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1. Problem Overview

Irrigation systems can vary widely in scale, from small-
scale subsistence farming to large commercial agriculture
(see Fig. 1). The heterogeneity in irrigation practices and
systems across different regions adds to the complexity of
mapping (see Fig. 1). Distinguishing between irrigated
and non-irrigated areas is challenging due to the spectral
characteristics of various irrigation systems and practices
across different regions, further complicating the task of
mapping different types of irrigation. For example, rainfed
agriculture is prevalent in the Midwest, Southeast, and parts
of the Northeast U.S., while irrigation is common in arid
Western and Southwestern states. Rainfed farming can re-
sult in highly variable patterns of cultivation. Farmers may
practice rainfed agriculture in some fields while irrigating
others, leading to a complex mosaic of irrigated and non-
irrigated areas within the same region.

Currently, there is no established method for accurately
mapping different irrigation techniques in areas where var-
ious methods are used simultaneously. While there has
been significant progress in using machine learning and
deep learning for agriculture-related tasks, the specific chal-
lenge of mapping irrigation practices when different types
are used in the same field has not been thoroughly explored.
Although some efforts have been made to distinguish irri-
gated areas from non-irrigated ones, these approaches often
overlook the importance of considering changes over time.

1.1. Hypothesis of the Research

Our hypothesis in this proposal is as follows:

e develop a deep learning system for irrigation mapping
using publicly available remote sensing data as input
enhancing the robustness of the segmentation classifier,
while also improving its interpretability.

strengthen the model’s ability to generalize effectively,
particularly in regions where data availability is low,
analyze the significance of different bands within the
satellite images, determine the optimal data volume re-

L]

quired, and explore additional features that can be incor-
porated into the training process.

2. Background and Literature Review

Current irrigation mapping products provide spatial data
without detailing irrigation methods [18, 20]. While remote
sensing has been utilized to map irrigated fields, especially
in areas of mixed agriculture [1], distinguishing between
irrigation types remains challenging due to landscape com-
plexity and subtle practice variations. Computer vision and
machine learning have made strides in identifying specific
systems like center pivots [7, 19, 21], but the broader task
of irrigation mapping demands nuanced analysis.

Instance segmentation is critical in this context, predict-
ing instance-specific masks and classes [2, 6, 9, 13, 16, 23].
These methods harness various features, from prototype
masks to orientation maps, to facilitate real-time analysis.
Meanwhile, semantic segmentation works at the pixel level
to classify image parts, with innovations aiming for speed
without sacrificing accuracy [12, 24, 26].

Recent studies have targeted joint semantic and instance
segmentation, aiming for comprehensive image understand-
ing [3, 8, 10, 11, 14, 15, 17, 22]. Techniques like UPSNet,
FPSNet, PanopticDeepLab, and LPSNet advance efficient
segmentation by generating semantic masks and identify-
ing instances [3, 7, 10, 11, 25]. Concurrently, methods like
PanopticFCN and MaskFormer predict masks for all scene
elements [4, 5, 14]. The evolution of these techniques repre-
sents the progress toward real-time, detailed understanding
of diverse agricultural landscapes.

3. Problem Formulation

The problem of comprehensive irrigation mapping involves
two main tasks: irrigated and non-irrigated field segmen-
tation, and specific irrigation method classification. Let X
represent the input satellite image. The goal is to obtain a
binary segmentation mask M,., that indicates the spatial
boundaries of agricultural fields focusing on whether a field
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Figure 1. Example Satellite image from Utah region (Left Most). Different irrigation type forming different pattern in the field. (Right)

Table 1. Results of the evaluation of the ensemble of trained U-Net models in test areas near the Utah towns of Elwood, Logan, Richmond,
Sutherland, and in the Twin Falls Canal Company (TFCC) irrigation project in southern Idaho. Performance metrics are overall accuracy
(A), precision (P), recall (R), and F1-score (F1) calculated from pixel-to-pixel comparisons between predicted and observed irrigation
methods. Precision, recall, and F1 are reported for each irrigation class labeled as F for surface/flood irrigation, S for sprinkler irrigation,

and O for other types of irrigation.

Area Accuracy Precision Recall F1
A F S O| F S (0) F S (0]
Elwood 0.79 0.84 049 - 076 053 050|088 0.51 0.60
Logan 0.59 061 048 - | 065 039 0411071 043 050
Richmond 0.59 020 0.85 - |0.73 063 060|030 070 0.63
Sutherland 0.74 091 0.10 - | 046 0.77 0.69 | 0.83 0.17 0.51
TFCC 0.70 060 0.72 - | 083 054 0851|057 0.78 0.63

is irrigated (/;;,) or not (I,0n—irr) based on visual cues in
the image. Lastlty, for irrigated fields, the model must do
pixel wise classification on the specific irrigation method
(Umethoq) being used. This is conditional on the irrigation
status being classified as irrigated. To optimize the model
for these tasks, a multi-task learning approach is employed.

The comprehensive irrigation mapping model employs
a multi-task learning approach, utilizing a combined loss
function defined as:

Liotal = - Lseg +5- Lspec,irr

where L.y and Lgpe._irr represent the losses for field seg-

mentation and specific irrigation method classification, re-

spectively.

* Lgeq is typically calculated using binary cross-entropy
or dice loss to differentiate between irrigated and non-
irrigated fields.

* Lgspecirr i1s implemented using categorical cross-entropy
to classify the specific irrigation method within irrigated
fields.

The hyperparameters « and 3 are used to balance the im-
portance of each task during the training process, ensuring
both segmentation accuracy and classification precision.

4. Preliminary Results

Results of the performance evaluation by region are sum-
marized in Table 1. Accuracy values in most test regions
were consistent with the 0.78 overall accuracy of the model
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Figure 2. A demo overview of the model

(Table II). Accuracy was the highest in the Elwood region
(0.79) and lowest in the Logan (0.59) and Richmond (0.59)
regions. Figures 6 and 7 show that many of the S irrigated
areas in the Logan and Richmond quadrangles were incor-
rectly predicted as F. Many of the mismatches occur in areas
where small areas of one irrigation class appear within large
blocks of another class, suggesting that the U-Net models
were not highly sensitive to small individual fields but re-
lied on broad spatial patterns to accurately recognize irriga-
tion methods. The coarse resolution of the Landsat bands
(30 m for RGB and SWIR and 60 m for the thermal band)
likely limits the ability of small spatial features to be accu-
rately capture by the U-Net models. Improvements may be
possible with the use of higher resolution satellite products
such as Sentinel 2. The Sutherland region was dominated by
flood irrigation which was adequately predicted (P = 0.91).

7984



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

H. Bazzi, N. Baghdadi, D. Ienco, M. El Hajj, M. Zribi, H.
Belhouchette, M. J. Escorihuela, and V. Demarez. Map-
ping irrigated areas using sentinel-1 time series in catalonia,
spain. Remote Sensing, 11(15):25, 2019. 1

Jiale Cao, Rao Muhammad Anwer, Hisham Cholakkal, Fa-
had Shahbaz Khan, Yanwei Pang, and Ling Shao. Sipmask:
Spatial information preservation for fast image and video in-
stance segmentation. In European Conference on Computer
Vision, 2020. 1

Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-deeplab: A simple, strong, and fast baseline for
bottom-up panoptic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1-2, 6, 2020. 1

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1-2, 3, 6, 2022. 1

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmenta-
tion. In Advances in Neural Information Processing Systems,
2022. 1

Tianheng Cheng, Xinggang Wang, Shaoyu Chen, Wengiang
Zhang, Qian Zhang, Chang Huang, Zhaoxiang Zhang, and
Wenyu Liu. Sparse instance activation for real-time instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022. 1

Thijs de Geus, Panagiotis Meletis, and Gijs Dubbelman. Fast
panoptic segmentation network. IEEE Robotics and Automa-
tion Letters, 1:1-2, 6, 2020. 1

Manuel Diaz-Zapata, Ozgiir Erkent, and Christian Laugier.
Yolo-based panoptic segmentation network. In IEEE Com-
puters, Software, and Applications Conference, 2021. 1
Entao Du, Zhiyu Xiang, Shuya Chen, Chengyu Qiao, Yi-
man Chen, and Tingming Bai. Real-time instance segmen-
tation with discriminative orientation maps. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2021. 1

Weixiang Hong, Qingpei Guo, Wei Zhang, Jingdong Chen,
and Wei Chu. Lpsnet: A lightweight solution for fast panop-
tic segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021. 1
Rui Hou, Jie Li, Arjun Bhargava, Allan Raventos, Vitor
Guizilini, Chao Fang, Jerome Lynch, and Adrien Gaidon.
Real-time panoptic segmentation from dense detections. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 1-2, 6, 2020. 1

Jie Hu, Linyan Huang, Tianhe Ren, Shengchuan Zhang,
Rongrong Ji, and Liujuan Cao. You only segment once: To-
wards real-time panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 17819-17829, 2023. 1
Youngwan Lee and Jongyoul Park. Centermask: Real-
time anchor-free instance segmentation. In Proceedings of

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

7985

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020. 1

Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang,
Zeming Li, Jian Sun, and Jiaya Jia. Fully convolutional
networks for panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1-2, 4, 6, 2021. 1

Rohit Mohan and Abhinav Valada. Efficientps: Efficient
panoptic segmentation. International Journal of Computer
Vision, 2, 2021. 1

Cida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao, and
Xiaowei Zhou. Deep snake for real-time instance segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2020. 1

Andra Petrovai and Sergiu Nedevschi. Fast panoptic seg-
mentation with soft attention embeddings. Sensors, 2022.
1

J. M. Salmon, M. A. Friedl, S. Frolking, D. Wisser, and E. M.
Douglas. Global rain-fed, irrigated, and paddy croplands: A
new high resolution map derived from remote sensing, crop
inventories and climate data. International Journal of Ap-
plied Earth Observation and Geoinformation, 38:321-334,
2015. 1

M. Saraiva, E. Protas, M. Salgado, and C. Souza. Automatic
mapping of center pivot irrigation systems from satellite im-
ages using deep learning. Remote Sensing, 12(3):14, 2020.
1

S. Siebert, M. Kummu, M. Porkka, P. Doll, N. Ramankutty,
and B. R. Scanlon. A global data set of the extent of irri-
gated land from 1900 to 2005. Hydrology and Earth System
Sciences, 19(3):1521-1545, 2015. 1

J. W. Tang, D. Arvor, T. Corpetti, and P. Tang. Mapping
center pivot irrigation systems in the southern amazon from
sentinel-2 images. Water, 13(3):298, 2021. 1

Zhi Tian, Bowen Zhang, Hao Chen, and Chunhua Shen. In-
stance and panoptic segmentation using conditional convolu-
tions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1:1-2, 2022. 1

Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmenta-
tion. In Advances in Neural Information Processing Systems,
2020. 1

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and effi-
cient design for semantic segmentation with transformers. In
Advances in Neural Information Processing Systems, 2021.
1

Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1-2, 6, 2019. 1

Changgian Yu, Changxin Gao, Jingbo Wang, Gang Yu,
Chunhua Shen, and Nong Sang. Bisenetv2: Bilateral net-
work with guided aggregation for real-time semantic seg-
mentation. International Journal of Computer Vision, 2,
2021. 1



