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A. Datasheet
In light of the growing recognition of the pivotal role that
datasets play in shaping the behavior and outcomes of ma-
chine learning models, this section adheres to the frame-
work proposed in the Datasheets for Datasets paper [14].
Acknowledging the potential consequences of mismatches
between training or evaluation datasets and real-world de-
ployment contexts, as well as the risk of perpetuating soci-
etal biases within machine learning models, we embrace the
call for increased transparency and accountability in docu-
menting the provenance, creation, and use of machine learn-
ing datasets [39]. By adopting this standardized reporting
scheme, we aim to provide a comprehensive understanding
of our dataset’s motivation, composition, collection process,
and recommended uses. This adherence to the datasheets
for datasets framework aligns with the broader objective of
enhancing transparency, mitigating biases, fostering repro-
ducibility, and aiding researchers and practitioners in select-
ing datasets tailored to their specific tasks. In the following
subsections, we systematically address the key questions
outlined in the datasheets for datasets, providing a thorough
account of our dataset’s characteristics and attributes.

A.1. Motivation
For what purpose was the dataset created? The Drone
Depth and Obstacle Segmentation (DDOS) dataset, was
created to address the limitations posed by the scarcity of
annotated aerial datasets, specifically for training and eval-
uating models in depth and semantic segmentation tasks.
The primary objective is to focus on the detection and seg-
mentation of thin structures like wires, cables, and fences in
aerial views, which are critical for ensuring the safe opera-
tion of drones. The dataset aims to fill the gap in existing
datasets that predominantly concentrate on common struc-
tures and lack representation of fine spatial characteristics
of thin structures.

Who created the dataset? The dataset was created by
Benedikt Kolbeinsson and Krystian Mikolajczyk.

A.2. Composition
What do the instances that comprise the dataset rep-
resent? The instances in the dataset represent individual
drone flights which are composed of sequences of obser-
vations (images, depth maps, segmentation, etc.) captured
during each flight.

How many instances are there in total? The dataset
consists of a total of 340 drone flights, and each flight com-
prises 100 sequential observations. Therefore, there are a
total of 34 000 observations (340 flights ⇥ 100 observations
per flight).

Does the dataset contain all possible instances or is it
a sample (not necessarily random) of instances from a
larger set? No, there exists many more possible flight
paths in the environments used as well as in other environ-
ments.

What data does each instance consist of? Each flight
consists of 100 sequential observations, comprising of a
high-resolution image captured by a monocular camera af-
fixed to the front of the drone, corresponding depth maps,
pixel-level object segmentation masks, optical flow infor-
mation and surface normals. As well as coordinates, pose
and speed information and environment information includ-
ing weather. All image modalities maintain a resolution of
1280⇥720, and the depth maps cover a range from 0 to
100m.

Is there a label or target associated with each instance?
Yes, DDOS features pixel-wise object segmentation masks
with ten distinct classes, allowing for detailed analysis of di-
verse obstacles and environmental elements. These classes
are: ultra thin, thin, small mesh, large mesh, trees, build-

ings, vehicles, animals, other, and background. For in-
stance, the ultra thin class covers objects like wires and
cables, while the thin class encompasses streetlights and
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poles. The small mesh class includes objects like fences
and nets, and the large mesh class involves structures sim-
ilar to pylons and radio masts. In addition, corresponding
depth maps, optical flow information and surface normals
are included.

Is any information missing from individual instances?
No.

Are relationships between individual instances made ex-
plicit? Yes, the flight coordinates are available.

Are there recommended data splits? Yes, the dataset is
partitioned into training, validation, and testing subsets, en-
compassing 300, 20, and 20 flights, respectively.

Are there any errors, sources of noise, or redundancies
in the dataset? The data is simulated and no artificial
noise is added.

Is the dataset self-contained, or does it link to or oth-
erwise rely on external resources? Yes, DDOS is self-
contained.

Does the dataset contain data that might be considered
confidential? No.

Does the dataset contain data that, if viewed directly,
might be offensive, insulting, threatening, or might oth-
erwise cause anxiety? No.

A.3. Collection Process
How was the data associated with each instance ac-
quired? The data was acquired through simulated drone
flights using AirSim [32], a drone simulator.

What mechanisms or procedures were used to collect the
data? DDOS was generated using AirSim and data was
saved using built-in APIs.

If the dataset is a sample from a larger set, what was
the sampling strategy? During the simulation process,
flights with severe crashes were discarded.

Who was involved in the data collection process? Data
collection scripts were written by Benedikt Kolbeinsson.

Over what timeframe was the data collected? The sim-
ulation process took two days.

Were any ethical review processes conducted? No.

A.4. Preprocessing / cleaning / labeling
Was any preprocessing / cleaning / labeling of the data
done? During the simulation, labels such as depth and
semantic segmentation are automatically recorded. Flights
with severe crashes were discarded.

Was the “raw” data saved in addition to the prepro-
cessed / cleaned / labeled data? The processed data is
a lossless function of the raw data. The only removed data
are flights with severe crashes and are not saved.

Is the software that was used to preprocess / clean / label
the data available? Yes, AirSim is open source.

A.5. Uses
What (other) tasks could the dataset be used for?
DDOS is valuable for training and evaluating algorithms re-
lated to obstacle and object segmentation, depth estimation,
and drone navigation.

Is there anything about the composition of the dataset
or the way it was collected and preprocessed / cleaned /
labeled that might impact future uses? No.

Are there tasks for which the dataset should not be
used? Yes, DDOS should not be used for malicious pur-
poses.

A.6. Distribution
Will the dataset be distributed to third parties outside
of the entity on behalf of which the dataset was created?
Yes, DDOS is hosted on Hugging Face and is available at:
huggingface.co/datasets/benediktkol/DDOS

How will the dataset be distributed? DDOS is openly
available on Hugging Face:
huggingface.co/datasets/benediktkol/DDOS

Will the dataset be distributed under a copyright or
other intellectual property (IP) license, and/or under ap-
plicable terms of use (ToU)? Yes, DDOS is openly li-
censed under CC BY-NC 4.0.

Have any third parties imposed IP-based or other re-
strictions on the data associated with the instances?
No.

Do any export controls or other regulatory restrictions
apply to the dataset or to individual instances? No.
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Image Depth Segmentation

Figure 1. Low altitude examples from DDOS. The DDOS dataset encompasses flights featuring diverse flight characteristics, including
examples of low altitude maneuvers and aggressive turns under snowy conditions.

A.7. Maintenance
Who will be supporting / hosting / maintaining the
dataset? DDOS is hosted on Hugging Face

How can the owner / curator / manager of the dataset be
contacted? Contact can be made on Hugging Face:
huggingface.co/datasets/benediktkol/DDOS

Will the dataset be updated? There is no current plan to
augment the dataset.

Will older versions of the dataset continue to be sup-
ported / hosted / maintained? Yes.

If others want to extend / augment / build on / contribute
to the dataset, is there a mechanism for them to do so?
There is no specific mechanism for others to extend / aug-
ment / build on / contribute to the dataset.

B. Additional Examples
In this section, we present further examples from the DDOS
dataset, as illustrated in Figures 1 and 2. These examples
are specifically selected to highlight the dataset’s diversity
and the intricate details captured within. For clarity and em-
phasis on these finer aspects, the visualizations are confined
to the RGB images, accompanied by their respective depth
maps and semantic segmentations. Notably, Figure 2 offers
a glimpse into the diverse perspectives encompassed within
DDOS. Conversely, Figure 1 is dedicated to showcasing
scenarios captured during low altitude flights in snowy con-
ditions, underscoring the dataset’s versatility and the chal-
lenging environments it encompasses.

DDOS, serves as a comprehensive aerial resource for the
research community, particularly in the domains of depth
estimation and segmentation. Its utility is especially evi-
dent in scenarios involving aerial perspectives, as encoun-
tered by drones, offering valuable insights for discerning
thin structures within the visual field.
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Image Depth Segmentation

Figure 2. Diverse perspectives in DDOS. This selection highlights various aerial views from the DDOS dataset, with each frame presenting
an RGB image, its depth map, and semantic segmentation. The imagery captures a range of features, from varied vegetation to complex
architectural structures. Optical flow and surface normals, while part of the dataset, are not included in this visualization. Viewers are
advised to examine these images digitally.
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