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Abstract

Domain Generalization (DG) is a challenging task in
machine learning that requires a coherent ability to com-
prehend shifts across various domains through extraction
of domain-invariant features. DG performance is typically
evaluated by performing image classification in domains
of various image styles. However, current methodology
lacks quantitative understanding about shifts in stylistic do-
main, and relies on a vast amount of pre-training data,
such as ImageNet1K, which are predominantly in photo-
realistic style with weakly supervised class labels. Such
a data-driven practice could potentially result in spurious
correlation and inflated performance on DG benchmarks.
In this paper, we introduce a new 3-part DG paradigm to
address these risks. We first introduce two new quantita-
tive measures ICV and IDD to describe domain shifts in
terms of consistency of classes within one domain and sim-
ilarity between two stylistic domains. We then present Su-
perMarioDomains (SMD), a novel synthetic multi-domain
dataset sampled from video game scenes with more consis-
tent classes and sufficient dissimilarity compared to Ima-
geNet1K. We demonstrate our DG method SMOS. SMOS
uses SMD to first train a precursor model, which is then
used to ground the training on a DG benchmark. We ob-
serve that SMOS+SMD altogether contributes to state-of-
the-art performance across five DG benchmarks, gaining
large improvements to performances on abstract domains
along with on-par or slight improvements to those on photo-
realistic domains. Our qualitative analysis suggests that
these improvements can be attributed to reduced distribu-
tional divergence between originally distant domains.

1. Introduction
The generalizability of deep neural networks in computer
vision is a crucial task that is still challenging [3, 18].
Hence, the specific task of Domain Generalization (DG)
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Figure 1. Top: We define two quantitative measures ICV and
IDD to describe stylistic domain shifts in image datasets for Do-
main Generalization (DG). We find that the vast ImageNet1K,
commonly used for pre-training DG models, has inconsistent class
labels and is already similar in style with photo-realistic domains
found in multiple benchmarks. Therefore, we compile a novel syn-
thetic dataset SuperMarioDomains (SMD) as referential stylis-
tic domains with consistent scene class labels and sufficient dis-
similarity from existing domains. Bottom: We present our DG
approach SMOS that leverages the unique domain shifts in our
new SMD dataset. We first train a Precursor Model using SMD
and cross entropy LossCE. We then utilize the trained Precursor
Model to ground the training of the DG model with training do-
mains from the benchmark, optimizing the empirical loss of both
cross entropy LossCE and Jensen-Shannon Divergence DJS be-
tween the Precursor Model and the DG Model.

has been defined with the aim of improving the generaliza-
tion of models by singling out distribution shifts among data
that belong to independent and identically distributed (i.i.d)
domains [22, 44]. The evaluation of a DG model consists
of performing supervised image classification in a multi-
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source leave-one-out scenario, where one domain is held
out as an unseen test set, and other domains are for training.

The crucial DG strategy is to learn domain-invariant
features from the training domains such as SagNet [42],
CORAL [53], and DANN [17]. More DG benchmarks of
more perplexing stylistic domains and more fine-grained
classes [4, 5, 31, 46, 57] have also been developed for more
comprehensive evaluation of generalizability. However, we
notice potential risks in the current methodology. Most DG
methods solely rely on initializing their backbone models
pre-trained with vast weakly supervised image collections,
e.g. ImageNet1K [13], which overwhelmingly resemble
[38, 55] photo-styled domains in multiple DG benchmarks.
We observe that many DG methods [2, 9, 42, 53, 56] reduce
various forms of qualitative distances among domains, but
lack quantitative understanding of the specific differences
amongst the domains of image styles. Without clarified
and unbiased understanding of the common ground among
training domain examples, generalization onto an unseen
domain would potentially be based upon un-grounded spu-
rious evidence, resulting in inflated DG performance.

In this paper, we present a new 3-fold paradigm for Do-
main Generalization. First, we define 2 quantitative mea-
sures for stylistic domain shifts based on Jensen-Shannon
Divergence [40] - Intra-Class Variation (ICV) within an
individual domain, and Inter-Domain Dissimilarity (IDD)
between two domains. With these 2 measures, as shown in
Figure 1 in the top, we confirm that ImageNet1K is biased
toward domains of photorealistic styles, but also has incon-
sistent representations within its individual class categories.

We then construct a new multidomain dataset dubbed
SuperMarioDomains (SMD) 1. SMD features 4 domains
representing multiple generations of video game graphic
styles, ranging from low-resolution pixels to 3D-rendered
polygon-rich graphics. All domains share 4 classes of in-
game type of scenes that appear consistently throughout
the Mario franchise. Unlike ImageNet1K, SMD’s domains
maintain variable stylistic distances from ImageNet1K in
terms of IDD, while having more consistently labeled ex-
amples than ImageNet1K’s in terms of ICV.

Our proposed DG method SMOS is shown in the bot-
tom of Figure 1. SMOS first trains a precursor model with
domains in SMD. It then trains a DG model grounded by
the distribution represented by the SMD-trained precursor
model. We apply SMOS and find overall improvements on

1As of Mar. 20, 2024, the official content guidelines of Nintendo, who
owns the copyright of all games involved in SMD, has clearly stated they
’will not object to your use of gameplay footage and/or screenshots cap-
tured from games for which Nintendo owns the copyright ... for appropri-
ate video and image sharing sites’ [41]. We will follow this guideline and
publish our work in two forms. Extracted feature vectors and pre-trained
models will be readily available under the MIT license. The SMD dataset
with its raw images will be accessible after agreeing to using the dataset for
fair-use research purposes only under the Open Database License (ODbL).

Dataset Domains Classes Size

ImageNet1K [13] 1 image style 1K objects 1.3M
Places365 [65] 1 image style 365 scenes 1.8M

PACS [36] 4 image styles 7 objects 10K
VLCS [29] 4 photo sources 5 objects 10K
TerraIncognita [5] 4 locations 10 animals 25K
OfficeHome [57] 4 image styles 65 objects 16K
DomainNet [46] 6 image styles 345 objects 587K

SMD (ours) 4 game graphics 4 scenes 82K

Table 1. Statistics of image classification datasets involved in DG.

multiple DG benchmarks. SMOS contributes to the most
significant improvements when targeting abstract-styled do-
mains, for example +7.3% on Sketch of PACS [36], +3.6%
on Clipart of OfficeHome [57], or +8.1% on Clipart of Do-
mainNet [57] over the baselines of MIRO [9]. SMOS also
maintains performance on par with baselines when target-
ing photo-realistic domains, and in some cases, e.g. PACS,
even has improvements. We also observe that SMOS is
able to improve extraction of domain-invariant features and
generalization over domain shifts in quality, as we find that
originally distant stylistic domains are now projected within
considerably smaller distributional divergence.

Our main contributions in this paper are as follows.
1. We propose ICV and IDD as measures for stylistic do-

main shifts in DG benchmarks. Using our measures, we
find that real-world datasets like ImageNet1K used as
pre-training data for DG may not be ideal for obtaining
domain-invariant features due to inconsistent classes and
overt stylistic similarity with training domains.

2. We introduce a new synthetic dataset SuperMari-
oDomains as a precursor dataset for DG, incorporat-
ing unique features of consistent classes of video game
scenes across stylistic domains in video game graphics
that are dissimilar to ImageNet1K.

3. We present our DG method SMOS. SMOS utilizes
SuperMarioDomains to obtain a precursor model that
grounds the training process on DG benchmarks. We
show that SMOS is capable of obtaining top perfor-
mance on multiple DG benchmarks, in particular, via
large improvements on targeting abstract-styled do-
mains together with on-par or slight improvements on
photorealistic-styled domains.

2. Related Works

Synthetic Datasets with Domain Shifts. Synthetic data
has long been used in various disciplines in computer vi-
sion [1, 7, 11, 45, 54, 60]. Recently, we have seen that more
synthetic datasets of distribution shifting domains are being
assembled to encourage more robust algorithms in different
tasks. We have benchmarks studying adaptation between
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synthesized and real-life objects in Syn2Real [47] or SYN-
THIA [50]. Super-CLEVR [39] studies more robust visual
reasoning skills by constructing domains w.r.t. visual ques-
tion answering settings. More specifically, we draw great
inspiration from the GTAV-Cityscapes challenge [10, 49],
adapting from a vast collection of video game landscapes
to real-world scenarios for segmentation. All these works
show that synthetic datasets, though lacking full realism,
may help provide great insight into domain shifts.
Domain Generalization Benchmarks. Early DG bench-
marks such as Office [51] or VLCS [29] focus solely on
photo-realistic images. Since the time when single-style
bias was first exposed by DeCAF [14], more fine-grained
image styles have been introduced to the mix of image
domains, and we have seen a steady increase in scale for
DG datasets, including OfficeHome [57], PACS [36], Ter-
raIncognita [5], SVIRO [12], WILDS [31], Camelyon17
[4], and NICO++ [63]. Currently, the DomainNet dataset
[46] is the largest with 587K images, featuring 6 stylistic
domains and 345 object categories.
Domain Generalization Approaches. Techniques to
tackle the problem of domain shift in Domain General-
ization have been rapidly developed over the years. Re-
searchers are no longer restricted to straightforward ap-
proaches such as finding linear [26] representations with
techniques like interpolation [16, 20, 59, 61] or nonlinear
[15] representations in-between domains. In many circum-
stances, simple methods, such as variants of empirical risk
minimization [2, 23], can produce high performance on
popular domain generalization benchmarks. But recent ap-
proaches to domain generalization can involve adaptation
and combination of deep neural network models such as
DANN [17] and CDANN [37], leveraging Meta-Learning
[34] or Adversarial-Learning [19, 48, 58] to transfer model
parameters, using an ensemble of different architectures
[38], training strategies [28], or regularization methods to
improve generalizability like SWAD [8] or MIRO [9].

3. Preliminaries
In this paper, we focus on the Domain Generalization
(DG) performance of image classification by conducting
Multi-Source Domain Generalization (MSDG), where we
evaluate a model’s performance with leave-one-out cross-
validation. In formal terms, a DG dataset D is divided
into N domains {d1, ...dN}. Each individual domain di
contains images Xdi paired with their class labels Y di .
All domains share the same set of image labels. We
train a model M with the training set (training domains)
Dtr that uses all data from all-but-one domains Dtr =
{(Xd1 , Y d1), ...(XdN−1 , Y dN−1)}. The trained model is
then evaluated using unseen data from the one held-out test
(target) domain as the test set Dte = {(XdN , Y dN )}. No-
ticeably, unlike Domain Adaptation [68], the one test do-

main Dte in DG is not involved in any training and does not
contain samples that overlap with the training domains.

A typical DG model M = f ◦ g consists of two core
components: a feature extractor (featurizer) f as the back-
bone network, followed by a single-layered linear classifier
g. Although more complicated methods have been devel-
oped over the years, the fundamental approach of Empir-
ical Risk Minimization (ERM) [56] remains relevant. In
the context of DG, the goal of ERM is simply minimizing
the classification loss averaged over the N − 1 training do-
mains given training data xi, yi ∈ Dtr :

LERM =
1

N − 1

∑
xi,yi∈Dtr

LCE(f ◦ g(xi), yi). (1)

Although straightforward, the latest baseline ERM [23],
which applies cross-entropy as the training loss LCE, is
shown to rank high in many DG benchmarks [22, 33, 55].

4. Analyses on Domain Shift of Stylistic Do-
mains and Pre-training Data

Risk in Pre-training Data Used for DG. Most DG meth-
ods do not train their model M entirely from scratch.
The model’s initial weights are commonly transferred from
an existing model, typically pre-trained on ImageNet1K
[13]. Researchers [55, 63] have observed that there is
an apparent stylistic resemblance between ImageNet1K
and many domains from various DG benchmarks, such as
the Photo domain in PACS[36], the RealWorld domain in
OfficeHome[57], or even all 4 domains in VLCS [29].

Such a common practice of only depending on a vast
real-world image dataset can be risky. Qualitatively, the im-
ages used for pre-training lack shift in style to adapt from,
e.g. ImageNet1K are dominated by real-world photos. In
addition, the images in ImageNet1K may be inconsistent
within the same class; e.g., images of a class of fish may
or may not include a person holding it. Hence, when we
perform on DG benchmarks by using a model pre-trained
only by such data, we may find it difficult to learn coherent
style-invariant presentations in order to generalize over dis-
tributional shifts among domains, especially when we have
to train with the predominating photo-realistic domains and
test on an unseen abstract-styled domain.
Quantitative Measures of Stylistic Domain Shift. We
would next like to compare the advantages of different DG
pre-training data like ImageNet1K. Inspired by previous
works which examine image similarity [21, 64], we define
two intuitive measures for domain shift in DG: Intra-Class
Variation (ICV) to implicate the class-wise presentation in-
consistency within one specific domain, and Inter-Domain
Dissimilarity (IDD) to implicate the distance in represen-
tation distributions across two domains of styles.
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Figure 2. Intra-Class Variation (ICV) for each domain in featured datasets. A low ICV indicates that the classes are more consistent in
terms of colors, as in NES of SMD, Sketch of PACS, and Quickdraw of DomainNet. Meanwhile, the classes in ImageNet1K, which is
commonly used for pre-training in DG, are implicated to be as inconsistent as those in photo- or art-styled domains, e.g. Photo and Art of
PACS, LabelMe of VLCS, Art and RealWorld of OfficeHome, as well as Real of DomainNet. Average of 3 trials.
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Figure 3. Inter-Domain Dissimilarity (IDD) of ImageNet1K vs. each domain in featured datasets. IDD of ImageNet1K vs. itself is
presumably 0. Since ImageNet1K is dominantly real-world photographs, those with smaller IDD implicate stronger resemblance to the
style of photo-realism, e.g. all 4 domains of VLCS, or Photo of PACS. Highly abstract and simplistic styles, such as Sketch of PACS and
Quickdraw of DomainNet, are shown in very large IDD values on the flip side.

Both measures utilize the symmetric Jensen-Shannon
Divergence (JSD) [40]. Concretely, let P and Q be the es-
timated probability distributions of the RGB channels and
bins (3×256 dimensions), making the outcome set a vector
of length 768. The JSD between P and Q is defined as:

DJS(P,Q) =
1

2
(DKL(P ||M) +DKL(Q||M)) , (2)

where M is the average mixed distribution:

M =
1

2
(P +Q), (3)

and the KL divergence between two distributions P and Q:

DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
, (4)

where P (x) and Q(x) are the probabilities of image in-
stance x in distributions P and Q respectively. DJS ranges
between 0 and 1, with 0 indicating identical distributions
and 1 indicating completely dissimilar distributions.

For Intra-Class Variation of a given image domain, Pi

and Qi represent distributions of two equal splits of samples
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Figure 4. A qualitative overview of our SuperMarioDomains(SMD) dataset, consisting of video frames from actual game footage cate-
gorized into 4 distinctive scene classes and 4 image style domains. Columns from left to right: The four image domains, named after the
console hardware on which each game runs - NES, SNES, N64, and Wii. Rows from top to bottom: The four classes of in-game scenes
- Overworld, Underground, Aquatic, and Castle. These synthetic image styles of SMD are drastically different from those in existing DG
benchmarks, such as realistic photographs, pencil sketches, or oil paintings.

belonging to the same class i. The ICV w.r.t. the domain D
of n classes is the average over all its class-wise JSDs:

ICV (D) =
1

n

n∑
i=1

DJS(Pi, Qi). (5)

For Inter-Domain Dissimilarity between two domains
D1 and D2, the metric straightforwardly computes the JSD
between respective distributions PD1

and PD2
:

IDD(D1,D2) = DJS(PD1
, PD2

). (6)

For fairness, we assume that all image presentations
follow Gaussian distributions with regard to probabilities
of raw RGB values within bins of [0, 255], normalized
by the uniform mean [0.5, 0.5, 0.5] and standard deviation
[0.5, 0.5, 0.5]. In addition to ImageNet1K, we choose to
study the domains in the following DG benchmarks: PACS,
VLCS, OfficeHome, TerraIncognita, and DomainNet. The
ICV for each domain studied is averaged over 3 trials.

In Figure 2, we first compare the ICV of ImageNet1K
with that of every domain in the chosen DG benchmarks.
We discover that, in ImagetNet1K, image representations
within the same class can be as diversely distributed as

those learning samples from photo- or art-styled domains
in DG benchmarks. Meanwhile, domains of highly abstract
styles, such as Sketch in PACS and Quickdraw in Domain-
Net, have drastically low ICV values compared to other do-
mains in their respective benchmarks. According to Table
1, since ImageNet1K also has at least twice as many classes
compared to DG domains, generalization with known sam-
ples solely from high-ICV classes would be difficult to learn
domain-invariant features, especially when the test domain
samples have vastly low variation in feature space.

From Figure 3, we now have a clear view of Ima-
geNet1K’s similarity to existing styles in multiple DG
benchmarks. This can be observed, for example, from the
next-to-0 IDD values of all four domains of VLCS, the
Photo and Art domains of PACS, or the Location38 domain
of TerraIncognita. In contrast, styles of abstract color pat-
terns or textures, such as the Sketch domain of PACS and
the Quickdraw domain of DomainNet, have large IDD val-
ues which suggests large distances from ImageNet1K.

5. Methodology
The SuperMarioDomains Dataset. Taking inspirations
from previous efforts to construct synthetic datasets with
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Figure 5. The pipeline of our SMOS method. The feature extrac-
tion backbones f and fS have an identical structure. f is initialized
with ImageNet1K pre-trained weights. Left: We first train the Pre-
cursor Model fS ◦ gS to learn scene style shifts with SMD. Right:
We then perform DG training with training domains from a DG
benchmark (e.g. PACS), tuning the DG model f ◦ g while being
grounded to the SMD-trained Precursor fS by optimizing LJS.

environments rendered in video games[7, 49, 54], we com-
pile a multi-domain dataset SuperMarioDomains (SMD)
from video game scenes that can be leveraged as precur-
sor data for Domain Generalization experiments. As its
name suggests, our SMD dataset feature synthetic in-game
scenes captured from multiple games in the Mario fran-
chise, with image style domains encompass pixelated mo-
saic 2D graphics in only 50 colors, all the way to high-
polygon 3D graphics in 32-bit colors. We land on 4 classes
of distinct in-game scenes that consistently appear in all
Mario games of our choice. Each scene class has its own
unique traits defined by the combination of terrains, objects,
and texture. To ensure high consistency in image styles and
class labels, we sample our images from video frames of
actual game play footage, - neighboring frames of the same
game segment share the same scene class. An overview of
the samples in SMD is available in Figure 4.

Quantitatively, SMD is designed to counterbalance the
stylistic biases of ImageNet1K by having domains that are
low in ICV and relatively high in IDD. On the left of Fig-
ure 2, we find that the 4 synthetic-styled domains in SMD
have much higher class consistency than ImageNet1K, as
in generally lower ICVs. Also, in Figure 3, SMD’s domains
also keep a series of evenly placed domain shifts in terms of
IDD from the dominating style of ImageNet1K, with NES
being the most distant domain while N64 and Wii not as
close as Photo of PACS or Caltech101 of VLCS.
The SMOS DG Method. Seeing the unique stylistic do-
main shifts in SMD, we are motivated to design a new
DG method with better domain-invariant feature extrac-
tion, learning the domain shifts first from isolated class-
consistent samples in SMD. We present the Scene-grounded
Minimal dOmain Shift (SMOS) method to best leverage the
unique domain shifts in SMD. Figure 5 demonstrates the

SMOS pipeline. We first train a Precursor Model MS =
fS ◦ gS with a Precursor Feature Extractor fS to learn about
the domain shifts of SMD. Sequentially, we train an iden-
tically structured model M = f ◦ g with training domains
from a DG benchmark, while simultaneously grounded by
minimizing the Jensen-Shannon Divergence between distri-
butions of the corresponding feature extractors fS and f .

Formally, the distribution of the Precursor Model MS

is learned with the synthetic scene data DS, namely from
SMD. Given NS stylistic domains of scene image-label
pairs xj , yj ∈ DS, we optimize the cross-entropy loss for
updating MS in a similar form with ERM:

LS =
1

NS

∑
xj ,yj∈DS

LCE(fS ◦ gS(xj), yj). (7)

Together with N training domain images xi ∈ Dtr,
SMOS additionally grounds the training of the DG model
M by minimizing the JSD from the corresponding Precur-
sor Feature Extractor fS:

LJS = DJS(fS(xi), f(xi)). (8)

SMOS optimizes the empirical loss during benchmarking:

LSMOS = LS + LERM + λLJS, (9)

where the coefficient λ is a hyper-parameter that controls
the grounding factor.

6. Experiments and Results
Experiment setups. We use ResNet50 [25] pre-trained
with ImageNet1K [13] as the single default backbone for
feature extractor networks. Our implementation is based
on the source code of DomainBed [23] and MIRO [9]. We
evaluate the performance of SMOS on the following DG
benchmarks: PACS [36], OfficeHome [57], VLCS [29],
TerraIncongnita [5], and DomainNet [46].

Two variants of SMOS are designed to initialize MS dif-
ferently - SMOS− whose fS is initialized from scratch via
Kaiming Initialization [24], and SMOS+ whose fS is ini-
tialized with ImageNet1K pre-trained weights.

We apply the same data augmentations by ERM [23] and
MIRO [9] - each training set image is cropped with ran-
dom size and aspect ratio, resized to 224×224 pixels, ap-
plied random horizontal flips, applied random color jitter,
applied grayscale with 10% probability, and normalized us-
ing the ImageNet channel means and standard deviations.
For hyperparameters, we use a batch size of 16, and the
Adam optimizer[30] for all experiments. The hyperparam-
eters listed in Table 4 are consistent with those used in the
MIRO paper [9], where for each benchmark, we use a dif-
ferent combination of hyperparameters. We divide all do-
mains in SMD by a 4-to-1 training-test ratio to obtain the
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Method
PACS OfficeHome DomainNet

ACS → PAS → PAC → Avg. ACP → RAP → Avg. CSIPQ → RSIPQ → CRSIP → Avg.Photo Cartoon Sketch RealWorld Clipart Real Clipart Quickdraw

ERM [56] 97.0±0.1 79.8±1.0 74.7±0.7 84.2 77.4±0.2 53.2±1.2 67.6 60.9±0.1 50.8±0.2 10.5±0.1 44.0
MIRO [9] 97.3±0.2 80.5±0.5 75.9±1.0 85.4 81.1±0.4 53.8±0.8 70.5 63.4±0.2 54.2±0.8 11.3±0.0 44.3
SMOS−(ours) 98.1±0.0 84.8±0.2 81.3±0.4 88.7 80.7±0.3 57.5±0.3 71.0 63.9±0.3 60.3±0.1 13.9±0.0 44.5
SMOS+(ours) 98.1±0.1 84.8±0.3 83.2±0.6 89.4 80.8±0.4 58.6±0.4 71.6 64.0±0.2 62.3±0.0 14.7±0.0 45.3

Table 2. DG performance on individual target domains. SMOS gains the greatest improvements on abstract-styled domains while main-
taining its performance on photo-styled domains. The letters that precede → denote initial letters of the training domains in the respective
benchmarks. The best results per setting are shown in bold. Average of 3 trials.

Method PACS VLCS OfficeHome TerraIncognita DomainNet Avg.

Mixstyle† [67] 85.2 ±0.3 77.9 ±0.5 60.4 ±0.3 44.0 ±0.7 34.0 ±0.1 60.3
GroupDRO† [52] 84.4 ±0.8 76.7 ±0.6 66.0 ±0.7 43.2 ±1.1 33.3 ±0.2 60.7
IRM† [33] 83.5 ±0.8 78.5 ±0.5 64.3 ±2.2 47.6 ±0.8 33.9 ±2.8 61.6
ARM† [62] 85.1 ±0.4 77.6 ±0.3 64.8 ±0.3 45.5 ±0.3 35.5 ±0.2 61.7
VREx† [32] 84.9 ±0.6 78.3 ±0.2 66.4 ±0.6 46.4 ±0.6 33.6 ±2.9 61.9
CDANN† [37] 82.6 ±0.9 77.5 ±0.1 65.8 ±1.3 45.8 ±1.6 38.3 ±0.3 62.0
DANN† [17] 83.6 ±0.4 78.6 ±0.4 65.9 ±0.6 46.7 ±0.5 38.3 ±0.1 62.6
RSC† [27] 85.2 ±0.9 77.1 ±0.5 65.5 ±0.9 46.6 ±1.0 38.9 ±0.5 62.7
MTL† [6] 84.6 ±0.5 77.2 ±0.4 66.4 ±0.5 45.6 ±1.2 40.6 ±0.1 62.9
Mixup† [59] 84.6 ±0.6 77.4 ±0.6 68.1 ±0.3 47.9 ±0.8 39.2 ±0.1 63.4
MLDG† [35] 84.9 ±1.0 77.2 ±0.4 66.8 ±0.6 47.7 ±0.9 41.2 ±0.1 63.6
ERM† [56] 84.2 ±0.1 77.3 ±0.1 67.6 ±0.2 47.8 ±0.6 44.0 ±0.1 64.2
SagNet† [43] 86.3 ±0.2 77.8 ±0.5 68.1 ±0.1 48.6 ±1.0 40.3 ±0.1 64.2
CORAL† [53] 86.2 ±0.3 78.8 ±0.6 68.7 ±0.3 47.6 ±1.0 41.5 ±0.1 64.5
CCFP [28] 86.6 ±0.2 78.9 ±0.3 68.9 ±0.1 48.6 ±0.4 41.7 ±0.0 64.8
MIRO† [9] 85.4 ±0.4 79.0 ±0.0 70.5 ±0.4 50.4 ±1.1 44.3 ±0.2 65.9

SMOS−(ours) 88.7 ±0.2 79.7 ±0.1 71.0 ±0.0 55.5 ±0.8 44.5 ±0.0 67.9
SMOS+(ours) 89.4 ±0.3 79.8 ±0.1 71.6 ±0.1 55.4 ±0.4 45.3 ±0.0 68.3

Table 3. Average leave-one-out cross-validation performances on multiple DG benchmarks. †are baseline results reported in [9]. The best
results per DG benchmark are highlighted in bold. All accuracies and errors are averaged from 3 trials.

Hyperparameter PACS OH DN TI VLCS

Learning rate 3e-5 3e-5 3e-5 3e-5 1e-5
Dropout 0.0 0.1 0.1 0.0 0.5
Weight decay 0.0 1e-6 1e-4 0.0 0.0
Steps 5000 5000 15000 5000 5000
λ 0.15 0.1 0.1 0.1 0.01

Table 4. Hyperparameters for DG experiments. OH, DN, and TI
respectively stand for OfficeHome, DomainNet, and TerraIncog-
nita. λ is our grounding coefficient for SMOS as in Equation 9.

precursor model MS in SMOS. All experiments are con-
ducted using 2 NVIDIA V100 GPUs.
Domain Generalization Performance with SMOS. We
present the most significant improvements of SMOS on the
individual target domains in Table 2. The key takeaway
is that our SMOS method demonstrates its best strength
when generalizing onto more abstract-styled domains, e.g.
Sketch in PACS, on which baseline methods such as ERM

and MIRO struggle to improve. Using the unique domain
shifts in SMD, our SMOS+ variant achieves large improve-
ments over the state-of-the-art MIRO method by +3.7%
and +7.3% on Cartoon and Sketch in PACS, +3.6% on
Clipart in OfficeHome, and +8.1% and +3.4% on Clipart
and Quickdraw in DomainNet. We also show that SMOS is
able to maintain its performance on photo-realistic domains
on par within the MIRO baseline’s error range. In some
cases, such as PACS and DomainNet, SMOS can even gain
slightly better performance than the MIRO baseline.

A comprehensive comparison of a larger selection of
DG methods on multiple benchmarks is shown in Table 3.
We show that our 2 SMOS variants achieve better overall
performance on the chosen DG benchmarks, thanks to the
particular improvements on abstract-styled domains. Our
SMOS+ variant surpasses the baseline MIRO by +4.0% on
PACS, +0.9% on VLCS, +1.1% on OfficeHome, +4.9%
on TerraIncognita, and +1.0% on DomainNet.
Qualitative Analysis of Domain-invariant Feature Ex-
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Figure 6. Test vs. training domain IDDs resulted from different
DG methods when targeting the Sketch domain of PACS.

Method Precursor Benchmark Avg.
Train. Data DS PACS OfficeHome

ERM - 84.2 67.6
MIRO - 85.4 70.5

SMOS− DomainNet 87.7 65.2
Places365 87.4 66.5
SMD (ours) 88.7 71.0

SMOS+ DomainNet 87.9 70.1
Places365 87.5 66.5
SMD (ours) 89.4 71.6

Table 5. DG performance of using substitute precursor data in
SMOS− and SMOS+. All substitute precursor data are downsam-
pled to the same size of SMD (80k). Average of 3 trials.

traction. We further validate SMOS’ generalizability,
showing it helps project originally distant domains to
closer distributional proximity, which qualitatively impli-
cates improvements in extracting domain-invariant features
and thus better grounded DG performance. We apply our
divergence-based IDD measure between domains that be-
long to the same benchmark, comparing distributions of
representations extracted by different DG methods.

Figure 6 exemplifies the case from the perspective of the
Sketch domain in PACS. In raw RGB distributions, Sketch
is shown to be highly distant from other domains except
Cartoon. When conducting DG image classification tests
on Sketch, baseline DG methods such as ERM and MIRO
are shown to incrementally lower the distributional diver-
gence from Photo and Art, but at the cost of Cartoon which
is originally the most similar to Sketch in RGB. Our meth-
ods SMOS− and SMOS+, along with our SMD precursor
data, universally lower the divergences with all non-Sketch
domains of PACS. Our methods are thus able to extract
domain-agnostic representations within much closer distri-
butional proximity in respective feature spaces, presented
as further improved DG performance on Sketch.
Ablation Study of Substitute Precursor Data with

SMOS. We also experiment with using substitute image
classification datasets as precursor data (DS as in Figure
5) under the SMOS method, while SMD is not involved.
For substitutes, we choose the benchmark dataset Domain-
Net [46] which, on its own, has more different domains of
image styles and more classes compared to SMD, but also
far higher variance in both ICV and IDD than SMD (shown
in Figure 1). We also choose the scene-based Places365-
Standard (Places365) dataset [66] that has 300+ classes of
scenes similar to SMD, but only in one photo-realism style
identical to ImageNet1K. We randomly downsample the
substitute precursor data to the same size of SMD (80k) at
each trial. We use the same 4-to-1 training-test split ratio
when obtaining alternative precursor models. We perform
benchmarking on PACS and OfficeHome.

Table 5 shows the benchmarking performances of using
different precursor data in the SMOS paradigm. We find
that SMOS retains the best DG performance when it uti-
lizes SMD’s unique stylistic domain shifts and scene labels.
In contrast, we see that training the precursor model with
ImageNet1K-like image styles (Places365) or less consis-
tent stylistic domains (DomainNet) leads to lower improve-
ments, if not worse performance, than the baseline methods.

7. Conclusions

In this work, we introduce a new paradigm for Domain Gen-
eralization (DG) on three facets. We define two new mea-
sures, ICV and IDD, to quantitatively understand distribu-
tional shifts in stylistic domains based on Jensen-Shannon
Divergence. We then present a novel precursor dataset Su-
perMarioDomains (SMD) sampled from scenes in video
games, featuring more consistent categorical classes and
dissimilar domains compared to ImageNet1K. We also
demonstrate our new DG method SMOS that leverages
the unique features of SMD as means to ground the train-
ing on DG benchmarks. We find that SMOS along with
SMD reaches top performance on multiple DG benchmarks
through significant improvements on abstract-styled target
domains. SMOS has also been shown to qualitatively im-
prove domain-invariant feature extraction by bringing dis-
tant domains within closer divergence in learned feature
space. In the future, we would like to explore the applica-
tion of our methodology on other tasks, such as Controllable
Text-to-Image Generation or Visual Question Answering.
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