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Abstract

In the realm of object detection, training models with
limited, unlabelled data from target domains presents sig-
nificant challenges. This study focuses on the critical is-
sue of optimizing image dataset selection to enhance ob-
ject detection performance, especially when dealing with
small sample sizes and closely-related target data that lacks
predefined labels. Our proposed method adopts an inte-
grated approach that combines data exploration, pseudo la-
beling, and strategic image selection from varied datasets,
e.g. COCO and KITTI. By ranking source images based
on their image-wise Average Precision (AP) scores fol-
lowed by mosaic augmentation on selected images, experi-
mental results demonstrate the efficiency of this data selec-
tion mechanism, indicating significant advancements in ob-
ject detection performance and domain adaptability. Our
method won the 2nd DataCV Challenge with the AP of
0.2285, achieving a 0.052 AP increase over the baseline
method. This work offers a robust pathway to overcome key
challenges in applying object detection models across var-
ious domains, particularly in scenarios with limited anno-
tations from target set. Our codes have been available at:
https://github.com/welovecv/datacv.

1. Introduction

Object detection represents for a cornerstone in the field
of computer vision, with widespread applications ranging
from autonomous driving to surveillance systems. The ef-
fectiveness of object detection models, such as RetinaNet
[14], heavily relies on the quality and diversity of the
datasets used for training. Typically, these models are
trained and evaluated on benchmark datasets like COCO
[13] and KITTI [6], which are meticulously annotated and
curated to represent a wide array of scenarios and object cat-
egories. In practice, acquiring annotated data from the tar-
get domain is often impractical due to time, privacy, or cost
constraints, rendering traditional data labeling approaches
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unfeasible.
In practical applications, a significant challenge arises

when deploying these models in real-world environments:
the discrepancy between the data characteristics of the
source (training) and target (deployment) domains, of-
ten leading to degraded performance. This phenomenon,
known as domain shift, has spurred research into domain
adaptation techniques, aiming to bridge the gap between
source and target datasets without requiring extensive label-
ing efforts for the latter [4, 12, 24]. Traditionally, domain
adaptation has focused on modifying the model or its learn-
ing process to better align with the target domain’s char-
acteristics. While effective, these methods can be complex
and computationally intensive, requiring substantial tuning
and expertise.

Semi-supervised learning [9, 23, 26] aims to address the
challenges posed by limited labeled data. These strategies
leverage a small amount of labelled data alongside a larger
volume of unlabelled data to train models, potentially offer-
ing a partial solution to the annotation scarcity in real-world
applications. However, while semi-supervised learning pro-
vides a valuable framework for utilizing unlabelled data,
its effectiveness is inherently dependent on the relevance
and quality of the available labelled data. In the context
of object detection, where the domain shift can be partic-
ularly pronounced due to variations in scene composition,
lighting, and object scales, the standard semi-supervised ap-
proaches may fall short without careful selection and use of
the training images [15, 19].

Parallel to domain adaptation, active machine learning
has emerged as a paradigm to optimize the training process
by selectively querying the most informative data points
[2, 16]. In the context of object detection, this translates
into identifying and utilizing the images that would most
improve the model’s performance if added to the training
set. However, active learning typically depends on existing
annotations or additional labeling, posing a challenge for its
application in real-world scenarios.

In response to these challenges, our research proposes a
novel integration of domain adaptation and active learning
principles, aimed at enhancing RetinaNet’s performance.
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Figure 1. The flowchart of our method for curating a targeted training subset from a diverse source pool to enhance object detection
performance using RetinaNet. The methodology commences with data exploration to comprehend the intrinsic characteristics of the target
training set, followed by employing the pre-trained RetinaNet model to infer pseudo labels for unsupervised data alignment. Utilizing
image-wise Average Precision (AP) ranking, the most pertinent subset is selected, which is then augmented through mosaic augmentation
techniques to enrich feature representation. The approach culminates in applying the refined model to the target test set, demonstrating the
efficacy of strategic dataset curation and augmentation in transfer learning scenarios.

By leveraging unlabelled target data and a strategic im-
age selection based on image-wise average precision (AP)
rankings, we circumvent the need for additional annotations
while effectively addressing the domain shift. This method
not only simplifies the adaptation process but also ensures
the training focuses on the most relevant and representative
samples from the source dataset. Our approach signifies a
pragmatic step forward in the application of object detection
models, paving the way for more adaptable and efficient so-
lutions in diverse operational environments.

The main contributions of this work include:

• Introduce a novel method that utilizes image-wise AP for
selecting the most relevant training data, and experimen-
tal results demonstrate its advantage.

• Implement an analysis of bounding box distributions to
guide the selection of data sources, thereby ensuring a
comprehensive representation of object variations within
the training set.

• Employ mosaic augmentation on strategically chosen im-
ages to increase the training data’s variance, effectively
broadening the model’s exposure to diverse scenarios and
enhancing its generalization capabilities in reality.

2. Related Work
2.1. Clustering Methods

The primary goal of clustering analysis is to reveal the
inherent structures and relationships among data points.
Within this paper, the partition-based clustering algorithm
is selected for detecting data similarity.

K-Means Clustering [7] is a classic partition-based
clustering algorithm that operates with a given parameter
K: (1) Randomly initialize K cluster centroids; (2) Assign
each data point to the nearest centroid, thus forming clus-
ters; (3) Calculate the mean of each cluster and set it as the
new centroid. Steps (2) and (3) are iterated until a termina-
tion condition is met (e.g., no data points change clusters).
In the SnP Framework[21], K-Means is applied to cluster
the feature of the source dataset.

2.2. Search and Pruning Framework

The Search and Pruning Framework (SnP) [21] pro-
posed in the baseline is a method for searching train-
ing dataset. The classical SnP approach consists of two
main steps: Target-specific Subset Search and Budget-
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Figure 2. A composite of several scatter plot matrices from the perspectives of position and size for source datasets. COCO dataset presents
significant diversities for both metrics, which is ideal for building a balanced dataset for the object detection compared with the others.

constrained Pruning. These steps collaboratively select a
training set from the source pool. The selected set is both
budget-compliant and sufficiently similar to the target set.

Target-specific Subset Search initially employs the In-
ceptionV3 network to extract features from all images in the
source pool and the target set. Subsequently, K-Means clus-
tering is applied to the images in the source pool, dividing
them into K clusters. The Fréchet Inception Distance (FID)
[8] from each cluster to the target set is then computed. The
clusters are sorted in ascending order by FID and progres-
sively merged to construct S∗ until the FID between S∗ and
the target set no longer decreases.

Budget-constrained Pruning aims to trim the candidate
training set S∗ to obtain an efficient training set DS that ad-
heres to budget constraints b = (n,m), where n and m rep-
resent the upper limits for the number of identities and im-
ages, respectively. All images under n identities are initially
selected from S∗ to form a subset Ŝ. A sampling method
that minimizes the difference between DS and Ŝ is then ap-
plied to derive the final training set DS with m images.

2.3. Object Detection

RetinaNet [14] and the YOLO [17] series, specifically
YOLOv5 [10] and YOLOv8 [11], have been influential in
the domain of object detection. RetinaNet is notable for its
innovative use of Focal Loss, which effectively addresses
the class imbalance problem in object detection by mainly
focusing on hard-to-detect objects, thus significantly im-
proving detection accuracy. The YOLO series, known for
its real-time detection capabilities, has evolved from its ini-
tial version to YOLOv5 and YOLOv8. These later ver-
sions incorporate advanced techniques like Cross Stage Par-
tial networks (CSP) and Path Aggregation Networks (PAN),
enhancing both the efficiency and performance of the mod-

els. This progression marks a significant shift towards more
practical and deployable object detection solutions.

3. Problem Statement and Method

3.1. Problem Statement

The major task of this competition[1, 21] is to search
small-scale, yet highly effective training sets from a large-
scale data pool such that a competitive target-specific model
can be obtained. We need to select a subset DS from the
Source S based on the relationship RS,T we discovered be-
tween Source S and Target T . It can be formulated as an
optimization issue, with the following structure:

argmax
DS ,RS,T

PM (DS , T |RS,T ) (1)

s.t. DS ∈ S

|DS | ≤ C,

where PM is defined as the performance of detection model
M which is trained on DS with a budget C.

3.2. Distance vs. Image-wise Average Precision

In this challenge, the core problem is determining a met-
ric between dataset from source pool and target pool.

Fréchet Inception Distance (FID)[8] is commonly em-
ployed to evaluate the distance between two distributions,
which can be expressed as:

FID = ||µS − µT ||2 + Tr(ΣS +ΣT − 2(ΣSΣT )
1/2) (2)

in which µS and µT are derived from the activation of an
Inception-v3 network [18] when applied to two different
sets of images, ΣS and ΣT are the covariance matrices of
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Dataset AP AP50 AP75 APS APM ARL ARS ARM ARL

ADE[25] 0.098 0.241 0.064 0.004 0.097 0.309 0.028 0.177 0.425
BDD[22] 0.078 0.188 0.054 0.001 0.080 0.277 0.029 0.149 0.038

Cityscapes[3] 0.070 0.176 0.044 0.003 0.061 0.254 0.021 0.121 0.359
COCO[13] 0.119 0.295 0.079 0.006 0.124 0.343 0.041 0.226 0.475

DETRAC[20] 0.088 0.220 0.056 0.006 0.099 0.244 0.004 0.162 0.398
KITTI[6] 0.060 0.158 0.037 0.007 0.065 0.177 0.006 0.109 0.336
VOC[5] 0.064 0.141 0.047 0.005 0.058 0.240 0 0.092 0.421

ALL 0.113 0.267 0.081 0.002 0.113 0.339 0.030 0.218 0.470

Table 1. Comparison of experimental results obtained by randomly selecting 1,990 images from each corresponding dataset to use as a
training set.

Dataset Images Boxes
ADE[25] 3,048 12,543
BDD[22] 68,943 700,703
Cityscapes[3] 2,831 26,929
COCO[13] 12,251 43,867
DETRAC[20] 82,266 503,853
KITTI[6] 7,481 40,570
VOC[5] 1,990 4,008

Table 2. Statistical comparison among datasets from source pool
from the perspective of numbers of images and bounding boxes.
The total number of images is 178,810.

the activation for the two sets of images, i.e. source and tar-
get. The trace operation, Tr(·), sums the diagonal elements
of a matrix.

Average Precision (AP) is a widely utilized evaluation
metric for the object detection, which involves calculating
precision and recall by intersection of union of predicted
bounding and ground truth boxes under different thresholds,
which is denoted as:

AP =
1

N

∑
r∈R

Pinterp(r), (3)

in which Pinterp(r) denotes the interpolated precision at re-
call level r, R denotes the set of recall values ranging from
0 to 1 with increments of 0.1, and N represents the total
number of recall levels, namely 11 in our case [5].

4. Experiment
4.1. Dataset Description

In this competition [1], source pool includes more than
170,000 images from ADE [25], BDD [22], Cityscapes[3],
COCO [13], DETRAC [20], KITTI [6] and VOC datasets
[5]. Statictical distribution of source pool is presented from
Table 2.

To better understand the data for dataset source selec-
tion, we undertake localization distribution comparison by
sampling 1,990 images from these datasets. In this exper-
iment, the normalized centers of bounding boxes are taken
into consideration, the result of which is demonstrated from
the Figure 3.

The target dataset, Region100, which consists of im-
ages from 100 static cameras around the world, poses chal-
lenges to the participants. To begin with, the angle of
view, brightness and image quality varies from different
cameras, and inconsistency affects feature extraction, as
models must adapt to diverse conditions. Additionally, the
dataset features densely vehicles, complicating accurate lo-
calization, especially for remote objects. Moreover, manual
erasing manipulations on test images can lead to discrep-
ancies between training and testing data, affecting model
performance. Addressing these challenges requires innova-
tive training approaches to ensure adaptability across varied
imaging conditions.

4.2. Dataset Selection

Our method consists of several stages. First, we select a
data source from seven datasets (see Table 2) by analyzing
the distribution of bounding boxes. Our experiments indi-
cate that the COCO dataset exhibits an even distribution in
terms of localization and size, as depicted in Figure 2.

To compare the efficiency of difference datasets, we ran-
domly select 1,990 images from each source dataset and
conduct training based on each dataset respectively.

4.3. Implementation Details

In this scenario, where multiple labeled datasets are avail-
able and the target data is unlabeled, one approach for image
selection involves extracting features and filtering to retain
the top 8000 images from the source dataset that are closest
in distance to the target set.

Another approach employs the transductive learning
paradigm [27], where the unlabeled data is labeled using
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Method AP AP50 AP75 APS APM ARL ARS ARM ARL

Random 0.189 0.427 0.146 0.025 0.212 0.437 0.095 0.316 0.551
Random+Mosaic 0.206 0.463 0.159 0.021 0.226 0.472 0.101 0.315 0.548

SnP 0.209 0.460 0.164 0.029 0.232 0.467 0.111 0.339 0.572
SnP+Mosaic 0.218 0.488 0.168 0.029 0.238 0.487 0.119 0.332 0.564

AP 0.230 0.477 0.191 0.035 0.252 0.520 0.096 0.348 0.610
AP+Mosaic 0.226 0.500 0.178 0.028 0.248 0.502 0.126 0.342 0.579

Table 3. Comparison of inference scores across different methods(trained on COCO[13]) on TestA (maxDets=1000).

Method AP AP50 AP75 APS APM ARL ARS ARM ARL

SnP-baseline 0.176 0.386 0.141 0.016 0.211 0.440 0.087 0.304 0.544
Random-COCO 0.188 0.420 0.147 0.023 0.218 0.430 0.100 0.323 0.541

AP-COCO 0.226 0.466 0.192 0.032 0.251 0.525 0.090 0.351 0.619
AP-COCO+Mosaic 0.228 0.494 0.184 0.031 0.254 0.509 0.121 0.347 0.582

Table 4. Comparison of inference scores across different methods on TestB (maxDets=100).

a pretrained model. As shown in Figure 1, the framework
of our work mainly comprises of two parts, dataset selec-
tion and mosaic augmentation on the selected images. We
introduced YOLOv8x model on the train part of the target
set to generate pseudo labels to estimate distribution of the
entire target set. We then train a RetinaNet model based on
pseudo labels to build a metric to evaluate image-wise sim-
ilarity from the object detection region. Since ground truth
from source set is available, image-wise AP is adopted as
the metric for image selection.

We follow the hyper-parameter setting of RetinaNet
training. The backbone of the model is ResNet-50, and
IoU threshold is set as 0.5. Input images are resized into
1,333×800 with the original ratio. The training protocol
initiates with a warmup learning rate for the initial 500 iter-
ations, followed by an adjustment to 1e-3 before the com-
mencement of the 8th epoch. The learning rate is further
reduced to 1e-4 at the subsequent two epochs and finally to
1e-5 at the last epoch. For the experiments for dataset selec-
tion, batch size is set as 4, whereas, for other experiments,
it is reduced to 2.

4.4. Main Results

In evaluating different datasets for the object detection,
the COCO dataset stands out, as evidenced by our experi-
mental results, as shown in Table 1. It exhibits superior Av-
erage Precision (AP) and Average Recall (AR), particularly
in AP50 and large object recall. The COCO dataset’s com-
prehensive annotations and diverse image collection make
it an ideal source dataset, facilitating the development of
robust and generalized object detection models. Its perfor-
mance across varied metrics underscores its effectiveness

and justifies its selection as the preferred dataset for enhanc-
ing object detection methodologies.

Table 3 and 4 show performance evaluation of several
methods on TestA and TestB, respectively. ”Random” de-
notes randomly selecting 8,000 images from COCO dataset,
and ”SnP” takes target-train datasets, namely from target
to find out the training image dataset with the nearest dis-
tances. Note that our proposed methods, i.e. ”AP” and
”AP+Mosaic”, outperform others on the majority of of eval-
uation metrics.

Experimental results underscore the advantages of com-
bining AP with Mosaic augmentation: a substantial boost
in detection accuracy, especially for larger objects, and a
balanced improvement across varying object sizes and de-
tection thresholds. This hybrid approach proves to be highly
effective for enhancing the robustness and accuracy of ob-
ject detection models. Figure 3 demonstrates advantage of
our proposed methods when comparing with the baseline
approach.

4.5. Ablation Study

Within this comparative analysis, we examine the im-
pact of mosaic augmentation on the spatial distribution of
bounding box (bbox) center points within image datasets,
visualized through heatmaps. The original dataset’s distri-
bution [Figure 4 (a)] indicates a pronounced central concen-
tration of bounding box centers, suggesting a spatial bias
that may hinder the performance of object detection mod-
els.

Implementing mosaic augmentation, a technique that
combines multiple images into a single training sample, re-
sults in a markedly altered distribution [Figure 4 (b)]. This
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Figure 3. Visualization of predictions on sample images from testA via baseline model and AP+Mosaic model. Green bounding boxes
denote groundtruth while red ones are predictions with corrresponding models.
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Figure 4. Comparison of bounding box center distributions before
and after applying the mosaic augmentation. (a) shows the original
dataset distribution, while (b) demonstrates the diversified object
locations resulting from the mosaic augmentation.

method not only augments the dataset size but also enhances
object location diversity. The post-augmentation heatmap
reveals a distinct quadripartite structure, reflecting the mo-
saic’s composition, thereby significantly expanding the di-
versity of object positions and orientations.

The advantage of mosaic augmentation is twofold: it
mitigates the central bias prevalent in many datasets and
introduces a wider array of contextual scenarios, thereby
enabling models to learn from a more varied set of exam-

ples. This approach is particularly beneficial for improving
model robustness and generalization, as evidenced by the
more uniform distribution across the entire image space, en-
suring enhanced object detection across diverse spatial con-
texts.

5. Conclusion

This work presents the innovative approach for optimiz-
ing object detection models by refining the dataset selection
process. By leveraging image-wise Average Precision (AP)
for dataset curation, we ensure the inclusion of the most
impactful images, leading to a more relevant and focused
training set. Our methodology integrates a detailed analy-
sis of bounding box distributions, facilitating informed de-
cisions that enhance the robustness and diversity of object
scenarios within the dataset. The implementation of mo-
saic augmentation further enhances this effect, expanding
the training data’s variance and thus, the model’s adapt-
ability to diverse real-world situations. Experimental re-
sults affirm the advantage of our proposed strategy, partic-
ularly in improving detection precision across various ob-
ject sizes and IoU thresholds. Future work will focus on
exploiting fusion of selected images and augmented im-
ages.
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