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Abstract

In this paper, we introduce a novel formulation for cam-
era motion estimation that integrates RGB-D images and in-
ertial data through scene flow. Our goal is to accurately es-
timate the camera motion in a rigid 3D environment, along
with the state of the inertial measurement unit (IMU). Our
proposed method offers the flexibility to operate as a multi-
frame optimization or to marginalize older data, thus ef-
fectively utilizing past measurements. To assess the perfor-
mance of our method, we conducted evaluations using both
synthetic data from the ICL-NUIM dataset and real data
sequences from the OpenLORIS-Scene dataset. Our results
show that the fusion of these two sensors enhances the accu-
racy of camera motion estimation when compared to using
only visual data.

1. Introduction
Autonomous navigation plays a key role in enabling robots
and various other applications, including mixed reality and
autonomous driving. For that, precise motion estimates
derived from onboard sensors are essential. And, in this
context, scene flow stands as one of the fundamental tech-
niques for motion estimation using RGB-D or range sen-
sors [7, 9, 24, 30, 33]. More specifically, scene flow refers
to the estimation of the 3D motion field of scene points
obtained from two sensor readings [31]. Although opti-
cal and scene flow have been used in numerous tasks over
the years, such as motion compensation [34], object track-
ing [21] and object learning [22], we focus in this paper
on the previously mentioned application of scene flow to
odometry, i.e., the estimation of the camera motion. We are
also motivated by multisensor odometry and SLAM, which
boost monocular-only approaches with extra accuracy and
robustness, highly relevant in safety-critical robotic setups.
Multisensor configurations have been widely explored in
feature-based odometry and SLAM, e.g., stereo cameras
[20], visual-inertial [3] or LiDAR-inertial [26], but are less
explored in direct approaches that use the raw sensor mea-
surements without feature extraction.

On the one hand, RGB-D cameras provide a practical
hardware alternative to several challenges and limitations
of visual odometry. Their availability at low cost has facil-
itated many robotics and Augmented Reality (AR) applica-
tions in the last decade. Today, RGB-D cameras stand out
as one of the preferred sensors for indoor applications in
robotics and AR; and their future looks promising either on
their own or in combination with additional sensors. On the
other hand, most commercial mobile devices are equipped
with Inertial Measurement Units (IMU), which can provide
large amount of information in dynamic trajectories but ex-
hibit large drift due to noises if not fused with other infor-
mation. This makes the visual-range-inertial fusion rele-
vant, as the three modalities offer complementary charac-
teristics.

Our contribution in this paper is a RGB-D-inertial for-
mulation for camera motion estimation in rigid scenes. Up
to our knowledge, this is the first time that inertial data is
fused together with color and depth measurements to es-
timate camera motion based on optical flow. Specifically,
we propose a tightly coupled optimization by minimizing
pre-integrated inertial residuals and range constraints. As
the inertial states are common between frames, we formu-
late the problem as a multi-frame optimization, in which
past frame’s states can be estimated or marginalized out
into prior residuals for the inertial states. We evaluate our
proposal in the synthetic ICL-NUIM dataset and in the real
OpenLORIS-Scene one. The effectiveness of our fusion is
shown by an error reduction of RGB-D-inertial estimation
compared to RGB-D one.

2. Related Work
The first tracking system for ego-motion estimation which
fuses vision and inertial measurements was presented by
Armesto et al. [1]. In this case, the fusion is performed
by considering a EKF and UKF (Extended and Unscented
Kalman Filters) with multi-rate sampling of measurements.
The mentioned sampling modality allows the system to
work with the different rates of the sensors. In 2013, Kerl
et al. [10] proposed a fast and accurate method to estimate
the camera motion from RGB-D images. This approach es-
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timates the relative motion between two consecutive frames
by minimizing the photometric error. A motion prior is in-
corporated in the optimization, in order to guide and stabi-
lize motion estimation in the presence of dynamic objects.
Nießner et al. [17] developed an approach that improves the
robustness of real-time 3D surface reconstruction by incor-
porating inertial sensing to the inter-frame alignment. As
a result, they could significantly reduce the number of It-
erative Closest Point (ICP) iterations required per frame.
Modeling three-dimensional scene motion as a twist field,
Quiroga et al. [23] introduced a method that encourages
piecewise smooth solutions of rigid body motions. A gen-
eral formulation is given to solve local and global rigid mo-
tions by jointly using intensity and depth data.

The first method to compute dense scene flow in real-
time for RGB-D cameras was introduced in 2015 by Jaimez
et al. [8]. They proposed a variational formulation where
brightness and geometric consistency are imposed. Their
accuracy outperforms that of previous for RGB-D flow
baselines, being able to estimate non-rigid motions at 30Hz
of frame rate. In the same year, Leutenegger et al. [15] for-
mulated a probabilistic cost function that combines repro-
jection errors of landmarks with inertial terms, using stereo
and monocular cameras. On the other hand, a new dense
method to compute the odometry of a range sensor in real
time is presented [7]. This method applies the range flow
constraint equation in order to obtain the velocity of the
sensor in a rigid environment. Experiments show that this
approach overperforms GICP which uses the same geomet-
ric input data, whereas it achieves results similar to RDVO,
which requires both geometric and photometric data.

The first tightly-coupled dense RGB-D-inertial SLAM
system was proposed in 2017 by Laidlow et al. [13]. This
system jointly optimises the camera pose, velocity, IMU bi-
ases and gravity direction while building up a globally con-
sistent, fully dense surfel-based 3D reconstruction of the en-
vironment. In 2019, Shan et al. introduced VINS-RGBD
[27]. The authors integrate a mapping system based on
depth data and octree filtering to achieve real-time mapping.
However the proposed system is applied only in ground
robots. A RGB-D scene flow estimation method with global
nonrigid and local rigid motion assumption is proposed by
Li et al. in [16]. 3D motion is estimated based on the global
non-rigid and local rigid assumption and spatial-temporal
correlation of RGBD information. With this assumption,
the interaction of motion from different parts in the same
segmented region is avoided, especially the non-rigid ob-
ject, e.g., a human body.

The flow formulation has been adapted to novel sensor
modalities, e.g., event cameras [25], or to include additional
information, such as robot dynamics in the work of Lee et
al. [14]. Similarly to ours, the motivation in this last case is
improving the robustness and accuracy of the camera mo-

tion estimation. Zhai et al. [32] compiled in a survey recent
advances on optical and scene flow. Up to our knowledge,
inertial sensing has never been integrated in flow formula-
tions. Our work contributes to the literature presenting the
first camera motion estimation from RGB-D-inertial scene
flow, demonstrating its effectiveness in simulated and real
public datasets.

3. Notation

Throughout this article, bold lower-case letters (x) represent
vectors and bold upper-case letters (Σ) matrices. Scalars
will be represented by light lower-case letters (α), scalar
functions and images by light upper-case letters (J). Cam-
era poses are represented as TWB = [RWB ,

Wp] ∈
SE(3) and transform points from frame B to world coordi-
nate system W .

4. IMU Model and Motion Integration

4.1. Inertial preintegration

An IMU consists typically of an accelerometer and a three-
axis gyroscope, and measures the angular velocity Bω and
linear acceleration Ba of the sensor in the body reference
frame B. We will denote the IMU measurement at time k
as Bω̃k and B ãk. IMU measurements are affected by ad-
ditive white noise ηg , ηa ∈ R3 and two slowly varying
gyroscope and accelerometer bias bg and ba ∈ R3 respec-
tively. Finally, the acceleration measurement is affected by
gravity Wg. This model is formulated by Eq. (1) and (2).

Bω̃k = Bωk + bg
k + ηg

k (1)

B ãk = R⊤
WB

(
Wak − Wg

)
+ ba

k + ηa
k (2)

We use pre-integrated inertial residuals as proposed by
Forster et al. [4]. We compute an inital guess for bg as
the difference of an estimate Bωk of the angular veloc-
ity between two consecutive frames, and the direct mea-
surement of the gyroscope Bω̃k that includes the bias, i.e.,
b̂g
k = Bω̃k − Bωk, where the angular velocity estimate

Bωk can be computed by relative motion estimation be-
tween point clouds, divided by the time increment between
them. We set the initial seed for ba

k to zero.
Following [4], we can use the relative motion increment

∆vij
.
= R⊤

i (vj − vi − g∆tij) in order to obtain a first
gravity vector estimation

ĝ =
vj − vi

∆tij
− Ri∆vij

∆tij
(3)
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4.2. Noise propagation

The covariance matrix of the raw IMU measurements noise
Ση ∈ S6+1 is composed by sub-matrices Σω,Σa ∈ S3+

Ση =

[
Σω 03x3
03x3 Σa

]
(4)

where 03x3 is a 3x3 matrix for which all its elements are
equal to zero.

Following the computation of the preintegrated noise
covariance in [4], we consider the matrix η∆

ik
.
=[

δϕ⊤
ik, δv

⊤
ik, δp

⊤
ik

]⊤
and defining the IMU measurement

noise ηd
k

.
=

[
ηgd
k ,ηad

k

]⊤
, the noise is propagated as

Σij = Aj−1Σij−1A
⊤
j−1 +Bj−1ΣηB

⊤
j−1 (5)

with initial conditions Σii = 09×9 and Aj−1 ∈ R9×9 ,
Bj−1 ∈ R9×6 defined as

Aj−1 =

 ∆R̃⊤
j−1j 03x3 03x3

−∆R̃ij−1(ãj−1 − ba
i )

∧∆t I3 03x3

− 1
2∆R̃ij−1(ãj−1 − ba

i )
∧∆t2 I3∆t I3



Bj−1 =

Jj−1
r ∆t 03x3
03x3 ∆R̃ij−1∆t

03x3 1
2∆R̃ij−1∆t2


where I3 stands for the identity matrix of size 3.

For the computation of the above matrices, the preinte-
grated expressions in [4] were used. The matrix Σij ∈ S9+
is composed by nine sub-matrices of dimension 3 by 3 each

Σij =

 Σ∆ϕij
Σ∆ϕij∆vi

Σ∆ϕij∆pij

Σ∆vi∆ϕij
Σ∆vi

Σ∆vi∆pij

Σ∆pij∆ϕij
Σ∆pij∆vi Σ∆pij

 (6)

The above matrix will be important in the calculation of
inertial residuals in the next section.

4.3. Gravity vector representation

As the gravity modulus is known, a reasonable representa-
tion is by its directional vector. Unit-norm direction vectors
belong to the S2 manifold, which has only two degrees of
freedom. As S2 does not form a Lie group, we follow the
parametrization proposed in [6]. The explicit expressions
are detailed in [19].

1By Sn+ = {Σ ∈ Rn×n | Σ = Σ⊤,Σ ⪰ 0} we denote the set of
n× n symmetric positive semidefinite matrices.

4.4. Optical flow and velocity constraint

We adopt the standard assumption that the local intensity
image patterns are approximately constant, at least in the
short period of time between two frames of a video [2]. This
constraints the motion in the image as in the following

0 =
∂I

∂t
+

∂I

∂u
u̇+

∂I

∂v
v̇ (7)

where (u̇, v̇) is the optical flow in image units (pixels/s).
Under the common assumption of a rigid scene, we formu-
late the point velocities in terms of the camera motion. Let
Z : Ω → R be a depth image provided by a 3D range cam-
era where Ω is the image domain. Following the work by
Spies et al. [29], the range flow constraint is as follows

Ż = (ẇ) =
∂Z

∂t
+

∂Z

∂u
u̇+

∂Z

∂v
v̇ (8)

This equation reflects that the total derivative of the
depth can be calculated from the optical flow and the par-
tial derivatives of Z. Following [7] and using the pin-hole
model, we obtain the range flow constraint in Eq. (9). Here
fx, fy are the focal length values, expressed in pixels, while
ẋ, ẏ, ż are in camera coordinates.

−∂Z

∂t
=

(
1 +

xfx
z2

∂Z

∂u
+

yfy
z2

∂Z

∂v

)
(vz + yωx − xωy)

+
fx
z

∂Z

∂u
(−vx + yωz − zωy) (9)

+
fy
z

∂Z

∂v
(−vy − xωz + zωx)

The above constraint for the camera velocity will be used
for our visual residuals, detailed in next section.

5. Camera Motion from RGB-D-I Flow

This section presents our approach to integrating inertial
measurements with RGB-D scene flow to estimate camera
motion. We begin by defining the state, which varies ac-
cording to different operating modes, primarily depending
on the number of frames considered. We then proceed to
formulate the cost function to be optimized. Finally, this
section concludes with the marginalization process, through
which we retain the information of removed states.

5.1. State definition

Our goal is to track the state x of a sensing device equipped
with an IMU and a RGB-D camera. This state consists basi-
cally of the device velocities, IMU biases and gravity vector
at different moments of time. We assume that the IMU is
synchronized with the camera, as it is shown in Fig. 1.
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Figure 1. Illustration of the temporal notation for RGB-D im-
ages, IMU measurements and marginalization and optimization
windows.

In a general case, the system performs the optimization
over N frames, what we called a N-sliding window. As the
sensing device moves through the trajectory, we marginal-
ize out the old states for the optimization to remain compact.
The state at step k +N − 1 is defined as

x =
[
v⊤
k ,ω

⊤
k , · · · ,v⊤

k+N−1,ω
⊤
k+N−1,g

⊤,bg⊤,ba⊤
]⊤
(10)

where {vl}k+N−1
l=k ∈ R3 are the linear velocities in each

frame, {ωl}k+N−1
l=k ∈ R3 are the angular velocities in each

frame, g ∈ S2 contain the two degrees of freedom of the
gravity direction and bg,ba ∈ R3 are the gyroscope and
accelerometer bias, respectively.

As mentioned, we include the gravity direction as part
of the state. Under the traditional absolute formulations
for visual-inertial state estimation, this variable is removed
from the state by aligning the global reference frame to the
gravity direction during system initialization. But, as a con-
sequence, the rest of the variables in the state are tied to
a gravity-aligned absolute frame. In turn, by including the
gravity vector in the local camera frames we remove this
dependence and all states are relative. As an additional ben-
efit, it becomes possible to explicitly re-estimate the grav-
ity direction during normal system operation and thus avoid
coupling gravity and absolute orientation errors. In order to
improve the observability of the state (in particular of the
accelerometer bias), we assume a known gravity magnitude
(981 cm/s2) and only optimize the gravity direction.

5.2. Cost function

We formulate an optimization problem over the state x for
which the camera velocity consistency is imposed as well
as those terms corresponding to the pre-integration of the
IMU readings. The joint optimization problem will consist
on minimizing a cost function J(x) which is the summation
of terms associated to the inertial measurements Ji as well
as to the camera measurements Jc. Our state estimate x̂ will
be the one that minimizes the cost function J(x).

x̂ = argmin
x

J(x) = argmin
x

(Jc(x) + Ji(x)) (11)

We begin by developing the term Jc. For a pair of con-
secutive frames i and j, the velocity constraint in Eq. (9)

results in the linear constraint

rc = WAx−WB (12)

where A contains the weights of the coefficients that mul-
tiply the state vector x in the velocity constraint, and the
matrix B contains the temporal derivatives of the per-pixel
depths (inverted in sign). The linearization that is applied to
derive the range flow constraint in Eq. (9) assumes differen-
tiability of the depth images and small scene displacement.
Therefore, we implement an adaptive mask on the image, in
order to discard those pixels belonging to edges and prone
to have high depth derivatives. This mask is represented in
a diagonal matrix W, which also has the weights associated
with the uncertainty of each equation. For details on these
aspects, the reader is referred to [7]. Using the residual in
Eq. (12), the visual cost is expressed as

Jc = r⊤c Σ
−1
c rc (13)

Having developed the first term of the cost function, we
now turn our attention to the development of Ji, which will
be composed by several terms. Firstly, from Eq. (1) we
can derive the residual associated to the angular velocity
estimate, as follows

rω = Bω −
(
Bω̃ − bg

)
(14)

Assuming constant biases, as we compute flow for a
small number of frames, the residual for the preintegrated
linear velocity term is defined in [4] as

r∆vi
= R⊤

i (vj − vi − g∆t)−∆ṽij (15)

The residual for biases are made by penalising changes
as the sliding window moves i.e., rba = ba

0 −ba and rbg =
bg
0 − bg , where ba

0 and bg
0 are the initial estimates.

Using the submatrices Σ∆vi ,Σω,Σa ∈ S3+ from Eq.
(6), we can now define the term Ji as follows

Ji = r⊤∆vi
Σ−1

∆vi
r∆vi

+ r⊤ωΣ
−1
ω rω

+r⊤bgΣ
−1
ω rbg + r⊤baΣ

−1
a rba (16)

Up to this point we have defined the cost function, by
means of Jc and Ji. In the general case J(x) will be made
up depending on the number of frames in each case. These
cases will be detailed below.

5.3. Operating Modes

We have mentioned that the cost function J(x) will be
formed as a function of the number of frames (N ) in the
sliding window while the camera is moving along the tra-
jectory. Fig. 2 illustrates this situation graphically.

Depending on the value of N , the system will have dif-
ferent operating modes which will be detailed in this sec-
tion.
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Figure 2. Optimization using a sliding window over N frames
while the camera is moving over the trajectory.

We start with the factor graph illustrated in Fig. 3(a),
where only frames i and j are available. Here, N = 2 and
any variable has been marginalized yet. Since we only have
two frames, the cost function will be J = J ij

i + J ij
c . The

first term is associated to the inertial measurements and the
second one to the camera measurements. Super-indices ij ·
denote that the corresponding term is built up by frames
i and j. The state x contains in this case the velocities
vi,ωi,vj and ωj as well as the gravity Wg and biases bg

and ba.

Figure 3. Factor graph representation using different modes of
operation. Blue and green shapes contains the variables to be es-
timated. (a) Taking two frames, only one visual and one inertial
residual are used. (b) Here we take three frames, so there are two
visual residual. Only one inertial residual is used. (c) Is the same
situation as before but in this case two inertial residual are used.
The difference between (b) and (c) is the inertial constraint im-
posed by the last aggregate frame.

When a new frame (k−frame) is added to the window,
N = 3 and the associated graph is shown in Fig. 3(b). In
this case the state remains the same as before but the cost
changes to J(x) = J ij

i + J ij
c + Jjk

c , i.e., only visual infor-
mation is added to the cost function.

The last case is when we add a new inertial term (be-

tween j and k frames), therefore J(x) = J ij
i +J ij

c +Jjk
c +

Jjk
i . This situation is represented in Fig. 3(c). Here the

state changes and the velocities vk and ωk are added.
In the general case, the state x ∈ R6N+8 is defined as

x =
[
v⊤
i ,ω

⊤
i , . . . ,v

⊤
i+N−1,ω

⊤
i+N−1,g

⊤,bg⊤,ba⊤
]⊤
(17)

and the cost function J(x) can be expressed compactly as
follows

J(x) =

i+N−1∑
p=i

(
r⊤cpΣ

−1
cp rcp + r⊤∆vp

Σ−1
∆vp

r∆vp

)

+ r⊤bgΣ
−1
ω rbg + r⊤baΣ

−1
a rba +

i+N∑
l=i

r⊤ωl
Σ−1

ω rωl

(18)

5.4. Marginalization

We mentioned that, as the sliding window moves, informa-
tion from previous states is marginalized out. Let consider
the case in Fig. 4, in which we want to perform 3-frames-
sliding-window optimization.

Figure 4. Factor graph using sliding window with containing 3
frames. Blue and green shapes contains the variables to be esti-
mated. (a) When a new frame comes, both visual and inertial resid-
ual is added and the marginalization is done. (b) After marginal-
ization, a new prior residual is added on the cost function.

Fig. 4(a) illustrates the graph after we have opti-
mized the states at time steps i, j and k, and a new
frame (l−frame) arrives. The state estimate at this
point, xM , can be decomposed into two parts: the vari-
ables that we want to marginalize xα = [v⊤

i ,ω
⊤
i ]

⊤ ∈
R6 and the starting point for the next step xβ =
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[
v⊤
j ,ω

⊤
j ,v

⊤
k ,ω

⊤
k ,v

⊤
l ,ω

⊤
l ,g

⊤,bg⊤,ba⊤
]⊤

.

xM =
[
x⊤
α x⊤

β

]⊤
(19)

Consider Eq. (20), where we have the cost function be-
fore marginalization J(x), and a new term Jp, which stands
for the marginalization priors and accounts for the informa-
tion associated to the marginalized variables

J∗(x)
.
= J(x) + Jp (20)

Using second-order Taylor approximation, the cost J(x)
can be expressed as follows

J(x) ≈ J(x0) +����∇J(x0)r+
1

2
r⊤H(x0)r (21)

The above approximation is calculated around a state x0,
where a minimum is achieved, i.e. ∇J(xM )r = 0 (r = x−
x0). The Hessian H contains the second derivatives of the
cost function with respect to the state variables, therefore it
encodes how every state variable affects the others.

We denote as α the block of variables we would like to
marginalize, and β the block of variables we would like to
keep. When marginalizing a set α of variables, we gather
all factors dependent on them as well as the connected vari-
ables β. This is done by means of the Schur Complement
as follows

H∗ = Hββ −H⊤
αβH

−1
ααHαβ (22)

Fig. 5 graphically illustrates how the α−block (variables
vi and ωi) is removed from H but the information is pre-
served in the new matrix H∗.

Figure 5. Marginalization example. We start with a Hessian matrix
H after optimization with N = 4. We want to marginalize vi and
ωi. The marginalized Hessian matrix H∗ corresponds to the Schur
complement of Hαα. This calculation transfers the information
constraints of the variable being eliminated to its adjacent nodes,
adding shared information between these variables (green cells).

Considering xβ obtained from Eq. (19) and the new state
x∗, the term rp can be expressed as rp = x∗ − xβ , where

x∗ =
[
v⊤
j ,ω

⊤
j ,v

⊤
k ,ω

⊤
k ,v

⊤
l ,ω

⊤
l ,g

⊤,bg⊤,ba⊤
]⊤

The new term Jp can now be defined as follows

Jp = r⊤p H∗rp (23)

Finally, the result is obtained by minimizing the cost
function J∗(x) expressed in Eq. (20).

6. Experiments
6.1. Setup

Public benchmarks that provide IMU, color and depth im-
ages are scarce. We chose to evaluate our proposal on
an extended version of the living room sequences in the
ICL-NUIM dataset [5]. ICL-NUIM is a synthetic photo-
realistic dataset that provides ground truth poses as well
as 3D scene models to benchmark reconstruction and/or
localization approaches. As ICL-NUIM does not provide
IMU data, in a manner similar to [11], we fit splines to
the ground truth poses to simulate continuous trajectories
and simulated IMU measurements from them. We use the
IMU model described in [18] and the same IMU param-
eters as [12]. We also evaluated our RGB-D-inertial flow
in the OpenLORIS-Scene datasets [28], in which data are
collected in real-world indoor scenes, for multiple times in
each place to include natural scene changes in everyday sce-
narios. RGB-D images and IMU measurements from a Re-
alSense D435i are provided. The ground truth trajectory
was recorded by an OptiTrack MCS, that tracked artificial
markers deployed on the Segway robot used to record the
data.

As metrics, we use the Root-Mean-Square-Error
(RMSE) for the velocities v and ω and biases ba and
bg . For the gravity vector, we use the angle θg =
cos−1 (ĝ · ggt/∥ĝ∥∥ggt∥) between the ground truth and esti-
mated gravity direction.

6.2. Results

ICL-NUIM. In this experiment we use the living room se-
quences in the ICL-NUIM dataset, and we run our RGB-
D-I flow based method against the so-called DIFODO [7],
based on RGB-D flow. Note that, as [7] does not provide
code, we used our own implementation based on the de-
scription in the paper. We run both scene flow methods for
different estimation modes: 2-frames, 3-frames, 4-frames
and 5-frames. Marginalization is not done here. The re-
sults are obtained over the entire dataset, taking as starting
frame one out of every 2 which gives us more than 400 sub-
sequences. In this experiment we have made 10 runs on the
complete dataset. The results (specifically, the mean ± the
standard deviation of the RMSE for the estimated states)
are shown in Table 1, in which the best result per estimation
mode is boldfaced. Note that using inertial measurements
improves the accuracy in both linear and angular velocity
estimates. We can also observe that the errors are higher for
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2-frames 3-frames 4-frames 5-frames
RGB-D

(DIFODO∗)
RGB-D-I

(ours)
RGB-D

(∗∗)
RGB-D-I

(ours)
RGB-D-I
(ours+M)

RGB-D
(∗∗)

RGB-D-I
(ours)

RGB-D
(∗∗)

RGB-D-I
(ours)

RGB-D-I
(ours+M)

RMSEv

[cm/s]
8.020

±4.989
7.897

±4.699
0.565

±0.508
0.524

±0.442
0.523

±0.250
0.575

±0.514
0.533

±0.447
0.582

±0.520
0.538

±0.452
0.535

±0.245
RMSEω

[rad/s]
0.168

±0.079
0.037

±0.022
0.00113

±0.00081
0.00107

±0.00072
0.00091

±0.00052
0.00114

±0.00083
0.00108

±0.00074
0.00116

±0.00085
0.00109

±0.00075
0.00094

±0.00054
RMSEba

[cm/s2] - 0.177
±0.026 - 0.214

±0.083
0.243

±0.112 - 0.227
±0.141 - 0.217

±0.171
0.199

±0.080
RMSEbg

[rad/s] - 0.031
±0.025 - 0.048

±0.100
0.049

±0.012 - 0.086
±0.168 - 0.098

±0.209
0.103

±0.073
θg

[rad] - 0.372
±0.308 -

0.299
±0.236

0.168
±0.089 -

0.273
±0.204 -

0.275
±0.215

0.167
±0.086

Table 1. Error Metrics on ICL- NUIM for different operating modes. (DIFODO∗) stands for our implementation of the method in [7]. (∗∗)
indicates the output of our DIFODO∗ implementation between pairs of frames.

Figure 6. Motion estimation in an office scene from the ICL-NUIM dataset in two different times t1 and t2. (a) 3D representation of the
scene. (b) Motion estimation of the objects in the scene. Every velocity is represented by a red arrow on each point. (c) Zoomed-in areas.

the 2-frames case than for the rest, which shows how the
information from additional frames is leveraged to estimate
the inertial states. Note also how the standard deviation of
the errors is reduced when inertial sensing is used, which
indicates a higher robustness in challenging cases.

ICL-NUIM + Marginalization. In this experiment, we
show the effect of the marginalization in the living room

sequences of ICL-NUIM, using two different sliding win-
dows: 3 frames and 5 frames. In both cases we marginalize
one frame only. The results are shown in the columns of
Table 1 titled as RGB-D-I (ours+M). It can be seen how the
gravity vector estimation is improved in comparison to the
case without marginalization. Also, a small improvement
occurs in the linear and angular velocities errors.
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2-frames 3-frames 4-frames 5-frames
RGB-D

(∗∗)
RGB-D-I

(ours)
RGB-D

(DIFODO∗)
RGB-D-I

(ours)
RGB-D

(∗∗)
RGB-D-I

(ours)
RGB-D

(∗∗)
RGB-D-I

(ours)
RMSEv

[cm/s]
36.993

±11.295
34.008
±8.438

22.453
±9.029

22.054
±8.766

22.453
±9.029

21.808
±8.646

22.453
±9.029

21.924
±8.769

RMSEω

[rad/s]
0.165

±0.090
0.184

±0.102
0.172

±0.091
0.169

±0.092
0.172

±0.091
0.168

±0.092
0.172

±0.091
0.167

±0.092
RMSEba

[cm/s2] -
0.121

±0.001 -
0.102

±0.028 -
0.097

±0.014 -
0.113

±0.024
RMSEbg

[rad/s] -
0.015

±0.001 -
0.015

±0.001 -
0.015

±0.001 -
0.015

±0.001
θg

[rad] -
1.550

±0.440 -
0.150

±0.104 -
0.115

±0.072 -
0.095

±0.061

Table 2. Error Metrics on OpenLORIS-Scene for different operating modes. (DIFODO∗) stands for our implementation of the method in
[7]. (∗∗) indicates the output of our DIFODO∗ implementation between pairs of frames.

Fig. 6 shows qualitative results for motion estimation.
The office scene consists on a computer on a desk and lu-
minaires. Fig. 6(a) shows a point cloud extracted from the
RGB-D data, and Fig. 6(b) displays the scene flow (red
arrows represent the velocity in each point). For better ap-
preciation, Fig. 6(c) zooms in some areas. Observe that our
approach estimates a smooth flow even in textureless areas
such as the background wall.

OpenLORIS-Scene. In this experiment we consider the
office-1 sequence in the OpenLORIS-Scene Dataset, where
the robot moves along a U-shape route. As in previous ex-
periments, we compare our RGB-D-I flow-based motion es-
timation against RGB-D-only motion estimation in 4 differ-
ent optimization modes: 2-frames, 3-frames, 4-frames and
5-frames, all of them without marginalization. The experi-
ment is performed over the entire dataset, using one frame
out of every five as starting point, which gave us more than
400 experiments. Table 2 shows the mean ± the standard
deviation of the RMSE for the results of such experiments.
As in the synthetic case, it can be observed that using in-
ertial measurements improves the estimation results in both
linear and angular velocities. It can also be observed how,
as the optimization window grows, the errors of the inertial
states are also smaller.

7. Conclusions

In this work we present a novel camera motion estimation
based on RGB-D-I scene flow. Specifically, we formulate
the fusion of RGB-D and inertial data as a joint optimization
using scene flow residuals and pre-integrated IMU residu-
als, weighted by their corresponding covariances. We also
consider the marginalization of old states in order to keep
a compact optimization. We evaluated our approach on a
synthetic dataset, ICL-NUIM, and on a real dataset, Open-
LORIS, both publicly available. Our results quantify the
improvement that inertial fusion can offer to RGB-D scene
flow techniques.
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