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Abstract

Irrigation mapping plays a crucial role in effective wa-
ter management, essential for preserving both water qual-
ity and quantity, and is key to mitigating the global issue
of water scarcity. The complexity of agricultural fields,
adorned with diverse irrigation practices, especially when
multiple systems coexist in close quarters, poses a unique
challenge. This complexity is further compounded by the
nature of Landsat’s remote sensing data, where each pixel is
rich with densely packed information, complicating the task
of accurate irrigation mapping. In this study, we introduce
an innovative approach that employs a progressive training
method, which strategically increases patch sizes through-
out the training process, utilizing datasets from Landsat
5 and 7, labeled with the WRLU dataset for precise la-
beling. This initial focus allows the model to capture de-
tailed features, progressively shifting to broader, more gen-
eral features as the patch size enlarges. Remarkably, our
method enhances the performance of existing state-of-the-
art models by approximately 20%. Furthermore, our anal-
ysis delves into the significance of incorporating various
spectral bands into the model, assessing their impact on
performance. The findings reveal that additional bands are
instrumental in enabling the model to discern finer details
more effectively. This work sets a new standard for leverag-
ing remote sensing imagery in irrigation mapping.

1. Introduction

Irrigation mapping refers to the process of creating de-
tailed maps to outline how irrigation systems (e.g., sprin-
kler, flood, drip irrigation etc.) are laid out across agricul-
tural lands. Sustaining or enhancing irrigation is crucial for
successful crop cultivation [1] amid climate change-induced
warmer temperatures, water scarcity [19] and shifting pre-
cipitation patterns [2, 26]. However, the lack of comprehen-

sive data detailing the timing, locations, and specific types
of irrigation utilized poses a significant challenge for effec-
tive planning and management [8].

The availability of satellite images from platforms like
Landsat and Sentinel, offering multiple spectral bands, in-
cluding visible, near-infrared, and thermal infrared,has sig-
nificantly facilitated the monitoring of agricultural land-
scapes on a large scale. Comparing to other dataset, Landsat
holds the distinction of being the longest-running collection
of moderate-resolution land remote sensing data obtained
from space, providing continuous coverage over time[44].
Geospatial semantic segmentation seeks to analyze these re-
mote sensing imagery by assigning semantic labels to each
pixel, enabling detailed interpretation of land cover and
features. However, despite the abundance of raw satellite
image data available today, for tasks like irrigation map-
ping remains challenging due to their scarcity of labels.
Moreover, irrigation systems can vary widely in scale, from
small-scale subsistence farming to large commercial agri-
culture. The heterogeneity in irrigation practices and sys-
tems across different regions adds to the complexity of map-
ping (see Fig. 1). In addition, the coarse resolution of Land-
sat imagery hampers models in capturing fine details, while
in general remote sensing datasets exhibit substantial intra-
class variance, adding to segmentation challenges[4, 33].

Recent advancements in deep learning-based segmen-
tation models have greatly improved performance in seg-
menting agricultural features from high-resolution remote
sensing images[7, 12, 23, 33]. Transfer learning using
semantic segmentation architectures such as U-Net[30],
DeepLabv3+[9], FPN[21], SegFormer[47] have shown
promising results on remote sensing datasets[13, 20, 52,
54]. However, it is important to consider that the charac-
teristics of agricultural objects, such as crops, fields, and
irrigation systems, may differ from those of objects in tradi-
tional benchmark datasets. 1 pixel of Landsat image holds
30m area of information. In dense and cluttered agricultural
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Figure 1. Representing the heterogeneity of irrigation types in-
volves close proximity, forming diverse structures in the field char-
acterized by variations in geometric shape, color, and patterns, de-
spite exhibiting similarities.

landscapes, existing model encounters challenges in accu-
rately mapping fields of various patterns and sizes. Standard
segmentation models also struggle to effectively segment
small-areas due to inadequate pixel representation, even in
supervised conditions[37]. Therefore, adapting and fine-
tuning segmentation models to effectively capture these
agricultural features is important for accurate mapping and
analysis in agricultural applications.

Patch sizes are crucial parameters in remote sensing seg-
mentation tasks. Studies shows that in the initial train-
ing phases, there’s a notable correlation between gradients
computed from small input patches and those from the en-
tire image, fading as training progresses[15, 42]. Trans-
former based model leverages smaller patches from images
to get better context, with smaller patches leading to higher
accuracy[11]. Many recent research have focused exten-
sively on exploring the impact of varying patch sizes on
segmentation accuracy [6, 22, 28, 34, 41, 51].

To address the issue of existing models failing to capture
finer details due to inadequate pixel representation in larger
patch settings, we propose a simple yet effective dynamic
patch size utilization model in this work. This model em-
ploys encoder-decoder based architectures and dynamically
adjusts patch sizes during training starting with smaller
patches and gradually increases to larger patches, while
sharing weights across different training stages. This ap-
proach aims to optimize performance and adapt to diverse
landscape features effectively. By adjusting patch sizes at
each stage, the model can focus on different levels of de-
tail within the images, effectively leveraging limited labeled
data to train large and data-intensive encoder-decoder mod-
els. This adaptability enables the model to better handle
complex scenes with varying levels of detail, ultimately re-
sulting in improved segmentation accuracy and generaliza-
tion capability. Our proposed method has achieved around

Figure 2. Irrigation type predictions by a U-Net with ResNet50
as backbone and by integrating our proposed method. The predic-
tions made by U-Net struggles to focus on fine details where by
integrating proposed method the model performs better. Few ar-
eas have been marked in the image to show the better prediction
by the models (red bounding boxes represent wrong prediction).

20% performance increase. The effectiveness of the pro-
posed approach is demonstrated in Fig. 2, where the irri-
gation type predictions outperform those of previous meth-
ods. In addition, we conducted further analysis on different
channels to assess their impact on model learning. We also
explored the integration of pretrained weights specifically
trained on Landsat data to evaluate their effectiveness in en-
hancing performance. Furthermore, we compared our ap-
proach with existing state-of-the-art technologies to demon-
strate its effectiveness. In summary, our contributions in this
project encompass:
• Proposed a novel model capable of mapping diverse ir-

rigation methods within heterogeneous fields by leverag-
ing varying patch sizes. To the best of our knowledge, no
prior work has addressed irrigation type detection on such
a large scale

• Demonstrated enhanced outcomes compared to the state-
of-the-art, highlighting the influence of progressively
training the models

• Identification of the impact and importance of various
channels and patch sizes from satellite imagery to get a
better performance

• Comparative analysis of the state-of-the art models to
identify the most robust and effective solution

2. Background
Current irrigation mapping products provide spatial data
without detailing irrigation methods [31, 36]. While remote
sensing has been utilized to map irrigated fields, especially
in areas of mixed agriculture [5], distinguishing between
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irrigation types remains challenging due to landscape com-
plexity and subtle practice variations. Computer vision and
machine learning have made strides in identifying specific
systems like center pivots [10, 32, 40], or covering small
area [29] but the broader task of irrigation mapping de-
mands nuanced analysis.

Semantic segmentation focuses on predicting pixel-wise
categories for input images. Over recent years, numerous
approaches have been devised to facilitate real-time seman-
tic segmentation. E-Net [27] proposes a lightweight archi-
tecture tailored for high-speed segmentation. SegNet [3]
combines a compact network architecture with skip connec-
tions to achieve rapid segmentation. ICNet [53] employs an
image cascade algorithm to expedite the pipeline, while ES-
PNet [24, 25] introduces an efficient spatial pyramid dilated
convolution. Furthermore, BiSeNet [50] segregates spatial
details and categorical semantics to achieve a balance be-
tween high accuracy and efficiency in semantic segmenta-
tion. More recently, SegFormer [48] incorporates Trans-
formers with a multi-layer perceptron decoder, resulting in
swift semantic segmentation. DeepLab V3+[9] enhances
the DeepLab series through an encoder-decoder architec-
ture, while newer approaches like OCR with HRNetV2[46]
and SegFormer[48] highlight the potency of Transformers
in Semantic Segmentation tasks. In contrast to conventional
methods that predict distribution maps across classes for se-
mantic masks, YOSO [17] predicts kernels along with their
corresponding categories for segmentation.

The role of image size in the training and evaluation of
models is pivotal[15, 45]. Techniques such as resizing and
rescaling images are commonly employed for augmentation
[35] or during the model training process[41], with studies
indicating that variability in image sizes can enhance model
learning[45]. The concept of ”progressive resizing,” as ex-
plored by [18] and [16], involves incrementally increasing
the size of images during training to bolster model perfor-
mance and expedite convergence. Building on this, [43]
showcased that Convolutional Neural Networks (CNNs)
could be initially trained on a fixed, smaller image size and
subsequently fine-tuned to a larger size for evaluation. This
approach mitigates the discrepancy in performance due to
changes in image size, facilitating quicker training times
and heightened accuracy. In our study, we employ a pro-
gressive patch size increment technique, combined with
encoder-decoder architectures and transfer learning strate-
gies, to enhance irrigation mapping using remote sensing
data.

3. Methodology
Our methodology employs a sequence of innovative steps,
combining progressive patch size training, multispectral
channel analysis, encoder-decoder architectures with trans-
fer learning, and a hybrid loss function approach. Figure 3

illustrates our overall approach, which we detail in the fol-
lowing.

3.1. Progressive Patch Size Training with Transfer
Learning

Our study introduces a targeted approach to map irriga-
tion types, specifically distinguishing between sprinkler
and flood irrigation systems through remote sensing im-
agery. The foundation of our method involves an initial
training phase on small image patches (Ps) of dimensions
64 × 64 pixels. These patches are strategically selected to
densely represent the class labels associated with the irriga-
tion types, ensuring that the model (M ) is exposed to pivotal
data early in the training process Initially, the model M is
trained on patches of size Ps (e.g., 64×64 pixels), focusing
on detailed feature extraction:

M(Ps; Θs) → Θs+1

where Θs and Θs+1 represent the model parameters be-
fore and after training on Ps, respectively. Subsequently,
the training progresses to larger patch sizes Pl (e.g., 128 ×
128, 256 × 256 pixels), utilizing the weights Θs+1 as the
initial parameters for training on larger patches. By incre-
mentally increasing the patch size used in training phases,
the model adapts to recognize patterns at varying scales, en-
hancing its predictive accuracy and reducing computational
overhead.

3.2. Transfer Weights on Spectral Bands

In our approach to enhance model performance through ad-
ditional spectral channels, we employed a transfer learn-
ing strategy that involved extending the model’s existing
weights to accommodate new channels. Let the original
model trained on standard RGB channels be denoted as
MRGB, with its weights represented by ΘRGB. To incorpo-
rate new spectral bands, such as near-infrared (NIR) and
short-wave infrared (SWIR), we expanded the input dimen-
sionality, resulting in a modified model, MExtended.

This process required adjusting the model’s first convo-
lutional layer to accept an increased number of input chan-
nels, Cnew, where Cnew > 3 due to the inclusion of channels
beyond the traditional RGB. The augmentation of ΘRGB to
form a new set of weights, ΘExtended, integrates the learned
features from the RGB model with the new spectral infor-
mation. Mathematically, this adaptation can be described
as:

ΘExtended = extend(ΘRGB, Cnew) (1)

where the extend(·) function systematically enlarges the
weight matrix to align with the augmented channel input.
MExtended is subsequently fine-tuned on the dataset com-
prising the expanded spectral data, optimizing ΘExtended to
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Figure 3. Illustration of the method proposed to integrate with the
encoder-decoder based approach.

capitalize on the comprehensive spectral insights offered by
the additional bands. This fine-tuning not only retains the
knowledge from the original RGB channels but also ex-
ploits the unique characteristics of the new channels, sig-
nificantly improving the model’s accuracy and robustness
in irrigation pattern identification and classification.

3.3. Hybrid Loss Function

The model optimization employs a hybrid loss function,
combining Binary Cross-Entropy (BCE) and Dice loss LDice
to effectively balance pixel-wise accuracy and region over-
lap:

L = αLBCE + βLDice

where α and β are the weighting coefficients balancing the
two loss components.

4. Experiments and Results
4.1. Study Area

The study utilizes the Utah Water Related Land Use
(WRLU) dataset to develop and train a deep learning model
for irrigation mapping. Utah covers an area of 219, 807
km2 and spans longitudes from 109◦W to 114◦W and lati-
tudes from 37◦N to 42◦N. Farming occupies 43, 301 km2 of
land, with 18% of agricultural land being irrigated in Utah.
Irrigation is more prevalent on moderately sized farms, typ-
ically ranging from 20 to 22 hectares. We utilized WRLU
dataset covering the years 2003 to 2021, excluding 2016
due to the absence of digitized data. The study focused
on agricultural areas within the dataset, categorizing irriga-
tion methods into flood, sprinkler, drip, dry crop, and sub-
irrigated, with sprinkler systems further divided based on

their mobility. This research highlighted the prevalence of
wheel line and center pivot sprinkler systems, along with
surface irrigation techniques such as furrow and basin irri-
gation.

To evaluate our method in different area than the train-
ing, we use the data from southern Idaho’s Upper Snake
Rock (USR) watershed, overseen by the Twin Falls Canal
Company (TFCC), spanning 6,300 km2. With 37% of land
dedicated to irrigated agriculture mirroring Utah’s irrigation
methods, with nearly 80% of larger farms receiving irriga-
tion water. Additional labeling data was collected within
and around this irrigation project area to supplement the
WRLU dataset. An expert familiar with irrigation methods
in the region labeled agricultural fields within 235 square
polygons of size 1.9 km. Irrigation methods were identi-
fied by examining field appearances and spatial patterns on
high-resolution aerial imagery from the National Agricul-
ture Imagery Program (NAIP).

4.2. Dataset Collection and Preparation

The irrigation methods mapping tool utilizes Landsat Tier
1 Surface Reflectance data from Landsat missions 5 and
8 to construct input imagery. Landsat 5 covers the period
from 2003 to 2011 and Landsat 8 from 2013 to 2021 with
a repeat cycle of 16 days. The model inputs are computed
over 4-month period, averaging each band,spanning from
April 1st to September 1st. This corresponds to the period
when irrigation is the most active in the region. The Google
Earth Engine platform was utilized for acquiring Landsat
imagery and processing model inputs. From 2003 to 2017,
the annual WRLU survey extent encompassed only a por-
tion of the total agricultural area footprint of the State of
Utah, whereas WRLU maps after 2018 covered the entire
state. Using the WRLU dataset, the irrigation methods in
each patch are labeled as Flood (F), Sprinkler (S), or Other
(O). Class O includes non-irrigated areas and those irri-
gated using less common methods like drip irrigation. To
maintain class balance within the model, images containing
more than 90% other class pixels were omitted. These input
images are standardized and clipped to 256x256x7 patch
squares, each patch covering around 59km2 of the study
area at a 30 m resolution (see fig 4). Training and validation
images are randomly selected, with training squares spa-
tially distinct from validation squares. In total, 798 training
and 127 validation images were extracted for model devel-
opment and evaluation.

4.3. Data Preprocessing

Satellite images exhibit variability due to factors like light-
ing conditions and sensor characteristics. Normalization
ensures consistency across different scenes and sensors by
standardizing brightness and contrast. Initially, lower and
upper percentiles are calculated to define the range of pixel
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Figure 4. Visualization of each band (Blue, Green, Red, Shortwave Infrared (SWIR) 1, SWIR 2, Near Infrared (NIR), Thermal in an input
image. An area is highlighted with a bounding box to exemplify how each band contains distinct information within an image.

values. This range is then used to clip and normalize the
image, confining pixel values within the calculated bounds
and scaling them to a range of 0 to 1. Remote sensing
imagery can have varying atmospheric conditions, lighting,
and land cover can obscure important details To address this
issue, additionally, CLAHE histogram equalization[49] is
performed to enhance contrast (see fig 5). One of the ad-
vantages of CLAHE over traditional histogram equalization
is its ability to limit noise amplification. By applying a con-
trast limit to the histogram equalization process, CLAHE
avoids the over-enhancement of contrast in near-uniform re-
gions, which can often lead to noise becoming more pro-
nounced, a common issue in remote sensing images due to
sensor irregularities or atmospheric interference. Following
this, we generate sets of 64x64 and 128x128 image patches
extracted from 256x256 patches, while excluding patches
where over 80% of the pixels belong to other regions.

4.4. Training and Experiments

This section provides a comprehensive overview of our ex-
perimental approach for developing an irrigation mapping
model, detailing the methodology and evaluating the out-
comes across three primary dimensions. We aim to illus-
trate the impact of utilizing various state-of-the-art (SOTA)
models, the integration of multiple channels, and the ap-
plication of progressive training techniques across different
patch sizes at each stage of the model’s training.
Experimental Settings. In summary, we leverage a suite of
transfer learning with existing deep learning architectures
as the foundational models for our experiments, specifi-
cally ResNet50, DeepLabv3+, SegFormer, InceptionV3 and
pre-trained ResNet50 on Landsat dataset[38]. The origi-
nal final layers of these models are replaced with a custom
sequence of layers designed to enhance feature extraction
and adaptability to our Landsat dataset. This sequence in-
cludes Conv2D with stride 1 as upsampling layers and three
successive blocks composed of Conv2d, Batch Normaliza-
tion (BN), Dropout, and ReLU layers. The configuration
of these blocks varies: the first block adapts its size of in-
puts based on the chosen base model’s architecture, while
the last block outputs the segmentation mask. Additionally,
batch normalization is applied after the last block to en-
hance model performance by normalizing the final layer’s

output.
Our training process is divided into two distinct phases

to optimize the integration of the base models with our cus-
tom layers. Initially, the base model is frozen, and only
the appended layers are trained for two epochs. This ap-
proach allows the model to adjust the pre-learned features
for the landsat dataset predictions. Following this, the entire
model, including the previously frozen base layers, under-
goes fine-tuning with variable learning rates to refine fea-
ture extraction across the model’s depth. The learning rates
are adjusted such that the earlier layers, which capture fun-
damental shape and feature information from the ImageNet
dataset, receive a lower rate compared to the more special-
ized deeper layers. This differential learning rate strategy is
set between 3e-3 and 3e-4 using a minibatch size of 16.

Training Time Augmentation. To enhance the training
process and ensure our model is robust to various image
transformations, we incorporated several train-time aug-
mentation techniques. These included flipping images hor-
izontally and vertically to simulate different orientations,
and rotating images within a range of -20% to +30% to ac-
count for variations in perspective. Additionally, we exper-
imented with zooming in or out on the images by 20% to
30% and adjusting the brightness by up to 20% to mimic
different lighting conditions. Furthermore, we adjusted the
contrast of the images by 20% to simulate variations in im-
age quality and applied translations up to 5% in both the
horizontal and vertical directions to represent slight shifts
in the camera angle or object position. These augmenta-
tion strategies were carefully chosen to expose the model
to a wide range of plausible variations it might encounter
in realworld scenarios, thereby improving its generalization
capabilities and performance on unseen data.

Evaluation Metrics. In evaluating our model’s efficacy
for classification tasks, we utilized metrics including Mean
Intersection over Union (mIoU), Precision, Recall, and F1-
Score. These metrics collectively provide a multifaceted
view of the model’s performance, with mIoU assessing spa-
tial accuracy through predicted and actual segment over-
laps, and the other metrics gauging overall prediction accu-
racy, positive prediction correctness, capability to identify
all relevant instances, and a harmonized measure of preci-
sion and sensitivity, respectively.
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Figure 5. After performing CLAHE histogram equalization on the
normalized image.

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-Score (F1) = 2× Precision × Recall
Precision + Recall

5. Ablation Study and Analyses
This section is structured as follows: First, we examine the
performance of SOTA methods within our specific setup,
identifying areas where they excelled in generating irriga-
tion maps and noting any challenges encountered. Next,
we explore the potential for enhancing model performance
through the integration of various spectral channels. Finally,
we assess the impact of employing different patch sizes dur-
ing training on the model’s effectiveness.

Performance of SOTA models. Table 1 presents a de-
tailed evaluation of SOTA models. In addition to employing
pre-trained models from the ImageNet database, we also
trained our dataset with a ResNet50 model pre-trained on
Landsat 7 & 8 data, utilizing 7 channels similar to our study.
Our findings indicate that models pre-trained on Landsat
data outperform others, which is expected since the Im-
ageNet dataset, despite its size, differs significantly from
Landsat in content. Furthermore, given that Landsat im-
agery has a 30m resolution, each pixel encompasses a con-
siderable amount of information. A 256x256 image covers
a vast area, containing an abundance of details. Directly
training models with these larger images leads to difficul-
ties in capturing the general patterns of different irrigation
types, as illustrated in fig 7.

Impact of Different Bands. Our initial experiments
were conducted using the RGB bands. Irrigation mapping
can rely on multiple factors including the color of the fields,
patterns within the fields, and the level of greenness, among
others, which may not be fully captured through RGB chan-
nels alone. To explore the impact of additional spectral in-
formation, we adapted SOTA models, initially trained on
3 channels, to accept inputs from 7 channels. This adap-
tation involved extending the weights of the existing RGB
channels to accommodate the newly introduced channels.
The introduction of these additional channels appeared to
enhance model performance significantly. However, it was
noted that thermal channels did not contribute substantially
to the improvement in this context. Our results indicate that
incorporating a variety of bands can potentially enhance a
model’s performance in identifying irrigation patterns (see
table 2).

Progressive Training with Varying Patch Sizes. In
our methodology, we propose an initial training phase using
smaller image patches that densely represent the class pixels
associated with both sprinkler and flood irrigation types (see
fig. 9). This focused approach allows the model to priori-
tize critical data while mastering the characteristics of dif-
ferent irrigation patterns. Training commenced with 64x64
patches, detailed in section 4.4. We then implemented trans-
fer learning to refine the model further on 128x128 patches.
This step, as highlighted in Table 3, offers substantial im-
provements over exclusively training with 128x128 patches.
Continuing with this methodology, we extended training
to 256x256 patches, achieving notable advancements in all
evaluated metrics and surpassing competing models in ef-
ficiency, requiring fewer training epochs. Our strategy cul-
minated in a Mean Intersection over Union (mIoU) score of
0.613 and an F1 score of 0.819. Through strategic appli-
cation of transfer learning, utilizing the model’s pretrained
weights and incrementally introducing more detailed infor-
mation, we significantly bolster the model’s learning ca-
pacity. This progressive enlargement enables the model to
initially recognize broad patterns before refining its under-
standing with more granular details as patch sizes increase
(see fig. 8).

Table 1. Performance Comparison of State-of-the-Art Models
Trained on 256x256 Patches vs Our Proposed Method

Model mIoU Precision Recall F1

ResNet50[14] 0.398 0.631 0.639 0.635
DeepLabv3+[9] 0.321 0.595 0.585 0.590
SegFormer[47] 0.323 0.613 0.612 0.612
Inceptionv3[39] 0.298 0.513 0.512 0.512
PreLandsat[38] 0.523 0.681 0.679 0.680

Ours 0.579 0.8273 0.8125 0.819
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Figure 6. Results obtained from various state-of-the-art methods are compared with ours. Dark green bounding boxes highlight areas
where our methods have outperformed the others. In this setup, the proposed method is trained using six channels, while the remainder of
the model is trained using RGB.

Figure 7. The above heatmaps belonging to sprinkler irrigation,
we observed the limitation in the existing model’s ability to com-
prehend patterns effectively. For instance, in the provided images,
the model appears to prioritize color over shape, indicating a gap
in its understanding of the underlying structures.

Figure 8. Visualization of Model’s Prediction.(Red belongs to
flood and yellow belongs to sprinkler irrigation.)

6. Discussion

This paper aims to tackle a critical issue in agriculture by
developing methods to enhance water resource management
and improve water quality in irrigated areas. To this end,
we curated a dataset from Landsat remote sensing imagery,
which offers an extensive historical record with 30m reso-
lution, and employed the WRLU dataset for data labeling.
While higher resolution data could potentially yield more
precise results, Landsat’s historical data enables an analysis

Figure 9. The image illustrates the variance in information levels
across patches, highlighting the diverse data captured in different
segments of the agricultural landscape. (Red Box: 64x64, Yellow:
128x128 Green: 256x256)

Table 2. Performance of ResNet50 varying different channels.

Model mIoU F1

RGB 0.311 0.5991
RGBN 0.323 0.6509
RGBNS1 0.358 0.6636
RGBNS1S2 0.354 0.6529
RGBNS1S2Th 0.322 0.6444

Table 3. Performance of ResNet50 varying different patch size
with 6 channel(R:Red,G:Green,B:Blue,N:NIR,S:SWI1,S:SWI2)

Patch Size Training Individually Ours

mIoU F1 mIoU F1

64x64 0.295 0.587 0.295 0.587
128x128 0.311 0.595 0.452 0.692
256x256 0.401 0.579 0.613 0.819

of changes in irrigation practices over time, offering valu-
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able insights for long-term agricultural planning and envi-
ronmental sustainability. Our experimental findings demon-
strate that along with incorporating multiple bands, progres-
sively training the model with incremental information sig-
nificantly improves performance. Model tends to learn finer
details in this approach. This approach is versatile and can
be applied to various tasks involving Landsat imagery. Ad-
ditionally, we investigated the influence of different spec-
tral bands to provide insights on optimizing model training
with limited data and computational resources. While our
study primarily utilized patch sizes of 64x64, 128x128, and
256x256, exploring other dimensions and sequences could
also prove beneficial. Our models serve as a foundation for
generating additional data through iterative processes, in-
cluding the creation of pseudo-labels and expert validation,
which can substantially reduce the manual labor required
for compiling extensive datasets. We compared the outputs
of various SOTA models and found that models pre-trained
on Landsat data offer a solid starting point for training on
Landsat imagery. We hope our findings will serve as a foun-
dational baseline for further research in irrigation mapping.

7. Conclusion
This paper proposes a transformative method of employing
progressively increasing patch sizes during model training
to address the challenges of irrigation mapping. By begin-
ning with small patches to focus on detailed features and
expanding to larger patches to capture broader landscape as-
pects, this approach effectively navigates the complex vari-
abilities of agricultural fields equipped with diverse irriga-
tion systems. Our results reveal a significant performance
improvement, with a 20% enhancement over state-of-the-
art models, underscoring the efficacy of this strategy in re-
fining model accuracy and robustness. Additionally, the in-
tegration of multiple spectral bands into the model training
process has been analyzed, confirming their critical role in
enhancing the model’s capability to discern finer details cru-
cial for accurate and effective mapping. This study also rig-
orously evaluates current state-of-the-art models. Overall,
our findings not only demonstrate the potential of advanced
machine learning techniques in improving irrigation map-
ping but also establish a new standard for the utilization of
remote sensing data. This work paves the way for further
research and development in the field, promising significant
advancements in agricultural vision using remote sensing.
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