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Abstract

In this work, we address the escalating data labeling
challenge in deep learning, focusing on the effectiveness
of the Active Label Cleaning (ALC) framework in Fine-
grained Visual Categorization (FGVC) tasks. With the ris-
ing complexity of models, crowdsourcing becomes crucial,
but it often introduces noise. ALC, leveraging Active Learn-
ing, proves to be a cost-effective solution for relabeling,
specifically in FGVC datasets. The study explores acqui-
sition functions for efficient sample prioritization and eval-
uates ALC’s suitability in cleaning noisy FGVC data. Con-
tributions made in this paper include simulating crowd-
generated labels, demonstrating ALC’s efficacy in FGVC
scenarios, and highlighting its synergy with noise-robust
learning methods. Prioritizing samples based on model
posteriors and entropy emerges as a promising acquisition
strategy.

1. Introduction
With the increasing complexity and scale of deep learn-
ing models, the data requirements to effectively train them
have analogously increased. In this regard, obtaining data
in this digital age is not as much of a concern as taking
up the painstaking effort of labeling them. Crowd-sourcing
[2, 15, 21] hence becomes a desirable option to obtain la-
bels at large scale, often leading to noisy datasets [7]. This
noise could have emerged from certain ambiguities in in-
put/output spaces such as semantics, wrongful automation
in the process, or the lack of expertise of the crowd for
the particular task. Directly learning a model using a su-
pervised approach on such noisy datasets could harm its
generalization capability as the model could memorize er-
rors. This would also adversely impact the validity of mod-
els during evaluation. If wrongfully deployed, it could po-
tentially have dangerous consequences for sensitive learn-
ing tasks such as in medicine or autonomous driving. The
noise scenarios mentioned above are further exacerbated in
Fine-grained Visual Categorization (FGVC) task where a
fair level of expertise is expected to properly classify im-

ages, for example, dog breeds or fine-grained bird catego-
rization [6, 11, 27]. This is because of the presence of many
categories and only subtle differences between these cate-
gories. Thus, label cleaning through relabelling the data
becomes critical to improve the dataset quality and model
performance.

Relabelling a large dataset manually through experts
would be time-intensive and arduous, in most cases infea-
sible. Bernhardt et al. [4] introduce the framework of Ac-
tive Label Cleaning (ALC) for the task of (automated) re-
labelling of a noisy dataset in a cost-effective manner us-
ing simple data-driven approaches. They use Active Learn-
ing methods to prioritize samples for relabelling consider-
ing the labeling difficulty for the sample (for example, con-
sensus taken from multiple experts to form an opinion for
an ambiguous image) and the total budget. However, they
limit their experiments to CIFAR10H [20] with 10 generic
labels and a noisy version of NIH’s ChestX-Ray8 medical
image dataset [28] with only binary labels. We hypothesize
that non-expert human annotators would likely misjudge la-
bels that have closer semantic connections and thus, FGVC
datasets form a good proving ground. In the absence of
noisy labels, we attempt to generate noisy annotations from
the crowd by utilizing information on semantic and taxo-
nomic relations between categories (see Figures 1a and 1b).
Hence, this work aims to probe the effectiveness of the ALC
framework on FGVC tasks in a more real-world setting.

To achieve our goals, we set forth the following research
questions:

RQ1 Does the Active Label Cleaning framework form
a cost-effective option for relabelling noisy samples for
FGVC datasets?

RQ2 Which acquisition functions are suitable for priori-
tizing samples so that the relabelling procedure is efficient?

Our contributions are: (1) We simulated real-world label
counts from the crowd for the samples of the FGVC datasets
using semantic relations between the categories. (2) We
show that the ALC framework can cost-effectively clean the
noisy FGVC dataset. (3) We show that noise-robust learn-
ing methods complement the label-cleaning procedure. (4)
Finally, we also show that prioritizing samples based on
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Figure 1. Labels in Fine-grained Visual Categorization (FGVC) datasets usually have subtle differences between semantically or taxonom-
ically related labels. Such minute differences might not be picked up by human annotators during crowd-sourcing which results in noisy
labels. (a) shows similar-looking images from the Stanford Dogs dataset but are categorized by different dog breeds that share the same
parent in the WordNet hierarchy. (b) shows images of different categories of birds from CUB-200-2011 dataset that have similar features
and are related by the same type (for example, sub-species of albatross bird-type). (c) provides an overview of the Active Label Cleaning
(ALC) algorithm proposed by Bernhardt et al. [4] which sorts and prioritizes easier noisy samples to relabel to efficiently utilize budget.
(Diagram image courtesy of [4])

their model posteriors and corresponding entropy forms a
good choice for the acquisition function.

2. Related Work

In this section, we briefly review related literature on
FGVC, existing methods tackling learning with noisy la-
bels, and Active Learning (AL).

2.1. Fine-grained Visual Categorization (FGVC)

FGVC involves categorizing images into subgroups within
a broader category, such as distinguishing between vari-
ous bird species (images in CUB-200-2011 dataset [27])
or dog breeds (Stanford Dogs Dataset [11]). This task is
labeled as ”fine-grained” due to its demand for the model
to discern nuanced disparities in visual characteristics and
patterns, presenting a greater challenge compared to stan-
dard image classification tasks. Many works try to learn
the discriminative features in local regions of the image
since the global structure for many categories is similar
[1, 13, 34]. In reality, obtaining accurate annotations for nu-
merous fine-grained categories is hard and requires domain

experts. Hence, it becomes important to explore methods
that could utilize such cheaper information (noisy labels)
to improve accuracy but is still rarely studied in the litera-
ture. Tan et al. [26] use multi-branch attention to learn fine-
grained features from different scales of images to achieve
robust predictions. Wei et al. [33] further show that existing
methods of learning with noisy labels do not achieve sat-
isfying performance for fine-grained datasets and propose
stochastic noise-tolerated supervised contrastive learning to
extract distinguishable features for the categories. Our work
differs in the sense that we first intend to clean the noisy
fine-grained dataset and then utilize it for learning tasks.

2.2. Robust methods in Learning with noisy labels

Methods existing for learning with noisy labels could be
categorized into robust loss function, sample selection, sam-
ple reweight, and label cleaning. Creating a robust loss
function has been studied more in earlier works [14, 16, 30,
35] which intend to provide more generalization capabil-
ity over the simple cross-entropy loss. In sample selection,
correctly labeled points are sampled in the learning process
using some selection criteria. Small empirical loss criteria
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for selection have been studied in [8, 31], and recent works
such as [3, 19, 32] focus more on the history of predictions
that provide more information for selection. Notably, the
co-teaching [8] paradigm simultaneously trains two deep
neural networks where each network selects samples with
clean labels from the mini-batch that are then used to train
the other network. Sample reweighting methods [22, 24] is
a sub-category for sample selection in which samples are
weighted such as with the obtained loss. In label cleaning
methods, noisy labels are sampled based on self-prediction
from the model’s outputs [4, 25, 29]. Active Label Cleaning
(ALC) framework proposed by Bernhardt et al. [4] uses Ac-
tive Learning methods for designing relabelling strategies
that consider both resource constraints and individual sam-
ple difficulty to simulate limited expert interactions. The
ALC framework and co-teaching method for learning with
noisy labels are a primary focus of this work and are hence
covered more thoroughly in Section 3.

2.3. Active Learning (AL)

AL is a machine learning paradigm that emphasizes the
importance of selecting informative data points for model
training. Unlike traditional learning, where the algorithm is
trained on a fixed dataset, active learning allows the model
to choose which examples from the dataset it wants to learn,
actively querying the most valuable examples for improve-
ment. This iterative process of selecting and labeling in-
stances helps the model achieve better performance with
fewer labeled examples, making it particularly beneficial in
scenarios where labeled data is scarce or expensive to ob-
tain. Settles [23] extensively covers this topic in his survey
- ”Active Learning Literature Survey”. He additionally pro-
vides an overview of the different active learning settings,
the key amongst which is the Pool-Based AL [12] exten-
sively used in this work. The pool set takes a different no-
tion in our case, in which all samples are initially present
and criteria are set to pick out noisy samples (easier first) for
relabelling. The criteria for the model to query examples is
usually defined using Acquisition Functions described fur-
ther in Section 4.2. The topic of Noisy Oracles is covered
in the survey paper Section 6.2 which highly relates to this
paper’s goals.

3. Background
In this section, we present some preliminaries for the paper.

3.1. Co-teaching for noise robust learning

This method [8] uses the memorization effect of deep net-
works, where it learns clean labels from easier patterns in
the initial epochs and eventually becomes robust enough to
filter out noisy instances using their loss values assuming
the loss would be less for correctly labeled data (see Algo-
rithm 1). Specifically, two networks f with parameters wf

and g with parameters wg are trained using mini-batches.
Each mini-batch D̄ is passed through f (and respectively
g), which selects a small proportion R(T ) amount of in-
stances with small training loss ℓ forming new mini-batch
D̄f (respectively D̄g). This is used to train the correspond-
ing peer network for parameter updates. The overfitting on
noisy labels in later stages of training is regularized through
R(T ), i.e., R(T ) is kept larger at the start to select more in-
stances and is gradually reduced so that only clean instances
are selected later on.

Input: wf and wg , learning rate η, fixed τ , epoch
Tk and Tmax, iteration Nmax

for T = 1, 2, ..., Tmax do
Shuffle: training set D
for N = 1, ..., Nmax do

Fetch: mini-batch D̄ from D
Obtain: D̄f =

argminD′:|D′|≥R(T )|D̄| ℓ(f,D
′)

Obtain: D̄g =
argminD′:|D′|≥R(T )|D̄| ℓ(g,D

′)

Update: wf = wf − η∇ℓ(f, D̄g)
Update: wg = wg − η∇ℓ(g, D̄f )

end

Update: R(T ) = 1−min

{
T
Tk

τ, τ

}
end
Output: wf , wg

Algorithm 1: Co-teaching algorithm as mentioned in
[8].

3.2. Active Label Cleaning (ALC)

The ALC framework [4] is a sequential label-cleaning
procedure that maximizes the total number of corrected
samples given some resource budget B ∈ N. Sup-
pose, a dataset D = {(xi, L̂i)}Ni=1 is given where xi is
the ith image and L̂i ∈ NC is the corresponding label
counts vector with C classes. The initial (majority) label
ŷi = argmaxc∈{1,...,C} L̂i could be mislabeled in some in-
stances through wrong majority or simulation, and the true
class is y. Unlike conventional AL objectives, the frame-
work’s primary objective is to obtain a clean set of labels
that could further be used for model training and evaluation.

In ALC (see Algorithm 2), a selector model which is a
classifier neural network model, pθ(ŷ|x) parameterized by
θ, is initially trained using the noisy dataset {xi, ŷi}. The
ALC takes place over multiple iterations. In each iteration
of the cleaning procedure, samples are ranked according to
the corresponding ambiguity and predicted label’s accuracy
using acquisition function Φ (detailed in Section 4.2). The
highly ranked sample or a batch of highly ranked samples
is selected for relabelling. In a real-world setting, differ-
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Given: Y = {Li}Ni=1 : True label distributions
Input: D = {(xi, L̂i)}Ni=1 : Noisy dataset
Input: B ∈ N : Budget, r ∈ N : Frequency of

weight updates
θ ← TrainRobustModel(D)
Iavail ← {1, ..., N}, Icleaned ← ∅
count← 0
while count < B do

j ← argmaxi∈Iavail
Φ(xi, L̂i; θ)

repeat
L̂j ← L̂j + Sample(Lj)
count← count+ 1

until majority formed in L̂j ;
Iavail ← Iavail \ {j},
Icleaned ← Icleaned ∪ {j}
D ← {(xi, L̂i) : i ∈ Iavail ∪ Icleaned}
if count%r == 0 then

θ ← Update(θ,D)
end
Output: D

Algorithm 2: Active label cleaning algorithm as men-
tioned in [4].

ent annotators could review the samples until a majority is
formed. The number of annotations required to form a ma-
jority shows the difficulty of the sample and is extracted
from the budget. To automate the annotation process, new
labels are sampled from corresponding label noise distribu-
tion formed by L̂, which could additionally be distorted (for
simulation purposes) using some temperature value. The
remaining samples are again re-prioritized and the process
repeats until the budget B is exhausted. Finally, the selec-
tor model is also fine-tuned at regular intervals using the
corrected labels which improves cleaning performance.

4. Methods

4.1. Creating noisy annotations for the fine-grained
datasets

Stanford Dogs with parent symmetric noise The Stanford
Dogs dataset [11] is a large-scale FGVC dataset that has
20580 annotated images of dogs belonging to 120 species.
The dataset is challenging not only because of its small
inter-class differences (see Figure 1a) but also large intra-
class variations originating from different poses, colors, oc-
clusions, and background settings. This dataset is a subset
of ImageNet [6] and hence, the labels form a semantic hier-
archy or taxonomy derived from WordNet [18]. We utilize
this hierarchical information to simulate noisy label counts
from the crowd as realistically a non-expert human would
be most confused between taxonomically similar breeds.
While the entire dog breed hierarchy is provided in sup-

plementary material, a sub-section of the hierarchy is illus-
trated in Figure 2. We term similar categories for a given
category to belong in the set of sibling labels (SiblingDict)
for the category. For Stanford Dogs, we create sibling labels
for a dog breed by selecting the breeds that share the same
parent node in the hierarchy tree and have no further chil-
dren nodes. Suppose we are given a noise rate ϵ ∈ [0, 1],
label counts for each sample A ∈ N, and a list of sibling
labels for all breeds in the dataset, we generate annotations
using Algorithm 3.

Caltech-UCSD Birds with type symmetric noise The
CUB-200-2011 dataset [27] is another FGVC dataset con-
taining 11788 images of 200 bird species. The species label
here is associated with a Wikipedia article and arranged by
scientific classification (order, family, genus, species). In
the absence of a taxonomy graph to identify sibling labels,
we choose the different varieties in the type of bird species
as the corresponding label siblings. For example, the sibling
labels for Black-footed Albatross would be {Laysan Alba-
tross, Sooty Albatross}, similarly for Black-billed Cuckoo
the sibling labels would be {Mangrove Cuckoo, Yellow-
billed Cuckoo}. The label counts are again similarly gen-
erated using Algorithm 3.

Input: D : Dataset, Nc : No. of classes
Input: SiblingDict, ϵ ∈ N : noise rate, A ∈ N : total

annotators
AllLabelCounts← list()
for n = 1, 2, ..., len(D) do

label← D[n].label
LabelCounts← np.zeros(Nc)
for a = 1, ..., A do

if ChooseNoise(ϵ, 1− ϵ) then
annotation←
ChooseRandomLabel(SiblingDict[label])

else
annotation← label

LabelCounts[annotation]←
LabelCounts[annotation] +1

end
AllLabelCounts.append(LabelCounts)

end
Output: AllLabelCounts

Algorithm 3: Generating label counts for fine-grained
categories.

4.2. Sample selection algorithms

Network trained on noisy datasets for sample selection
As summarized in Algorithm 2, we initially train a deep
neural network to obtain class posteriors, pθ(ŷ|x), and then
use it to identify the noisy labels. To test the effectiveness of
the ALC algorithm, we experiment with two types of train-
ing methods for the classifier.
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Figure 2. (a) shows a sub-section of the intermediate toy dog node from the WordNet hierarchy tree for dog breeds. The sibling labels for
a breed are chosen to be the labels that share a common parent node and no further children. For example, sibling labels for pekinese are
{chihuaua, Japanese spaniel, Maltese dog, shih-tzu, toy terrier} (b) shows the class confusion matrix used to generate annotations with
noise rate ϵ = 0.2, where the noisy label is uniformly sampled from corresponding sibling labels.

First, we train the CNN network with noisy labels
and augmented images by minimizing the negative log-
likelihood loss. It is expected to perform sub-optimally
when prioritizing samples as it would overfit the noise. We
call this selection approach vanilla. Secondly, we use the
co-teaching scheme for noise-robust learning. Since the two
networks when co-teaching learn the easier cases initially,
images that get high-loss values would indicate disagree-
ment with learned knowledge and might have corrupted la-
bels. Training two networks instead of one also prevents a
self-confirmation loop which reduces overfitting. At predic-
tion time, the class posteriors are obtained by simply taking
a mean of the output logits of the two networks.

Additionally, we compare the results of above mentioned
approaches with two baselines as taken in [4] - oracle and
random. The oracle selector simulates perfect ranking in
each iteration by accessing the true label distribution, form-
ing an upper bound. The random selector chooses the next
label from a uniform distribution and forms a lower bound
to the methods.

Acquisition function to prioritize samples for rela-
belling When under budget constraints, the acquisition
function needs to prioritize easier mislabeled samples over
the difficult ones while correctly labeled samples have to be
ranked the lowest. To this end, we experiment with three
variants of the acquisition function. Firstly, we take the
cross-entropy from the normalized label counts of the pre-

dicted posteriors which corresponds to the estimated noise
of the labels. We refer to this method as Posterior.

Φ1(x, L̂; θ) = CE(L̂, pθ)

= −EL̂/∥L̂∥1
[log pθ(ŷ|x)] (1)

Secondly, we need to account for how difficult the image
is for the prediction task. Hence, we also want to depriori-
tize ambiguous cases so that easier case gets relabelled first
to maximally utilize the budget. This could be included
by subtracting the entropy of the sample from the cross-
entropy (Equation 1) as we want to reduce the scores of dif-
ficult samples. We call this method Posterior-Entropy. This
formulation is similar to the Expected Information Gain
(EIG) in [5].

Φ2(x,L̂; θ) = CE(L̂, pθ)−H(pθ(ŷ|x))
= −EL̂/∥L̂∥1

[log pθ(ŷ|x)] + Epθ(ŷ,x)[log pθ(ŷ|x)]
(2)

Finally, since we are working in an AL setting, we also
implement a typical acquisition function that selects the
most informative samples which is the Bayesian Active
Learning by Disagreement (BALD) [10, 17]. BALD checks
for the mutual information between the sample’s label and
the model parameters. Hence, it would rather prioritize
samples that are not frequently seen during training which
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Figure 3. Results of the Active Label Cleaning simulation on the noisy training datasets are plotted for (a) Stanford Dogs dataset, and
(b) CUB-200 bird categorization dataset. Cost-efficient algorithms should be able to maximize the label accuracy (y-axis) for the number
of relabels (x-axis) constrained by budget. The cleaning efficiency of the selectors is also reported as the area under the curve (AUC) of
each plot. The upper bound is set by oracle sampling (in blue) whereas the lower bound is set by random sampling (in red). The standard
deviation over 3 random seeds is shown as a shaded region.

might not be the noisy samples that are easy to relabel.

Φ3(x, L̂; θ) = I(ŷ, θ|x, L̂)
= H[p(ŷ|x, L̂)]− Eθ|L̂[H[pθ(ŷ|x)]] (3)

4.3. Evaluation metrics

Label Accuracy Since we intend to maximize the number
of correctly labeled samples, we use the label accuracy of
the dataset as our primary evaluation metric. It is denoted as
the percentage of correctly labeled samples in the dataset.

Area-under-the-curve (AUC) The AUC for the la-
bel accuracy curve from the ALC procedure provides an
overview of the cleaning efficiency for the various selector
algorithms and datasets using different relabelling budgets.

Classification accuracy This is simply the top-1 classifi-
cation accuracy of the classifier models useful in evaluating
their performance.

5. Experimental Setup and Results
We closely follow the setup of the ALC framework of [4]
using their provided codes. For both of the FGVC datasets,
we take a ratio of 7 : 3 train-validation split and keep a noise
rate of ϵ = 0.2 while generating A = 50 label counts for
all samples in the dataset. In this way, we obtain true label
distribution for each sample. Additionally, to add more am-
biguity and better simulate crowd noise, we scale all label
distributions with a temperature value of 2.0 which results

in a more noise-skewed distribution. From this distribution,
we sample our initial labels for all images. Table 1 summa-
rizes the final dataset statistics.

We use the same type of image encoder ResNet50 [9] as
well as the same optimizer type and augmentations for both
standard vanilla CNN and co-teaching CNNs when train-
ing on the initial noisy data. All hyperparameters used for
training and the convergence plots are provided in the sup-
plementary material. The final model performance on val-
idation data is summarized in Table 2. The budget (B) for
relabelling in the simulation is kept as the expected number
of noisy samples in the dataset which assumes that annota-
tors can correctly re-label all noisy samples on their first try
(AUC = 1.0) which is practically not possible since all our
approaches sample the label from a distribution with some
randomness (see AUC values in Figure 3). The selector
model is fine-tuned every 1000 iteration for 10 epochs with
a static learning rate of 10−6. We additionally run the ALC
simulation using 3 seeds to check for any significant devi-
ations. All codes and experimental setups are available at -
https://github.com/PalAvik/alclean.

5.1. RQ1: Cost-effective Label Cleaning

The results of the sequential relabelling process using the
discussed sample selection methods on the training splits of
both FGVC datasets using the Posterior-Entropy acquisition
function (Equation 2) are plotted in Figure 3. We observe
that both vanilla and co-teaching methods perform better
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Figure 4. Few images with noisy labels picked from top-10 (in the first row) and bottom-10 (in the second row) when ranked for relabelling
during the first iteration of ALC. The high-prioritized images share very different features between the correct and the incorrect initial dog
breed labels. Contrarily, low-prioritized images share very similar features making them difficult to re-annotate.

Table 1. Statistics of FGVC datasets with noise.

Train Val

Dataset Size Noise % Size Noise %

Stanford Dogs 14405 46.7% 6175 46.9%
CUB-200 8251 39.9% 3537 39.5%

Table 2. Classification accuracy (%) of the vanilla and co-teaching
classifiers on both noisy and clean versions of the validation set.

Dataset Classifier Noisy val Clean val

Stanford Dogs vanilla 18.494 27.385

co-teaching 21.781 33.23

CUB-200 vanilla 24.682 33.051

co-teaching 26.096 34.295

than the random selector which shows that prioritizing eas-
ier labels with noise forms a cost-effective way for label
cleaning under budget constraints. For example in the plot
for Stanford Dogs (Figure 3a), the vanilla and co-teaching
approaches can reach a label accuracy of 62.5% using 1.2×
and 1.5× fewer re-annotations respectively. Similarly for
CUB (Figure 3b), the vanilla and co-teaching approaches
can reach a label accuracy of 68% using 1.4× and 1.5×

fewer re-annotations respectively. We also see that the co-
teaching approach performs better than vanilla in prioritiz-
ing noisy labels, showcasing that some noise-robust learn-
ing complements the ALC procedure.

For qualitative analysis, we also plot some images from
the Stanford Dogs dataset which is at the top of the priority
for relabelling in the first iteration of ALC in row 1 of Figure
4 and some bottom-ranked images in row 2 of Figure 4. We
can observe that the top-ranked images have initial labels
of dog breeds that have very different features and probably
could be easily re-annotated, for example, the noisy initial
label - Shetland sheepdog has very different features from
the observed image of Border Collie. Similarly, we observe
that the bottom-ranked images are indeed difficult cases, for
example, the breed Yorkshire Terrier shares many similar
features with an Australian Terrier and might need more re-
annotations from experts which utilizes resources from the
budget.

Hence, both quantitatively and qualitatively we note that
the ALC framework is a cost-effective method for rela-
belling FGVC datasets.

5.2. RQ2: Acquisition function better at the label
cleaning task

We experiment with the acquisition functions (AFs) de-
scribed in Section 4.2 for scoring and prioritizing samples
for relabelling. We first run ALC applying the AFs us-
ing both vanilla and co-teaching selectors to clean the val-
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Table 3. Classification accuracy (%) before and after label cleaning using different acquisition functions. The best accuracy and approach
are highlighted in bold for each dataset-selector combination.

Dataset Selector/Classifier Before cleaning Acquisition Function After cleaning

Stanford Dogs

vanilla 18.494
BALD 20.664

Posterior 22.121

Posterior-Entropy 22.219

co-teaching 21.781
BALD 23.158

Posterior 26.316

Posterior-Entropy 26.591

CUB-200

vanilla 24.682
BALD 26.378

Posterior 27.622

Posterior-Entropy 27.735

co-teaching 26.096
BALD 27.113

Posterior 29.658

Posterior-Entropy 30.054

idation set of the corresponding FGVC dataset using the
same relabelling budget. We then evaluate the classifier
model (same as the selector) using the cleaned validation
set. The results of this experiment are summarized in Table
3. The Posterior-Entropy AF shows the best classifica-
tion performance in all experiments indicating its capa-
bility to prioritize samples for better budget efficiency.
It marginally improves upon the Posterior method proving
that adding the entropy term to discern between ambiguous
and simple noise is helpful. We expect the margin of im-
provement to increase further when there is more ambigu-
ous noise in the data. The BALD AF performs poorly which
shows that prioritizing samples based on their disagreement
does not necessarily correspond to noisy labels and is hence
not suitable for the label cleaning task.

6. Conclusions, Limitation, & Future Work

This work investigated the effectiveness of the Active La-
bel Cleaning framework proposed by Bernhardt et al. [4]
when we have a noisy Fine-grained Visual Categorization
(FGVC) dataset. We experimented with Stanford Dogs and
the Caltech-UCSD Birds with artificially generated anno-
tations from the crowd which simulates noise based on se-
mantic (taxonomical) connection between labels with sim-
ilar image features. Based on our experimental results, we
can conclude that the framework can efficiently clean noisy
samples in FGVC datasets under budget constraints. We
also show that typical acquisition functions used in Active
Learning such as BALD are not well suited for the label-
cleaning task. An acquisition function that apprehends the

noisiness of sample from model posteriors along with the
penalty of corresponding sample ambiguity captured from
entropy is better suited for scoring and ranking samples for
the task.

Due to system memory limitations, we were not able
to experiment with larger budgets when relabelling and
hence could not reach a point of a fully cleaned dataset.
This would have provided clearer demarcation between
the performance of the various selection algorithms. Ad-
ditionally, due to time constraints, we could not experi-
ment with more noise-robust learning methods or even self-
supervised methods and leave this for future work. Fur-
thermore, it would also be interesting to include the hi-
erarchical/taxonomical information for ranking noisy sam-
ples.
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