the text descrip-

tions make it difficult for trackers to learn general visual

language information, resulting in a significant performance

drop when inferring on new videos with non-official anno-

tations or different language description styles. Moreover,

inaccurate text descriptions hinder object tracking, turning

natural language annotations into a hindrance rather than a

support.

To enhance the accuracy and generality, we propose

DTLLM-VLT, which generates text in a consistent style for

four datasets, establishing a robust foundation for VLT. This
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a person walking on 

the sidewalk1

A person is seen walking away from the camera. She is wearing a white shirt and a helmet, indicating she might be a pedestrian. 

She is located towards the right side of the image, a bit further in the background1

a person walking on 

the sidewalk1 100

a person in a white 

shirt200
a person in white

300

A person is seen walking away from the viewer's perspective. She is wearing a white shirt and appears to be in motion. She is

located towards the left side of the image, and her back is turned towards us.200

A person is seen walking away from the camera. She is wearing a white shirt and black pants, and his back is 

turned towards us. She appears to be in motion, perhaps walking towards the right side of the image.

300

A person is seen walking away from the camera. She is wearing a white shirt and a helmet, indicating she might be a pedestrian. 

She is located towards the right side of the image, a bit further in the background1

A person, dressed in a white shirt, is seen walking across the busy street. She is located in the middle of the 

scene, amidst the bustling traffic, and is one of the several pedestrians making their way across the street.

100

Initial concise

first frame

Initial detailed

first frame

Dense concise

every 100 frame

Dense detailed

every 100 frame

C

D

A

B

a person in a white 

shirt

Figure 4. Examples of the four types of generated text. We provide four different natural language descriptions for each video. The object

to be tracked is determined in the first frame and does not change throughout the video sequence.

generation approach can be expanded to additional VLT

datasets and even applied to text generation in SOT datasets.

Initial and dense text descriptions. Following the text

annotations method in OTB99 Lang [19] and TNL2K [27],

we generate text for the initial frame of each video. Addi-

tionally, given that 4 seconds marks the threshold between

human instant memory and short-term memory [1, 21, 22],

we consider the worst situation and infer that the algorithm

lacks an efficient memory system. Consequently, at 25 FPS,

equating to every 100 frames in 4 seconds, we supply the

algorithm with relevant generated text. We posit that this

update frequency optimally sustains the memory state of al-

gorithm and enhances tracking performance.

Concise and detailed text descriptions. For the algo-

rithm, if the BBox already sufficiently describes the tempo-

ral and spatial changes of the object, the text descriptions

should focus on providing essential semantic details like

the category and positions of the object. In cases where

the BBox lacks sufficient information for effective learning

by the tracker, more elaborate texts are necessary to com-

pensate for the missing temporal and spatial relationships.

Consequently, we generate two types of text descriptions:

concise and detailed. As illustrated in Fig. 2, the concise

text conveys essential information about the object, such as

its category (bear) and position (in the water), while the

detailed text includes additional spatio-temporal details like

color, relative position, and actions.

3.2. DTLLM­VLT

The traditional VLT datasets rely on manual text annota-

tions, as shown in Fig. 2 (a), providing a corresponding

natural language description for each video. This method

incurs high annotation costs, lacks uniformity in style, in-

volves a single annotation granularity, and cannot be used

for large-scale data annotation. To address these issues, we

design DTLLM-VLT based on SAM [13] and Osprey [31],

which can provide large-scale and diverse text generation

like Fig. 2 (b).

The framework of the DTLLM-VLT is illustrated in

Fig. 2 (c). Input video frames and corresponding object

BBox, SAM [13] utilizes image encoder, prompt encoder,

and mask decoder to obtain masks of the corresponding

object and then input the video frames and mask into Os-

prey [31]. Osprey encodes the images and masks, combines

with preset prompts, and generates concise and detailed de-

scriptions of the corresponding object through LLM [2, 23].

Through this approach, we can generate large-scale, di-

verse granularities, and uniform style text for SOT and VLT

datasets at very low costs.
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3.3. Generation Analysis

Combining the aforementioned strategies, we offer four

granularities of natural language descriptions for each

video, namely initial concise description, initial detailed de-

scription, dense concise description, and dense detailed de-

scription, as illustrated in Fig. 4. Our goal is to incorporate

multiple granularities of text to enrich the environment for

algorithm to learn and evaluate, while also providing guid-

ance for algorithm design and model optimization.

Leveraging the DTLLM-VLT, we generate text descrip-

tions comprising 7,238 initial descriptions (3,619 concise

and 3,619 detailed descriptions each) and 128.4K dense de-

scriptions (64.3K concise and 64.3K detailed descriptions

each). Our dense texts are 24.4 times the quantity of the offi-

cial annotations. Further details regarding the number of se-

mantic descriptions are presented in Table 1. The semantic

descriptions contain 1.9M words with 14.8K non-repetitive

words. The vocabulary is rich, allowing for a comprehen-

sive description of changes in the object during the tracking

process. Word cloud and more detailed analyses have been

illustrated in Fig. 3.

3.4. Speed and Memory Usage

We generate diverse text for visual language tracking

datasets on RTX-3090 GPUs, with approximately 16GB of

VRAM usage. It takes about 2 seconds to generate a text

entry for each frame.

Compared to manual annotation, DTLLM-VLT can gen-

erate texts of various granularities for large-scale tracking

datasets in a short period of time. And it can seamlessly

apply to various tracking tasks.

4. Experimental Results

4.1. Datasets and Evaluation Methods

Datasets. We selected three representative datasets,

OTB99 Lang [19], LaSOT [3], and MGIT [9], for evaluat-

ing short-term tracking, long-term tracking, and global in-

stance tracking task. OTB99 Lang [19] and LaSOT [3] are

expanded from the traditional SOT benchmark by adding

language annotations. OTB99 Lang serves as a represen-

tative dataset for short-term tracking task, providing a text

description for the initial frame of each video sequence. La-

SOT is a representative dataset for long-term tracking task.

Its text annotations only describe the appearance of the tar-

get, omitting relative positions. MGIT [9] is a novel large-

scale benchmark specifically tailored for the global instance

tracking task. Text annotations of each sequence contain

complex spatio-temporal causal relationships with a multi-

granular annotation strategy.

Evaluation Methods. As shown in Fig. 4, we follow

generation granularities to design various mechanisms. We

select a SOTA visual language tracker, MMTrack [34] as

a baseline model and evaluate it on three benchmarks (as

shown in Table 2 and Table 3). Compared with other al-

gorithms, MMTrack [34] does not impose restrictions on

the length of the text and does not truncate excessively long

text. Additionally, it unifies the VLT task as a form of to-

ken generation, which is more conducive to learning visual

language information.

To fairly compare the tracking performance on three

datasets, we directly use the officially provided weights to

test with the official annotations, initial concise texts, initial

detailed texts, dense concise texts, and dense detailed texts.

We also retrain and test the model under the corresponding

settings to evaluate Area Under the Curve (AUC), tracking

precision (P), and normalized precision (PNorm).

4.2. Tracking Results

We evaluate MMTrack [34] on three benchmarks, including

OTB99 Lang [19], MGIT [9], and LaSOT [3] with five text

granularities to evaluate the influence of diverse generated

text on tracking performance. All experiments employ joint

language and BBox initialization.

4.2.1 Testing Directly

We directly use the model provided by the official for test-

ing, and the test results are as shown in Table 2.

Short-term tracking. In Table 2, when comparing re-

sults on OTB99 Lang [19], which only provides the text

description of the initial frame and will interfere with the

tracking of the object in the later stage, our initial concise

text achieves gains of 1.6 %, 2.2 %, and 1.6 % in area un-

der the curve, normalized precision, and precision score,

respectively. At the same time, we find that dense concise

text also helps improve tracking performance, for example,

our generated text achieves improvements of 1.2 % in the

area under the curve. We think that the short-term tracking

datasets represented by OTB99 Lang [19], their BBox can

effectively describe the temporal and spatial relationships in

the visual modality. If only the text from the initial frame

is used and cannot describe the temporal and spatial rela-

tionships of the object in the following frame, it will cause

significant interference. The same problem arises in our de-

tailed initial concise/dense text description testing. In this

case, the text only needs to be as concise as possible to assist

in improving tracking performance.

Long-term tracking. The official text annotation of La-

SOT [3] only describes the appearance of the object, ignor-

ing the relative position. Compared to OTB99 Lang [19],

the text description of the object is more accurate. Com-

pared with MGIT [9], there is no excessive interference

from relative position information. It represents a balance

between the two and is most in line with the current al-

gorithm learning method. Therefore, the test performance
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Table 2. Comparison with testing directly on three popular benchmarks: OTB99 Lang [19], MGIT [9], and LaSOT [3]. The best two

results are highlighted in red and blue, respectively.

Method
OTB99 Lang [19] MGIT [9] LaSOT [3]

AUC PNorm P AUC PNorm P AUC PNorm P

Official 69.0 82.0 89.5 73.5 77.2 54.3 69.9 82.2 75.7

Initial Concise 70.6 84.2 91.1 73.9 77.8 54.9 69.0 81.1 74.7

Initial Detailed 68.0 81.5 88.4 72.7 76.2 53.4 68.7 80.7 74.4

Dense Concise 70.2 84.0 90.8 74.2 77.9 55.0 69.1 81.3 74.8

Dense Detailed 68.6 82.4 89.4 72.9 76.6 53.5 69.0 81.1 74.7

Table 3. Comparison with retraining and testing respectively on three popular benchmarks: OTB99 Lang [19], MGIT [9], and LaSOT [3].

The best two results are highlighted in red and blue, respectively.

Method
OTB99 Lang [19] MGIT [9] LaSOT [3]

AUC PNorm P AUC PNorm P AUC PNorm P

Official 69.0 82.0 89.5 73.5 77.2 54.3 69.9 82.2 75.7

Initial Concise 70.0 84.3 90.5 73.6 77.4 54.2 69.6 81.8 75.4

Initial Detailed 70.3 85.6 91.4 74.1 78.3 54.5 69.4 81.5 75.1

Dense Concise 71.3 86.0 92.5 74.0 77.6 54.2 69.5 81.6 75.3

Dense Detailed 69.8 84.8 90.6 74.4 78.5 54.6 69.8 82.1 75.6

with official annotation is the best. However, we believe that

for long-term tracking, providing only a single sentence of

text is not conducive to algorithm learning. And the spa-

tial relationships of the object are crucial. When there are

large-scale and diverse VLT datasets and better approaches

to enhancing video understanding capabilities of algorithm,

this situation observed in LaSOT [3] will soon change.

Global instance tracking. The same situation as

OTB99 Lang [19] appeared on MGIT [9], that is, the per-

formance is improved when tested under initial/dense con-

cise text annotations. Particularly, dense concise annota-

tion excels over the official text, surpassing it by 0.7 %, 0.7

%, and 0.7 % in area under the curve, normalized preci-

sion, and precision score, respectively. MGIT [9] provides

high-quality, multi-granularity long texts containing com-

plex temporal and spatial relationships. From the test re-

sults, we think that the handling of long texts and multi-

modal alignment in the current algorithm requires improve-

ment, as it fails to fully leverage temporal and spatial rela-

tionships. Therefore, concise text can actually help improve

performance. However, temporal and spatial information

are crucial for long-term tracking and global instance track-

ing. When the temporal-spatial information of the BBox

cannot stably determine the object, detailed text is needed to

provide additional high-level semantic information to iden-

tify the object.

Through direct testing and comparison of tracking per-

formance under different texts, it has been observed that the

variation in texts has a significant impact on tracking perfor-

mance. The largest performance difference reached 2.2% in

normalized precision on the OTB99 Lang dataset.

4.2.2 Retraining and Testing Respectively

As mentioned earlier, when the dataset text becomes denser

and more accurate, it can compensate for BBox shortcom-

ings. The algorithm gains additional knowledge through

text updates, potentially improving performance. There-

fore, we retrained and tested MMTrack [34] using varied

generated texts, with tracking results shown in Table 3.

Short-term tracking. It can be seen that on the

OTB99 Lang [19] benchmark, the testing results after re-

training with dense concise text have shown further im-

provement. Compared with the official text, it gains 2.3 %,

4.0 %, and 3.0 % in area under the curve, normalized pre-

cision, and precision score, respectively. This indicates that

providing dense concise text on short-term datasets can fur-

ther improve tracking performance. It also reflects the ca-

pability of the current algorithm to achieve better tracking

even when provided with more accurate text, without the

need for matching learning methods. However, we believe

that the current method of training algorithms to memorize

high-frequency text for enhancing memory capabilities still

needs improvement, the potential of text has not been fully

exploited yet.

Long-term tracking. The results on the LaSOT [3]

benchmark show that official annotations are still more ad-

vantageous for tracking. However, after retraining, the re-

sults on dense detailed text are only 0.1 % from the optimal
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results, indicating an improvement in the algorithm’s un-

derstanding of dense text compared to direct testing, but it

is still unable to fully learn all temporal and spatial infor-

mation.

Global instance tracking. The test results after retrain-

ing based on different texts show that the algorithm can im-

prove its tracking ability on the MGIT [9] benchmark by

learning from dense detailed text, which differs from the

results of direct testing. For global instance tracking task,

it is beneficial for tracking if the algorithm can learn more

comprehensive temporal and spatial relationships.

Comparing the above results, we can draw the following

insights:

(1) The existing algorithm tends to learn and under-

stand short text. The results of direct testing show that

concise text is more beneficial for performance improve-

ment on the OTB99 Lang [19] and MGIT [9] benchmarks.

For OTB99 Lang [19], inaccurate natural language descrip-

tions in official annotations create interference for tracking,

while concise text provides further assurance for BBox that

already expresses temporal and spatial relationships well,

reducing interference. For MGIT [9], the algorithm is un-

able to understand complex temporal relationships and can

only extract semantic information from concise text. Offi-

cial text annotations of LaSOT [3] lie between the two and

are most conducive to the current algorithm, resulting in the

best performance.

(2) For short-term tracking task, dense concise text

will bring greater gains. While dense detailed text is

more suitable for the other two tasks. Looking at the re-

sults of testing after retraining with different texts, dense

concise text has the greatest impact on OTB99 Lang [19].

We think this is because the text provides precise object

descriptions, further compensating for the shortcomings of

BBox. The algorithm can further improve its performance

on MGIT [9] by learning from dense detailed text, because

they can provide high-level semantic information that BBox

cannot exhibit, such as temporal and spatial relationships.

By text updating that best suits the memory system of al-

gorithm, we provide the algorithm with precise and timely

high-level semantic information, which is more helpful for

understanding long video.

(3) The text processing method and multi-modal

alignment ability need to be adjusted and improved. The

current algorithm cannot fully understand and learn com-

plex temporal and spatial relationships. When the text pro-

cessing and multi-modal alignment abilities of algorithm

are adjusted and improved, text with more information will

show even greater potential.

4.3. Visualization

As shown in Fig. 5, we visualize the tracking results of the

retrained model with official and dense concise text on three

OTB Crowds           

dense concise frame #100/200/300: “a person in a white shirt”, “a person in a white shirt”, “a person in white” 

OTB Human5      dense concise frame #600: “woman wearing a brown jacket”
#600 #650 #680

#100 #200 #300

OTB Bolt2            dense concise frame #200: “a man running on a track”
#215 #260 #290

Ground Truth Official Text Dense Concise Retrain

Figure 5. Visualization of tracking results on dense concise text

annotations retrained algorithm.

challenging sequences from OTB99 Lang [19]. In these se-

quences, the official text annotations can only cover a short

time for the changes in the object. The scenes contain dis-

tractors, and the appearance of the object undergoes signif-

icant changes. The retrained model exhibits greater robust-

ness with dense concise text compared to the official one.

This validates that our generated text helps tracker to ad-

dress these challenges.

5. Conclusions

Object tracking is the basis for advanced tasks such as

video understanding, and VLT may offer a potential path

for enhancing tracking capabilities. In this paper, we pro-

pose DTLLM-VLT, a unified prompt framework, and gener-

ate diverse multi-granularity text descriptions. We analyze

the results under different natural language descriptions for

three representative benchmarks, aiming to provide new in-

sights for the evaluation of different tracking tasks.

In our perspective, enhancing algorithm performance re-

quires a comprehensive understanding of the properties of

the datasets. We explore how leveraging the generative ca-

pabilities of LLM can help us improve VLT datasets and

provide a new analytical approach from a multi-modal per-

spective for the field of video understanding. We hope

this work can be expanded to incorporate more datasets,

thereby enhancing support for vision datasets understand-

ing research.
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