
Domain Generalization for Crop Segmentation with Standardized Ensemble
Knowledge Distillation

Simone Angarano Mauro Martini Alessandro Navone
Marcello Chiaberge
Politecnico di Torino

Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
name.surname@polito.it

Abstract

In recent years, precision agriculture has gradually ori-
ented farming closer to automation processes to support all
the activities related to field management. Service robotics
plays a predominant role in this evolution by deploying au-
tonomous agents that can navigate fields while performing
tasks such as monitoring, spraying, and harvesting with-
out human intervention. To execute these precise actions,
mobile robots need a real-time perception system that un-
derstands their surroundings and identifies their targets in
the wild. Existing methods, however, often fall short in
generalizing to new crops and environmental conditions.
This limit is critical for practical applications where la-
beled samples are rarely available. In this paper, we investi-
gate the problem of crop segmentation and propose a novel
approach to enhance domain generalization using knowl-
edge distillation. In the proposed framework, we trans-
fer knowledge from a standardized ensemble of models in-
dividually trained on source domains to a student model
that can adapt to unseen realistic scenarios. To support
the proposed method, we present a synthetic multi-domain
dataset for crop segmentation containing plants of variegate
species and covering different terrain styles, weather con-
ditions, and light scenarios for more than 70,000 samples.
We demonstrate significant improvements in performance
over state-of-the-art methods and superior sim-to-real gen-
eralization. Our approach provides a promising solution
for domain generalization in crop segmentation and has the
potential to enhance a wide variety of agriculture applica-
tions.

1. Introduction
In the last two decades, scientific research in precision
agriculture has significantly evolved its automatic and self-
managed processes. Automation has been analyzed through

four essential requirements: increasing productivity, allo-
cating resources reasonably, adapting to climate change,
and avoiding food waste [40]. Recently, deep learning so-
lutions led to new technological trends in all these tasks,
providing competitive advantages for crop monitoring and
managing [32]. Autonomous robots equipped with percep-
tion systems can assist or replace human operators in agri-
cultural tasks such as harvesting [4], spraying [11], and
vegetative assessment [13], reducing human labor and en-
hancing operational safety. Various computer vision meth-
ods have been proposed for navigating and monitoring row
crops, most of which are based on semantic segmentation
[22]. Real-time crop segmentation can be used to identify
objects on different scales: detailed leaf disease [26], single
fruits or branches [30], crop rows [1], and entire fields [31].
It has also been exploited for autonomous navigation [1],
combined with waypoint generation [33] or sensorimotor
agents [25].

However, crop segmentation presents two main chal-
lenges. First, changing weather, lighting, terrain, and crop
types pose a major obstacle to generalization. Supervised
training methodologies usually reach remarkable results
in well-defined experimental settings but struggle to yield
good results where the data distribution changes [9]. How-
ever, robustness in realistic scenarios can be enhanced using
frameworks like domain generalization (DG). DG is a set of
representation learning techniques that aims to train mod-
els capable of generalizing to unseen domains, i.e., out-of-
distribution data. Several DG methodologies have been pre-
sented in the last years, although often limiting their scope
to classification on toy datasets [41]. Applying generaliza-
tion methods to realistic tasks is still limited to a few at-
tempts [7, 20, 24]. Moreover, the considered domains are
often limited to stylistic changes, overlooking more radi-
cal correlation shifts [39]. For instance, in some scenarios,
brown and green positively correlate with terrain and veg-
etation. However, other domains present brown tree trunks
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Figure 1. Schematic representation of the proposed distillation methodology for crop segmentation. Ensembled specialized teachers allow
the student to obtain a standardized distillation mask (ỹT ) that is much more informative than the hard label (y) for robust student training.
µs represents standardized ensembling.

and grass on the ground, inverting the correlation.
A second challenge is data availability, as no comprehen-

sive dataset for crop segmentation across multiple scenar-
ios is available. The reason is that on-field data collection
and labeling are highly time-demanding. Hence, the only
publicly available datasets focus on specific scenarios and
usually include a modest number of samples. The scarcity
of task-specific labeled data has recently favored the prac-
tice of synthetic data generation, leading to an additional
Simulation-to-Reality (Sim2Real) gap and further compro-
mising generalization [5].

This work aims to effectively enhance DG in crop seg-
mentation, working towards having a single model that can
generalize across different crop types and environmental
conditions. It is well known that supervised neural net-
works exploit spurious correlations to find shortcuts in data
and efficiently minimize the loss function [14]. In agricul-
tural scenarios, these correlations can easily be found in
the color of a specific species, low-level terrain textures,
or background. We apply the DG framework to encour-
age models to learn deep, robust features without knowing
the target data distribution. Moreover, recent findings have
given a theoretical interpretation of the efficacy of model
ensembling and knowledge distillation (KD) for robust rep-
resentation learning [2]. Multiple features exist in data sam-
ples that can be used to classify them correctly, and this
multi-view structure constitutes the ”dark knowledge” that
ensembles and KD exploit, explaining the efficacy of these
methods. We investigate whether such property enhances
domain and Sim2Real generalization, particularly for crop
segmentation.

The proposed method distills knowledge from an ensem-

ble of models individually trained on source domains to a
student model that can adapt to unseen target domains, as
depicted in Figure 1. To effectively balance the contribu-
tion of the teachers, we standardize their output logits and,
in this way, avoid overconfident predictions to guide knowl-
edge transfer. To properly validate the proposed method, we
present the synthetic multi-domain dataset for crop segmen-
tation AGRISEG, containing 11 crop types and covering dif-
ferent terrain styles, weather conditions, and light scenarios
for more than 70, 000 samples. We conduct thorough ex-
periments on AGRISEG and additional real-world datasets
to verify the effectiveness of our method compared to other
state-of-the-art solutions. The contributions of this work
can be summarized as follows:
1. We propose a novel DG methodology for crop segmenta-

tion based on ensemble KD weighted by logit standard-
ization;

2. We support our solution with AGRISEG, a rich multi-
domain synthetic dataset to benchmark generalization in
crop segmentation;

3. We extensively experiment on synthetic and real data to
demonstrate the improvement of the proposed method
on state-of-the-art solutions.

The code1 used for the experiments and the AGRISEG
dataset2 are publicly available.

2. Related Works
Generalization to Out-of-domain (OOD) data distributions
is one of the most critical requirements for real-world com-
puter vision applications like crop segmentation. Recently,

1https://github.com/PIC4SeR/AgriSeg
2https://pic4ser.polito.it/agriseg/
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Figure 2. From left to right: examples of synthetic 3D crop models used to build the AGRISEG Dataset (generic tree, zucchini, lettuce,
vineyard); examples of resulting dataset images (vineyard, chard); examples of real-world test images (vineyard, miscellaneous).

rigorous validation benchmarks have been proposed to com-
pare the advantages of different approaches and backbones
for classification [3, 15]. In the meantime, segmentation
across multiple scenarios has been studied, either design-
ing massive foundation models [18] or creating new DG
methods. As we aim to push the limits of generalization
for efficient and easily deployable architectures, we focus
on the latter approach. In particular, [28] proposed an In-
stance Batch Normalization (IBN) block for residual mod-
ules to avoid bias toward low-level domain-specific fea-
tures like color, contrast, and texture. [27], on the same
line, proposed a permuted Adaptive Instance Normaliza-
tion (PAdaIN) block, which works at both low-level and
high-level features, randomly swapping second-order statis-
tics between source domains and hence regularizing the
network towards invariant features. [7] proposed Robust-
Net, a model incorporating an Instance Selective Whiten-
ing (ISW) loss disentangling and removing the domain-
specific style in feature covariance. [20] proposed to ex-
tract domain-generalized features by leveraging a variety
of contents and styles using a ”wild” dataset. Most re-
cently, [37] has been the first attempt to apply KD in the
DG framework for classification tasks, proposing a gradient
filtering approach. [19] proposed Cross-domain Ensemble
Distillation (XDED) to extract the knowledge from domain-
specific teachers and obtain a general student. However,
this setup was only applied to classification, while the au-
thors used a different approach for segmentation distilling
from a single teacher. Standard DG benchmarks almost
solely focus on domestic environments or autonomous driv-
ing [8, 12], and generalization for crop segmentation has
been addressed only in the last few years. In particular,
[38] proposes a style transfer method for robust weed seg-
mentation, considering only one crop type. [29] proposes
supervised Domain Adaptation for row crop segmentation,
requiring target-domain labeled data. We push the gener-
alization concept further, including not only weather and

lighting conditions but also aiming to generalize to unseen
crop types without prior knowledge about the target data
distribution. We take advantage of the capabilities provided
by ensemble KD [2] to transfer the knowledge of domain-
expert teachers to a general multi-domain student. We im-
prove the method proposed in [19] for classification, adding
logit standardization to balance the contribution of different
teachers to the KD loss and applying it to real-world crop
segmentation. Each teacher must be trained only once, and
the method can be extended to more domains by just train-
ing a new teacher and then distilling.

3. Methodology
3.1. Domain Generalization
Given the input random variable X with values x 2 X and
the target random variable Y with values y 2 Y , the def-
inition of the domain is associated with the joint probabil-
ity distribution P (X,Y ) (PXY for simplicity) over X⇥Y .
Supervised learning aims to train a classifier f : X !
Y exploiting N available labeled examples of a dataset
D = (xi, yi)

N

i=1 that are identically and independently dis-
tributed (i.i.d.) and sampled according to PXY . The goal of
the training process is to minimize the empirical risk asso-
ciated with a loss function l : Y ⇥ Y ! [0,+1),

Remp(f) =
1

N

NX

i=1

l(f(xi), yi) (1)

by learning the classifier f . Dataset D is the only available
source of knowledge to learn PXY . We refer to this basic
learning method as empirical risk minimization (ERM) [36]
and use it as a baseline for the experimentation.

In DG, a set of different K source domains S = (Sk)Kk=1
is used to learn a classifier f that aims at generalizing
well on an unknown target domain T . Each source do-
main is associated with its joint probability distribution
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P k

XY
, whereas PS

XY
indicates the overall source distribution

learned by the classifier [41]. Indeed, DG aims to enable the
classifier to predict well on out-of-distribution data, namely
on the target domain distribution PT

XY
, by learning an over-

all domain-invariant distribution from the source domains
seen during training.

3.2. Knowledge Distillation

KD aims at transferring the knowledge learned by a teacher
model to a smaller or less expert student model. It was first
proposed in [6], received greater attention after [16], and is
one of the most promising techniques for model compres-
sion and regularization today. In its original formulation
based on classification, KD applies an auxiliary loss to the
output logits of the student zS(x) 2 RC , where C is the
number of classes. The posterior predictive distribution of
x can be formulated as:

P (y|x; ✓, ⌧) = exp(zy(x)/⌧)P
C

i=1 exp(zi(x)/⌧)
(2)

where y is the label, ✓ is the set of parameters of the model,
and ⌧ is the temperature scaling parameter. To match
the distributions of student and teacher, KD minimizes the
Kullback-Leibler Divergence between the two:

LKD(X; ✓, ⌧) =
X

xi2X

CX

c=1

Lxi,c

KD (3)

Lxi,c

KD = DKL(P (c|xi; ✓T , ⌧)||P (c|xi; ✓S , ⌧)) (4)

where X is a batch of input samples and ✓T and ✓S are
the parameters of teacher and student, respectively. In this
work, we apply a novel KD technique for semantic segmen-
tation to improve models’ generalization ability across do-
mains.

3.3. Standardized Ensemble Distillation

We propose a simple yet effective training procedure based
on model ensemble, KD, and logit standardization to en-
courage the model to learn domain-invariant features. We
choose ensemble KD encouraged by the recent theory of [2]
on multi-view extraction from data. Ensemble KD has been
previously applied to classification in XDED [19], leverag-
ing the separate pretraining of a teacher for each source do-
main and distilling the ensembled predicted logits. We aim
to apply the same intuition to crop semantic segmentation,
taking into account the differences between the two tasks
and the additional challenges given by the agricultural set-
ting and the Sim2Real gap. Another important challenge of
this application scenario is that domain shifts are not only
given by style transfer but also by the presence of com-
pletely different crop types.

Gen. Tree 2 Chard Lettuce Vineyard

ER
M

En
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m
bl

e

Figure 3. Comparison of ERM predictions with our ensemble
of specialized teachers. While for simpler domains, the predic-
tions of the specialized teachers agree and return a high-confidence
mask, for challenging ones, the teachers give an uncertain but
more informative mask that can be distilled into the student.

In our proposed method, we train a teacher for each
source domain and ensemble them to create the distillation
knowledge:

ȳT (x) =
1

D

DX

d=1

ŷT
d
(x) (5)

where ŷT
d
(x) is the predicted logits tensor for the source

domain d, ȳT is the ensembled teacher logits tensor, and D
is the number of source domains. The motivation behind
this choice is that by averaging the predictions of different
specialized models, the resulting map is much more infor-
mative than the ground-truth label. As depicted in figure
3, the teacher’s segmentation is less confident and often as-
signs non-zero probabilities to disturbing elements such as
grass and background vegetation. This spurious informa-
tion guides the student towards implicitly recognizing what
features are more likely to be confounding at test time. This
information does not overcome label supervision, as the dis-
tillation loss has a relatively low weight in the optimization
process. On the contrary, if the distillation mask is very
confident, the student is guided toward being more confi-
dent and implicitly incorporates the information that a cer-
tain domain is easier to segment. This effect can be tuned
using a temperature factor and a weight loss.

We train the student in the standard ERM DG framework
with an additional distillation loss based on the distance be-
tween the student logits and the ensembled teacher logits.
To improve the effectiveness of the distillation mechanism,
we design a simple mechanism to prevent the student from
being biased by the overconfidence of the teachers. Indeed,
each teacher is trained on a single domain and hence can
fall for spurious correlations in the training data (e.g., color
bias). We hence propose to standardize teacher and student
logits [35] before distilling as follows:

ỹT =
yT � ȳT

�(yT ) · ⌧ , ỹS =
ŷS � ȳS

�(ŷS) · ⌧ (6)

where ȳ is the mean, �(y) is the standard deviation of the
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logits, and ⌧ is the temperature. The intuition behind this
choice is that optimal ⌧ could vary across domains due to
the teachers being more or less confident about their pre-
dictions. Standardization allows for adaptive calibration of
logit temperature and effective domain knowledge transfer.

The distillation loss is calculated as the Kullback-Leibler
divergence between teacher and student logits:

LKD(ỹ
T , ỹS) =

⌧2

C

CX

c=1

W ·HX

i=1

�(ỹT
c,i
) · log

✓
�(ỹT

c,i
)

�(ỹS
c,i
)

◆
(7)

where C is the number of classes and ⌧ is the temperature.
In combination with the distillation loss, we optimize

the standard cross-entropy loss between student logits and
ground-truth labels y:

LCE(y, ŷ
S) = �

CX

i=1

yi · log(ŷSi ) (8)

which for binary segmentation becomes a simple binary
cross-entropy loss.

The overall loss can be written as follows:

L(y, ȳT , ŷS) = LCE(ȳ, ŷ
S) + �LKD(ỹ

T , ỹS) (9)

where � is a weighting parameter to balance the loss com-
ponents. We remark that our method adds no overhead at
test time. We provide a thorough ablation of the various
components of our method in 5.2 to highlight the strong
improvement on previous solutions.

4. Experimental Setting
This section describes the details of the proposed synthetic
AGRISEG segmentation dataset and the procedure we fol-
lowed to validate the effectiveness of our DG methodology.
In 4.1, we review the procedure followed to generate the
AGRISEG dataset, while in section 4.2, details on the train-
ing framework and implementation are given.

4.1. Dataset
To generate the synthetic crop dataset with realistic plant
textures and measurements, high-quality 3D plant models
have been created using Blender3. A wide variety of crops
have been included in the dataset to validate the segmen-
tation performance of the model trained with the proposed
DG method. Depending on the plant’s height, three primary
macro-categories of crops have been identified. Low crops,
such as lettuce and chard, have an average height of 20-25
cm. Medium crops, such as zucchini, grow to 60 cm. Tall
crops, which include vineyards and trees, can grow up to
2.5-4.5 m. Some examples of 3D plant models are shown
in Figure 2.

3https://www.blender.org/

Crop Samples Type Category↓ Height [m]
Lettuce 4800 Synthetic Low 0.22
Chard 4800 Synthetic Low 0.25
Lavender 5260 Synthetic Low 0.3
Zucchini 19200 Synthetic Medium 0.6
Cotton 4800 Synthetic Medium 0.6
Vineyard 4800 Synthetic Tall 1.5-2.5
Pergola Vineyard 4800 Synthetic Tall 3.2
Apple Tree 9600 Synthetic Tall 2.7
Pear Tree 4800 Synthetic Tall 3.0
Generic Tree 1 4800 Synthetic Tall 4.5
Generic Tree 2 2785 Synthetic Tall 4.5

Vineyard [1] 500 Real Tall 2.5
Miscellaneous 100 Real Any Any
VegAnn [23] 3775 Real Any Any

Table 1. Detailed properties for each domain of the AGRISEG
dataset. The section on the top reports the synthetic crop datasets
generated in simulation, while the section on the bottom the real-
world ones.

Various terrains and sky models have been used to
achieve realistic background and light conditions. After-
ward, Blender’s Python scripting functionality was used to
automatically separate plants from the rest of the frame and
generate a dataset of RGB images and corresponding seg-
mentation masks. This work presents the AGRISEG dataset,
composed of samples from low crops (e.g., chard and let-
tuce), medium crops (e.g., zucchini), and tall crops (e.g.,
vineyard, pear tree, and generic tall tree). Each dataset
presents four sub-datasets that differ in background and ter-
rain. Cloudy and sunny skies, diverse lighting, and shadow
conditions are included. Camera position and orientation
have been changed to capture diverse image samples along
the whole field for each sub-dataset. Overall, the AGRISEG
dataset contains more than 70, 000 samples. In the bottom
rows, we also include three additional domains to validate
the considered solutions on real-world data as a final test.
The Real Vineyard dataset was originally presented in [1],
but the proposed labels were coarse. Hence, we re-label the
samples using the SALT labeling tool 4 based on Segment
Anything [18]. We also add Miscellaneous, containing 100
samples from disparate crop types, and label it similarly. Fi-
nally, we include VegAnn [23], a multi-crop dataset acquired
under diverse conditions for vegetation segmentation. This
domain constitutes a highly different setting from the train-
ing domains, so we use it to evaluate generalization in ex-
treme domain shifts. Details for each dataset are listed in
Table 1.

4.2. Training
In this section, we report all the relevant information re-
garding experimental settings for model training and test-

4https://github.com/anuragxel/salt
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Method Gen. Tree 2 Chard Lettuce Vineyard Average
Teacher 84.52± 0.62 95.09± 0.11 95.37± 0.10 85.51± 1.08 90.12± 0.48

ERM[36] 76.31± 1.53 87.63± 0.86 80.64± 5.00 67.34± 2.18 77.98± 1.62
IBN[28] 79.15± 1.57 88.92± 1.07 57.85± 6.00 69.11± 2.88 73.76± 2.36
ISW[7] 77.14± 1.77 89.44± 0.47 53.86± 8.45 68.76± 3.06 72.30± 2.30

pAdaIN[27] 75.17± 2.03 86.65± 1.75 78.05± 4.90 69.79± 1.41 77.41± 0.77
WildNet[20] 82.34± 1.55 93.68± 0.08 43.55± 6.91 72.83± 0.76 73.10± 2.70

CWD[34] 64.20± 8.08 84.70± 1.92 83.84± 2.79 62.88± 2.49 73.90± 2.17
WCTA[38] 75.09± 0.94 86.66± 1.93 70.73± 10.85 66.57± 3.20 74.76± 2.25
KDDG[37] 80.13± 1.61 87.67± 1.66 74.16± 3.37 65.55± 1.18 76.88± 0.68

XDED[19] 77.18± 2.20 88.62± 0.71 75.82± 5.12 70.48± 1.00 78.03± 1.85
Ours 78.84± 1.24 88.35± 1.27 78.04± 3.46 72.21± 1.02 79.36± 1.0479.36± 1.0479.36± 1.04

Table 2. Comparison between the proposed methodology and other state-of-the-art DG algorithms for semantic segmentation adopting the
leave-one-out DG validation procedure described in 4.2. We report the Intersection-over-Union (IoU) metric (in %) for each result as mean
and standard deviation. The best and second-best overall results are highlighted and underlined, respectively.

ing: data preprocessing, hyper-parameter search, and im-
plementation. We repeat each training five times with differ-
ent and randomly generated seeds to obtain statistically rel-
evant metrics. Each of our benchmark’s results is reported
as mean and standard deviation.

4.2.1 Data Preprocessing

We preprocess input images through the ImageNet standard
normalization [10] to use pretrained weights. We apply the
same data augmentation to all the experiments, consisting
of random cropping with a factor in the range [0.5, 1] and
flipping with a probability of 50%. We don’t use random
jitter, contrast, and grayscale, which are common practices
in DG. We instead draw inspiration for the WCTA styliza-
tion method proposed in [38] for weed segmentation. We
apply it randomly with probability p = 0.001 and call our
version pWCTA. The reason is that we don’t tackle just a
shift in style but also in context (the change of crop type),
and stronger stylization could over-regularize training. Ex-
periments confirm that our choice leads to enhanced gener-
alization on the proposed dataset.

4.2.2 Hyper-parameters

We conduct a random search to determine the optimal train-
ing hyper-parameters for the ERM DG baseline. We de-
fine a range of values for continuous arguments and a set
of choices for discrete ones and select the best combination
via the training-domain validation set strategy proposed in
[15]. It consists of picking the model that maximizes the
metric (in our case, IoU) on a validation split of the training
set (in our case, 10%, uniform across domains) at the end of
each epoch.

We choose a batch size B = 64 and set the number of
training epochs to 50. We choose temperature ⌧ = 2 and

weight � = 0.1 for LKD. We use AdamW [21] as the
optimizer with a weight decay of 10�5. The learning rate is
scheduled with a polynomial decay between 5 ⇥ 10�5 and
5 ⇥ 10�6. We compare to state-of-the-art methodologies
running the same hyper-parameter search when tuning is
necessary. We apply IBN [28] and ISW[7] to the first two
blocks of the backbone, while pAdaIN [27] is applied to
all the layers with a probability of 10�3. The ISW loss is
weighted by a factor of 10�2, while XDED [19] is applied
with a weight of 10�3, a ⌧ of 2, and in combination with
UniStyle feature whitening.

4.2.3 Implementation

To tackle a realistic real-time application and following
previous work on crop segmentation [1], we choose Mo-
bileNetV3 [17] with an LR-ASPP segmentation head[17]
as the model architecture. This choice provides an optimal
trade-off between performance and efficiency, exploiting ef-
fective modules such as depth-wise convolutions, channel-
wise attention, and residual skip connections. We train
models starting from ImageNet pretrained weights, so the
input size is fixed to (224, 224). The considered state-of-
the-art DG methodologies are taken from the official repos-
itories when available or reimplemented. All the training
runs are performed on a single Nvidia RTX 3090 GPU.

5. Results
In this section, we present the main results of the exper-
imentation conducted to evaluate the effectiveness of the
proposed methodology. First, we compare our distillation-
based approach with recent and promising DG and seman-
tic segmentation alternatives. Inspired by popular datasets
for image classification, we select four domains (Generic
Tree 2, Chard, Lettuce, and Vineyard) and evaluate all the
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Method Pear Tree Zucchini Real Vineyard Real Misc. VegAnn Average
Teacher 90.84± 0.30 90.42± 0.11 69.20± 2.86 54.39± 3.71 85.70± 0.88 78.11± 1.57

ERM[36] 82.11± 0.93 86.11± 0.15 51.51± 7.27 67.48± 0.97 61.92± 0.93 69.83± 1.33
IBN[28] 82.24± 0.64 86.06± 0.07 52.04± 3.98 67.97± 2.21 63.06± 1.51 70.27± 1.68
ISW[7] 82.31± 0.83 86.03± 0.11 55.46± 2.83 67.68± 2.04 63.29± 1.42 70.95± 1.45

pAdaIN[27] 82.67± 0.77 85.96± 0.20 53.02± 6.26 63.39± 2.00 62.56± 1.26 69.52± 2.10
WildNet[20] 88.50± 0.31 86.32± 0.10 37.30± 0.61 72.15± 0.27 42.62± 1.36 65.38± 0.53

CWD[34] 79.52± 0.54 85.84± 0.07 50.83± 4.37 65.27± 3.28 61.18± 1.21 68.53± 1.89
WCTA[38] 81.80± 0.82 85.87± 0.32 54.83± 1.50 64.81± 3.99 63.22± 2.17 70.11± 1.76
KDDG[37] 81.69± 0.50 86.22± 0.13 55.99± 2.61 62.60± 4.23 63.49± 0.63 70.00± 1.62

XDED[19] 82.04± 0.56 86.11± 0.25 56.10± 7.30 66.92± 1.93 64.09± 0.80 71.05± 1.41
Ours 83.83± 0.11 86.39± 0.04 57.21± 3.49 69.84± 1.34 65.00± 1.55 72.45± 1.3172.45± 1.3172.45± 1.31

Table 3. Comparison between the proposed methodology and other state-of-the-art DG algorithms on additional target domains. We train
the models on all four domains chosen for the previous benchmark. We report IoU (in %) on the unseen domains as mean and standard
deviation. The best and second-best results are highlighted and underlined, respectively.

methodologies by training on three domains and testing on
the fourth. The domains are selected to cover different crop
dimensions and visual characteristics and guarantee a chal-
lenging generalization benchmark. Then, we perform an
additional evaluation by training models on all four datasets
and testing on five additional target domains (Pear Tree,
Zucchini, Real Vineyard, Real Miscellaneous, and VegAnn).
In addition, we conduct a small ablation study to investigate
the role of different components in our methodology and the
importance of specialized single-domain teachers.

5.1. DG Benchmark

We run the leave-one-out DG benchmark described in 4.2
and report the results with their mean and standard deviation
in Table 2. On average, our ensemble distillation methodol-
ogy is 1.3% better than the second-best compared solution
(XDED), which also distills from a set of specialized teach-
ers. This strategy, hence, proves to give insightful informa-
tion to the student and makes it less biased towards domain-
specific features. The results for ERM are quite balanced
across domains, proving the strong validity of this method
despite its simplicity. Other DG methods, even though ob-
taining superior results in specific domains, are, on average,
suboptimal. This failure could be due to the methods focus-
ing on features that are extremely beneficial for some spe-
cific scenarios but useless to others. Our method, instead,
retains consistently good performance in all domains thanks
to the insights given by the ensembled teachers.

To further validate the generalization capability of our
method, we construct a more challenging benchmark by
using five unseen test domains (Pear Tree, Zucchini, Real
Vineyard, Real Miscellaneous and VegAnn). The models are
trained and validated on all four datasets used for the pre-
vious benchmark. In this test, we also investigate the Sim-
to-Real gap. The results are reported in Table 3, where we

also include the teachers’ performance as an upper bound.
Teacher IoU is lower for real datasets as they are more chal-
lenging and contain fewer samples. On average, our ensem-
ble distillation methodology is 1.4% better than the second-
best compared solution (XDED), confirming the outcome
of the previous benchmark. Moreover, our method retains
the best performance on all real domains. This result en-
forces previous considerations on the generalization abil-
ity of KD without any additional layers or computation at
inference time. ERM obtains acceptable results in all do-
mains but is surpassed by a significant margin by other
methods like IBN and ISW. These results suggest ERM
and state-of-the-art DG methods suffer Sim2Real more than
ours. Indeed, the change from synthetic to real crops fur-
ther widens the domain gap between different crops and
backgrounds. Another interesting insight can be found in
the standard deviations, as our method obtains one of the
smallest values. WildNet performs badly on Real Vineyard
and VegAnn while obtaining satisfactory results on synthetic
ones. Its small standard deviation suggests that the multiple
training losses applied during training could have an over-
regularizing effect on the process. On the contrary, our ap-
proach finds the best trade-off between regularization and
learning. In the next section, we investigate the contribu-
tion of different elements to this result.

5.2. Ablation Study

We conduct an ablation study to investigate the effect
of different components on the generalization capability
of our methodology. We also highlight the main differ-
ences between our approach and XDED [19] regarding
methodological components and performance. In particu-
lar, we consider distillation strategy, logit standardization,
and pWCTA. We also try substituting the specialized teach-
ers with an ensemble of ERM models trained on all source
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Method Teacher pWCTA Logit Std Vineyard Real Misc. Real VegAnn Average
ERM 7 7 7 51.51± 7.27 67.48± 0.97 61.92± 0.93 60.30± 3.06
KD ERM 7 7 61.27± 1.03 63.70± 1.72 64.99± 0.47 63.32± 1.07

XDED [19] Ens. 7 7 56.10± 7.30 66.92± 1.93 64.09± 0.80 62.37± 3.34

Ours Ens. 0.001 7 57.01± 2.53 69.07± 0.69 65.36± 1.12 63.81± 1.45
Ens. 0.001 3 57.21± 3.49 69.84± 1.34 65.00± 1.55 64.02± 2.1364.02± 2.1364.02± 2.13

Table 4. Ablation study highlighting the contribution of different design choices. We evaluate the effect of KD, domain-expert teachers,
pWCTA, and logit standardization. We report IoU (in %) for each result as mean and standard deviation. The best and second-best results
are highlighted and underlined, respectively.

Figure 4. Ablation study on the hyper-parameters � and ⌧ . The re-
ported IoU value is relative to the Real Miscellaneous domain and
is averaged on three runs. We represent two views of the results
for better readability.

domains. The results are reported in Table 4, in which we
included ERM as a baseline.

First, the results confirm that applying distillation im-
proves simple ERM without requiring additional computa-
tion at inference time. Moreover, plain ensemble distilla-
tion cannot bridge the strong Sym2Real gap. This failure
is probably due to the unbalanced contribution of different
teachers, which can lead to transferring domain-dependent
biases to the student. To contrast this risk, we standardize
distillation logits and apply pWCTA with a low probability
to avoid overfitting. Our methodology outperforms ERM
distillation, making the best out of specialized teachers. As
depicted in Fig. 3, the distillation masks are less confident,
giving the student a better understanding of what parts of
the image are more likely to confound the predictor.

We further inspect the effect of the method’s hyper-
parameters on generalization capabilities. We vary the dis-
tillation loss weight � and the temperature ⌧ and report the
results on the Real Miscellaneous domain in Fig. 4. The
graphs show that our choice (� = 10�1, ⌧ = 2) is the op-
timal balance that ensures regularization without constrain-
ing the student. As reported in our benchmarks, this yields
good generalization across various synthetic and real do-
mains.

6. Conclusions
In this work, we proposed a novel method to tackle the
problem of DG for crop semantic segmentation in realis-
tic scenarios. We demonstrated that our distillation method
represents a competitive approach for transferring domain-
specific knowledge learned from multiple teacher models
to a single student without any overhead at inference time.
Moreover, we proposed logit standardization to adapt en-
sembled knowledge to the student, balancing overconfi-
dent predictions and penalizing spurious correlations. Each
teacher must be trained only once, and the method can be
extended to more domains by just training a new teacher and
then distilling. Extensive experimentation has been con-
ducted on the novel multi-crop synthetic dataset AGRISEG
and on real test data to demonstrate the overall generaliza-
tion boost provided by our training method. Moreover, we
conducted an ablation study to highlight the role of different
components in our solution. The superior results provided
by our method show how pairing ensembled KD and DG
can lead to robust perception models for realistic tasks in
precision agriculture. Future works will progressively add
more domains and DG methods to the AGRISEG bench-
mark. We will also include more real-world labeled data
to guarantee a deeper investigation of the use of synthetic
data for robust generalization in agriculture.
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[6] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541, 2006. 4

[7] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improving
domain generalization in urban-scene segmentation via in-
stance selective whitening. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11580–11590, 2021. 1, 3, 6, 7

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 3

[9] Gabriela Csurka. Domain adaptation in computer vision ap-
plications. Springer, 2017. 1

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 6

[11] Deepak Deshmukh, Dilip Kumar Pratihar, Alok Kanti Deb,
Hena Ray, and Nabarun Bhattacharyya. Design and devel-
opment of intelligent pesticide spraying system for agricul-
tural robot. In Hybrid Intelligent Systems: 20th International
Conference on Hybrid Intelligent Systems (HIS 2020), De-
cember 14-16, 2020, pages 157–170. Springer, 2021. 1

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html,
2012. 3

[13] Aijing Feng, Jianfeng Zhou, Earl D Vories, Kenneth A Sud-
duth, and Meina Zhang. Yield estimation in cotton using

uav-based multi-sensor imagery. Biosystems Engineering,
193:101–114, 2020. 1

[14] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe-
lix A Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020. 2

[15] Ishaan Gulrajani and David Lopez-Paz. In search of lost
domain generalization. arXiv preprint arXiv:2007.01434,
2020. 3, 6

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 4

[17] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019. 6

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything. arXiv:2304.02643, 2023.
3, 5

[19] Kyungmoon Lee, Sungyeon Kim, and Suha Kwak. Cross-
domain ensemble distillation for domain generalization. In
Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXV, pages 1–20. Springer, 2022. 3, 4, 6, 7, 8

[20] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai
Kim. Wildnet: Learning domain generalized semantic seg-
mentation from the wild. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9936–9946, 2022. 1, 3, 6, 7

[21] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[22] Zifei Luo, Wenzhu Yang, Yunfeng Yuan, Ruru Gou, and Xi-
aonan Li. Semantic segmentation of agricultural images: A
survey. Information Processing in Agriculture, 2023. 1

[23] Simon Madec, Kamran Irfan, Kaaviya Velumani, Frederic
Baret, Etienne David, Gaetan Daubige, Lucas Bernigaud
Samatan, Mario Serouart, Daniel Smith, Chrisbin James,
et al. Vegann, vegetation annotation of multi-crop rgb images
acquired under diverse conditions for segmentation. Scien-
tific Data, 10(1):302, 2023. 5

[24] Mauro Martini, Vittorio Mazzia, Aleem Khaliq, and Mar-
cello Chiaberge. Domain-adversarial training of self-
attention-based networks for land cover classification using
multi-temporal sentinel-2 satellite imagery. Remote Sensing,
13(13):2564, 2021. 1

[25] Mauro Martini, Simone Cerrato, Francesco Salvetti, Simone
Angarano, and Marcello Chiaberge. Position-agnostic au-
tonomous navigation in vineyards with deep reinforcement
learning. In 2022 IEEE 18th International Conference on
Automation Science and Engineering (CASE), pages 477–
484. IEEE, 2022. 1

[26] Somnath Mukhopadhyay, Munti Paul, Ramen Pal, and De-
bashis De. Tea leaf disease detection using multi-objective
image segmentation. Multimedia Tools and Applications, 80:
753–771, 2021. 1

5458



[27] Oren Nuriel, Sagie Benaim, and Lior Wolf. Permuted adain:
Reducing the bias towards global statistics in image clas-
sification. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9482–
9491, 2021. 3, 6, 7

[28] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464–479, 2018. 3, 6, 7

[29] Shivam K. Panda, Yongkyu Lee, and M. Khalid Jawed.
Agronav: Autonomous navigation framework for agricul-
tural robots and vehicles using semantic segmentation and
semantic line detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 6271–6280, 2023. 3

[30] Hongxing Peng, Chao Xue, Yuanyuan Shao, Keyin Chen,
Juntao Xiong, Zhihua Xie, and Liuhong Zhang. Seman-
tic segmentation of litchi branches using deeplabv3+ model.
IEEE Access, 8:164546–164555, 2020. 1

[31] Ehsan Raei, Ata Akbari Asanjan, Mohammad Reza Nikoo,
Mojtaba Sadegh, Shokoufeh Pourshahabi, and Jan Franklin
Adamowski. A deep learning image segmentation model for
agricultural irrigation system classification. Computers and
Electronics in Agriculture, 198:106977, 2022. 1

[32] Chengjuan Ren, Dae-Kyoo Kim, and Dongwon Jeong. A
survey of deep learning in agriculture: techniques and their
applications. Journal of Information Processing Systems, 16
(5):1015–1033, 2020. 1

[33] Francesco Salvetti, Simone Angarano, Mauro Martini, Si-
mone Cerrato, and Marcello Chiaberge. Waypoint genera-
tion in row-based crops with deep learning and contrastive
clustering. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2022,
Grenoble, France, September 19–23, 2022, Proceedings,
Part VI, pages 203–218. Springer, 2023. 1

[34] Changyong Shu, Yifan Liu, Jianfei Gao, Zheng Yan, and
Chunhua Shen. Channel-wise knowledge distillation for
dense prediction. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5311–5320,
2021. 6, 7

[35] Shangquan Sun, Wenqi Ren, Jingzhi Li, Rui Wang, and Xi-
aochun Cao. Logit standardization in knowledge distillation.
arXiv preprint arXiv:2403.01427, 2024. 4

[36] Vladimir N Vapnik. An overview of statistical learning the-
ory. IEEE transactions on neural networks, 10(5):988–999,
1999. 3, 6, 7

[37] Yufei Wang, Haoliang Li, Lap-pui Chau, and Alex C Kot.
Embracing the dark knowledge: Domain generalization us-
ing regularized knowledge distillation. In Proceedings of the
29th ACM International Conference on Multimedia, pages
2595–2604, 2021. 3, 6, 7
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