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Florian Ölsner, Jürgen Hess, Stefan Milz

Spleenlab GmbH, Germany
firstname.lastname@spleenlab.ai

Patrick Mäder
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Abstract

Visual odometry is an ill-posed problem and utilized in
many robotics applications, especially automated driving
for mapless navigation. Recent applications have shown
that deep models outperform traditional approaches espe-
cially in localization accuracy and furthermore significantly
reduce catastrophic failures. The disadvantage of most of
these models is a strong dependence on high-quantity and
high-quality ground truth data. However, accurate and
dense depth ground truth data for real world datasets is dif-
ficult to obtain. As a result, deep models are often trained on
synthetic data which introduces a domain gap. We present
a weakly supervised approach to overcome this limitation.
Our approach uses estimated optical flow for training that
can be generated without the need for high-quality dense
depth ground truth. Instead, it only requires ground truth
poses and raw camera images for training. In the exper-
iments, we show that our approach enables deep visual
odometry to be efficiently trained on the target domain (real
data) while achieving state-of-the-art performance on the
KITTI dataset.

1. Introduction
Visual odometry (VO) is a crucial aspect of robotics that
enables machines to measure the ego-motion of a camera
and uses the relative motion between images to estimate the
camera’s global pose [14, 16]. The use of different sen-
sors, including cameras, depth cameras, IMUs, and LiDAR
sensors, has been widely explored in visual odometry es-
timation. Camera-based methods have emerged as a pre-
ferred choice due to their low cost, low power requirements,
and the ability to provide useful complementary informa-
tion compared to other sensors.

In this work, we address the visual odometry (VO) prob-

(a) Estimated trajectory for KITTI odometry Seq. 9

(b) Initialization (c) End of Trajectory

Figure 1. This figure presents a comprehensive analysis of our pro-
posed method’s performance on sequence 9 from KITTI odometry
dataset. (a) displays the estimated trajectory and its sparse map,
showcasing accurate localization and mapping throughout the se-
quence. (b) represents the initialization phase of our VO system
and (c) illustrates the end of the trajectory, featuring a closed loop
and demonstrating the high precision of our system, as indicated
by the small size of the gap between the start and end points when
compared to the length of the trajectory.
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Figure 2. Overview of the system: Training of DPVO (right) requires optical flow, the co-visibility graph, ground truth poses as well as
the camera images (top left) as input. Instead of relying on ground truth dense depth to pre-compute the optical flow we propose two
extensions: a) use of a pre-trained optical flow estimator or b) utilization of a self-supervised monocular depth prediction network.

lem using a monocular camera, where the goal is to estimate
the 6DoF motion of a moving camera. Geometric visual
odometry is a traditional approach that estimates camera
motion by matching features between consecutive frames
and applying geometric constraints. However, it is lim-
ited by its dependence on accurate feature tracking and can
struggle in low-texture environments. In recent years, deep
learning-based methods have emerged as a promising alter-
native that can cope with challenging environments more
effectively. Deep Patch Visual Odometry (DPVO) [22], a
recently proposed supervised visual odometry system has
shown improved accuracy and robustness over traditional
methods on variety of data-sets. When benchmarked on
synthetic and real-world datasets the method shows supe-
rior results on the training domain (synthetic data). How-
ever, DPVO’s performance is highly dependent on ground
truth pose and dense depth data which is hard to obtain for
real world datasets. Training on simulated data as an al-
ternative, however, introduces a domain gap and limits its
effectiveness when applied to real-world environments.

In this work, we propose two weakly-supervised train-
ing techniques that enable efficient training of these net-
works on real-world datasets, eliminating the requirement
for costly dense depth ground truth annotations. In addition,
we introduce an innovative approach to reduce the runtime
complexity of DPVOs preprocessing stage while maintain-
ing nearly unchanged predictive performance. We validate
our approach on the KITTI benchmark dataset (see Fig. 1
for an example result). Our experiments demonstrate that
our proposed training approach allows the model to outper-
form its previous baseline and achieve state-of-the-art per-
formance.(see Fig. 3)

2. Related Work

Geometric Methods: Geometric VO is a method for esti-
mating the motion of a camera in 3D space based on ge-
ometric principles. In a classical geometric VO system
[11, 16], the main components include feature detection,
feature matching or tracking, motion estimation using tri-
angulation, and local optimization through bundle adjust-
ment. Additionally, a keyframe-based mechanism is often
employed to enable a more reliable and traceable motion
estimation over long periods of time. There are two main
methods, namely indirect (feature-based) and direct meth-
ods. The feature-based method [7, 13] involves detecting
and tracking discrete interest points across frames, while
the direct method [4] solves an energy minimization prob-
lem based on the intensities or the feature warp error con-
sidering the entire image.

Supervised Methods: With the development of deep
neural networks, approaches based on end-to-end learning
have been proposed to solve the VO problem [22, 26, 27, 30,
31]. These methods rely on supervised loss functions using
ground truth data like pose, depth or optical flow to estimate
the camera’s relative 6DoF pose from two consecutive im-
age frames. Recent approaches use CNNs to jointly predict
scene depth and the camera pose by exploiting the geomet-
ric relationship between structure and motion [19, 20, 35].

Self-Supervised Methods: There also exists a growing
interest in self-supervised training for VO approaches since
they reduce the amount of necessary annotated training data
[2, 9, 15, 25, 34, 36]. These algorithms rely on photometric
consistency between adjacent frames as their primary su-
pervisory signal. Although they attain good performance
for single-view depth estimation, the performance of ego-

859



SC-SfMLearner ORBSLAM2 DPVO Proposed

10

20

30

40

50

60

70

80

15.02

38.77

76.52

7.39

KITTI Sequence 09

Figure 3. Absolute Trajectory Error (ATE) of our proposed
method on KITTI Odometry Seq. 09. Our method outperforms
the other state of the art VO methods.

motion estimation is still substantially lower compares to
standard VO approaches. Bian et al. [2] argue that pose
networks cannot offer complete camera trajectories over
lengthy sequences due to the uneven scale of per-frame es-
timations. As a result, they suggest a geometry consistency
requirement.

In this paper, we present a novel weak flow supervi-
sion approach for VO that predicts camera pose and sparse
patch depth given a sequence of input images. We base our
proposed model on DPVO, a supervised learning approach
that combines the strengths of both classical techniques and
deep learning to improve performance and robustness in
challenging scenarios.

3. Method
In this section, we briefly explain the main features of
DPVO before describing our approach.

3.1. Preliminaries: DPVO

DPVO operates on a sequential input of images It and es-
timates the camera pose T ∈ SE(3) as well as the in-
verse depth of m patches of size 3 × 3 for each image
t. Both camera pose and inverse depths are updated iter-
atively as new frames are processed. For training, a frame
graph G = (V,E) is constructed to indicate co-visibility
between frames, where the nodes are input images and the
edges (i, j) ∈ E imply that the images Ii and Ij have over-
lapped views. The VO algorithm iteratively runs in three
steps:
1. Feature and Patch Extraction: Similar to RAFT [21],

the feature and patch extraction uses two residual net-

works with 4 blocks to extract features for matching and
context awareness on 1/4 of the original input image res-
olution. In the next step m patch positions are randomly
sampled from both feature and context maps and stored
in the frame and patch feature maps for subsequent use.

2. Update Operator: This operator is used for joint pose
and patch optimization. The proposed operator opti-
mizes both, the poses and patches using correlation fea-
tures and message passing. First, for each edge (i, j) in
the patch graph, the correlation features are computed by
projecting patches from frame i into frame j at two pyra-
mid levels of resolution. Then, a 1D temporal convolu-
tion is applied to propagate information along each patch
trajectory, followed by global message passing layers.
Finally, two multilayer perceptrons are used to predict
two parameters for each edge (i, j) in the pose graph:
a 2D flow vector δij , providing information on how to
update the patch center’s reprojection in two dimensions
and a confidence weight map Σij to update the patch
depths.

3. Differentiable Bundle Adjustment: In this step, two
iterations of the Gauss-Newton method are applied to
the patch graph using a fixed window size. Both cam-
era poses as well as the inverse depth components of
the patches are jointly optimized while keeping the pixel
coordinates constant. To make the decomposition pro-
cess more efficient, the Schur complement trick is used
to backpropagate gradients through the Gauss-Newton
iterations.

The original DPVO model was trained on the synthetic
TartanAir dataset [28]. For this dataset perfect pose and
dense depth data is available, but it only contains rendered
images that lack realism. To increase variance of the data,
trajectories with random frame gaps are sampled from the
sequences, under the condition that subsequent frames have
sufficient view overlap. This requires an upfront construc-
tion of a co-visibility graph for each sequence. The nodes
of this graph represent the image frames and the edges rep-
resent the degree of co-visibility between the two frames,
which is expressed by the optical flow magnitude between
them. In other words, the co-visibility graph captures the
amount of overlap between frames. Fractions of the adja-
cency matrices for such co-visibility graphs are visualized
in Figure 5.

For each pair of frames, the optical flow is computed
by reprojecting pixels from frame i into frame j using
ground truth dense depth and poses provided by the Tar-
tanAir dataset. At training time the loss function is super-
vised in two ways:
1. Pose supervision: The predicted poses are directly com-

pared to the ground truth poses. This is applied after the
differential bundle adjustment step.

2. Flow supervision: The displacement of corresponding
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patches between pairs of frames can be seen as a sparse
optical flow prediction. This predicted optical flow is
compared to the ground truth optical flow which is de-
rived from the ground truth depth in the co-visibility
graph construction.

3.2. Our Contribution

The baseline DPVO model is solely trained on synthetic
data. Teed et al. [22] show that their model achieves com-
petitive results on a real indoor drone dataset. However, the
performance of DPVO on the KITTI odometry benchmark
suite is inferior (see Table 1). This is likely due to the sig-
nificant domain gap between TartanAir and real world auto-
motive scenes. For closing this gap, it is necessary to train
on target domain data. The drawback of the DPVO training
approach is its dependence on dense and accurate ground
truth depth for all camera frames which is needed for the
optical flow computation. This information is hard to ob-
tain for large scale realistic datasets. Sensors that measure
distances directly like LiDARs are usually much sparser
than the cameras and have limited field of views and ranges.
Ground truth camera poses on the other hand can be gath-
ered much easier, e.g. by fusing GNSS, IMU and wheel
odometry measurements [1, 8, 10, 32].

In the following, we present two approaches, i.e. monoc-
ular depth estimation and direct optical flow estimation, that
do not require any ground truth depth information. They en-
able training of DPVO at scale on real world datasets using
weak flow supervision. A graphical overview of the entire
system and both methods is given in Figure 2.

3.2.1 Monocular Depth Estimation

This approach corresponds to path b) in Figure 2. It re-
places the missing ground truth depth with a prediction from
a monocular depth estimation network. Recent research
[2, 9] has shown that these networks can be trained in a
self-supervised manner using nothing but sequences of cal-
ibrated images which renders this approach applicable to
any kind of dataset.

To estimate the depth maps more efficiently, we down-
scale the input images to 1/4 of the resolution. Further-
more, we filter and remove points that are projected in close
proximity to the camera. Optical flow is then computed fol-
lowing the same procedure as in the baseline training ap-
proach, utilizing the ground truth poses.

3.2.2 Direct Optical Flow Estimation

Training DPVO requires dense depth only during the pre-
computation of the pairwise optical flow maps. The second
approach (illustrated as path b) in Figure 2) directly com-
putes the optical flow between image pairs without the need

to estimate depth first. We propose to use a pre-trained neu-
ral network that takes two consecutive frames as input and
outputs a dense optical flow field. These networks are usu-
ally trained supervised but generalize very well across do-
mains. To improve accuracy, we implemented forward and
backward consistency checks to eliminate occluded pixels
(similar to [12]).

(a) frame i (b) forward flow

(c) frame i+ 1 (d) backward flow

Figure 4. Forward and backward flows are derived from two con-
secutive images.

3.2.3 Efficient Co-Visibility Graph Construction

Constructing the co-visibility graph requires computing the
optical flow between all image pairs in a sequence and thus
has complexity O(n2) where n is the number of frames.
This becomes computationally intensive for extended se-
quences or datasets with a high frame rate. For instance,
even if computing optical flow for a single frame pair takes
only 10 milliseconds, processing a 10-minute recording at
25 frames per second (FPS) would require over 26 days
(using a single thread). However, after constructing the
co-visibility graph, the majority of optical flow maps are
discarded (shown as the dark blue area in Figure 5) due
to insufficient overlap. Especially in the automotive do-
main, only frames with a minimal time difference typically
have overlapping field of views. Consequently, loop clo-
sures characterized by low optical flow magnitude are ex-
ceptionally rare. We propose a neighboring approach that
computes the flow only for pairs of frames that are within a
certain graph distance n from each other |i− j| < n. Edges
between all other frame pairs in the co-visibility graph are
directly discarded. For the aforementioned example, this
would reduce the runtime of the to less than 3 minutes.
When comparing the co-visiblity graphs of the full approach
and the neighboring approach on the same sequence it be-
comes apparent that their difference is negligible (see Fig-
ure 5).

4. Experiments
We evaluate our method on the KITTI dataset [5, 6], a
widely-used automotive benchmarking dataset in computer
vision. The KITTI dataset is a large-scale outdoor driv-
ing dataset that includes various splits for different tasks.
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(a) Full approach (baseline) with O(n2) complexity
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(b) Neighbouring approach (ours) with O(n) complexity

Figure 5. Visualizations of the adjacency matrices of co-visibility
graphs created using the full and the neighbouring approach on
KITTI sequence 07. Note that only small fractions of the full ma-
trices are shown. The large bright square in sub-figure (a) origi-
nates from a period where the car moving slow or not at all, which
adds only little value to the training anyway.

Specifically, we focus on the odometry dataset, which con-
sist of 11 driving sequences with publicly available ground
truth camera poses. These sequences include long se-
quences with and without loop closures. Following the ap-
proach of [36], we train our networks on sequences 00 to 08
and evaluate on sequence 09 and 10.

4.1. Training Details

We train our networks from scratch using the PyTorch
framework. The training procedure involved 80K iterations
using a single NVIDIA RTX A6000 GPU with a batch size
of one. We applied the AdamW optimizer, with an initial
learning rate of 8e− 5. The learning rate was gradually re-

duced during training. Standard augmentation techniques,
including resizing and color jittering, to the KITTI images
with size 320 × 1024. During the training phase each data
sequence utilized the first six frames to initialize the sys-
tem, followed by the incremental addition of seven frames.
The update operator was unrolled 18 times throughout the
training process.

4.2. Pre-Trained Models

Optical Flow: Numerous deep learning methods have been
proposed for optical flow estimation. Our approach is
largely independent of the used optical flow estimator. For
efficient training, we selected GMFlow [29] due to its com-
bination of speed and accuracy. Specifically, we used the
mixdata model which was trained on several public datasets
covering differing domains and is recommended for in-the-
wild use cases. The supervision of this optical flow network
introduces a weak supervision in our approach.

SIDE: For single image depth estimation, we utilize
FeatDepth [18] trained on the Eigen split of KITTI raw
dataset [3] with an image resolution 1024 × 320 and out-
putting at half the resolution. Due to the self-supervision,
no other data than sequences of raw input images was re-
quired for training.

4.3. Evaluation Metric

We use standard evaluation criteria to analyze monocular
camera pose estimation methods. These include the Ab-
solute Trajectory Error (ATE) for assessing the root-mean-
square error between predicted and ground truth poses,
and the Relative Pose Error (RPE) for evaluating frame-
to-frame relative pose accuracy. Since monocular methods
lack a scaling factor to match the real-world scale, we per-
form scaling and alignment using 7 Degrees of Freedom
(7DoF) optimization [24] during the evaluation. This en-
sures that the predicted camera poses are accurately evalu-
ated against the ground truth poses with respect to the real-
world scale.

4.4. KITTI Odometry

Ablation study: We conduct an ablation study on the
KITTI Odometry dataset validation sequences 09 and 10 to
evaluate our design decisions. Specifically, we analyze the
following variations:
1. ours (OF+N): Direct estimation of optical flow using

GMFlow using the neighboring approach for construct-
ing the co-visibility graph.

2. ours (SD+N): Indirect computation of optical flow using
SIDE using the neighboring approach for constructing
the co-visibility graph.

3. ours (SD+F): Similar to SD+N but employing the full
approach for constructing the co-visibility graph, i.e.,
computing optical flow between all pairs.
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Method 09 10
ATE RPE (m) RPE (◦) ATE RPE (m) RPE (◦)

Deep Learning
DPVO [22] 76.52 0.28 1.33 12.10 0.08 1.10

SfM-Learner [36] 26.93 0.103 0.159 24.09 0.118 0.171
SC-SfMLearner [2] 15.02 0.095 0.102 20.19 0.105 0.107
Depth-VO-Feat [34] 52.12 0.164 0.233 24.70 0.159 0.246

MonoDepth2 [9] 55.47 - - 20.46 - -
DeepV2D [20] 79.06 - - 48.49 - -

DeepMatchVO [17] 27.08 - - 24.44 - -
CC [15] 29.00 - - 13.77 - -

GeoNet [33] 158.45 - - 43.04 - -
Geometric

DSO [4] 52.23 - - 11.09 - -
ORB-SLAM2 (w/o LC) [13] 38.77 0.128 0.061 5.42 0.045 0.065

VISO2 [7] 52.62 0.284 0.125 57.25 0.442 0.154
Proposed

Our(OF+N) 7.39 0.13 0.32 7.18 0.07 0.10
Our(SD+F) 10.84 0.11 0.33 11.47 0.09 0.10
Our(SD+N) 33.92 0.18 0.34 9.92 0.08 0.11

Table 1. Quantitative result on KITTI Odometry Seq. 09-10. The best result is printed bold and second best is underlined.

We do not evaluate the variant where optical flow is esti-
mated directly and the full co-visibility due to its high run-
time, rendering it impractical for our purposes.
The KITTI dataset only contains sparse ground truth depth
data [23] which is common for real-world datasets. As a re-
sult, DPVO cannot be trained directly on the KITTI dataset.
Despite the domain gap, we included the baseline DPVO
model, trained on the TartanAir dataset, into the evaluation.

Quantitative results are summarized in Table 1 and a
qualitative comparison of the trajectories is depicted in Fig-
ure 6. All variants of our weakly-supervised method outper-
form the DPVO baseline model by a significant margin. The
OF+N approach achieves a lower ATEs than the SD+F and
SD+N on both validation sequences. Using the SD+F im-
proves performance on sequence 09 but not on 10. It shows
that the full co-visibility approach adds only little benefit
while being much more expensive.

Comparison with the state-of-the-art: For evaluation,
we selected a number of state-of-the-art techniques for com-
parison. We compare our results to the geometric monoc-
ular version of ORB-SLAM2 without loop closure [13],
DSO [4] and VISO2 [7], supervised learning method [20],
and the self-supervised methods [2, 9, 15, 17, 33, 34, 36].
Because ORB-SLAM2 experiences tracking failure or un-
successful initialization on occasion, we executed ORB-
SLAM2 three times and present the result with the mini-
mum trajectory error. As can be seen from the table 1 and
Figure 7, we demonstrate that our proposed methods outper-
form pure deep learning methods that rely on PoseCNN for
camera motion estimation by a large margin in ATE met-

rics. Furthermore, we show that our approach also out-
performs well-known geometric methods in sequence 09.

(a) Seq. 09

(b) Seq. 10

Figure 6. Ablation study: comparing variants of our method with
the DPVO baseline model: trajectories for KITTI sequences 09
(top) and 10 (bottom).
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In sequence 10, while the ORB-SLAM method performs
best, both of our proposed methods using the neighboring
approach, show comparable results. In addition, our ap-
proaches did not experience tracking or initialization fail-
ures and significantly reduced translation drift over long se-
quences. As expected, our approach outperforms the base-
line DPVO, as it allowed us to bridge the domain gap from
the original dataset.

Figure 7. Trajectories Comparison for Sequence 09. We compare
our best approach against some state-of-the-art approaches

4.5. Inference Time

In addition to the experiments of Teed et al. we tested the
DPVO runtime performance on three different devices: On
a high-end NVIDIA GeForce RTX 3080 Laptop GPU we
achieved a frame rate of approximately 28 fps. On low-
power systems we get 9 fps on the NVIDIA Jetson AGX
Orin 64GB and 4 fps on the NVIDIA Jetson Xavier NX
8GB. It shows that the system is real-time capable, mak-
ing it a practical and efficient solution for a wide range of
robotics applications that require on-board accurate visual
odometry for mapless navigation such as autonomous vehi-
cles and drones.

5. Conclusions
We proposed a weakly supervised approach for deep vi-
sual odometry that overcomes the limitation of requiring
high-quality dense depth ground truth data. By leveraging
optical flow generated from raw camera images and poses
as ground truth, our approach achieves state-of-the-art per-
formance on the KITTI dataset, outperforming traditional
methods and reducing catastrophic failures. Our method
has potential applications in robotics, especially in auto-
mated driving for mapless navigation, where accurate and
dense depth ground truth data is challenging to acquire. The
proposed approach reduces the dependence on high-quality

ground truth data, making it a practical and efficient solu-
tion for visual odometry in real-world scenarios.
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