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Abstract

Instance-based semantic segmentation provides detailed
per-pixel scene understanding information crucial for both
computer vision and robotics applications. However, state-
of-the-art approaches such as Mask2Former are compu-
tationally expensive and reducing this computational bur-
den while maintaining high accuracy remains challenging.
Knowledge distillation has been regarded as a potential
way to compress neural networks, but to date limited work
has explored how to apply this to distill information from
the output queries of a model such as Mask2Former.

In this paper, we match the output queries of the student
and teacher models to enable a query-based knowledge dis-
tillation scheme. We independently match the teacher and
the student to the groundtruth and use this to define the
teacher to student relationship for knowledge distillation.
Using this approach we show that it is possible to perform
knowledge distillation where the student models can have a
lower number of queries and the backbone can be changed
from a Transformer architecture to a convolutional neural
network architecture. Experiments on two challenging agri-
cultural datasets, sweet pepper (BUP20) and sugar beet
(SB20), and Cityscapes demonstrate the efficacy of our ap-
proach. Across the three datasets the student models obtain
an average absolute performance improvement in AP of 1.8
and 1.9 points for ResNet-50 and Swin-Tiny backbone re-
spectively. To the best of our knowledge, this is the first work
to propose knowledge distillation schemes for instance se-
mantic segmentation with transformer-based models.

Index Terms–Computer Vision for Agriculture Automa-
tion, Knowledge Distillation, Efficient Instance Segmenta-
tion, Transformer

1. Introduction

The large application of computer vision algorithms, such
as detection, semantic segmentation, and instance-based se-

Figure 1. A visualization of our bipartite query-based matching
between the teacher and the student. We compare first association
of the predicted queries of the model, either teacher or student, to
the groundtruth to obtain teacher-gt and student-gt respectively.
We then use this to find the association of the predicted queries for
the teacher-student.

mantic segmentation brings the potential to greatly improve
efficiency to agricultural automation. Automatic fruit pick-
ing, weed removal, and pesticide drip irrigation have been
made possible by the introduction of dense predictions [1].
Instance segmentation provides a wealth of information
like per-pixel classification and instance location of objects,
which contributes to agricultural efficiency and makes it
possible to convert agricultural production from human la-
bor to automation. Despite these advances, it still remains
highly challenging to deploy vision algorithms in agricul-
ture since it is vulnerable to clutter from leaves and other
crop, as well as highly variable lighting conditions. Further-
more, the limited computational and energy resources on
edge devices constrains deployment on robots. Therefore,
efficient and accurate models capable of instance-based seg-
mentation are integral to enable real-world deployment.

Transformer-based models were introduced to computer
vision to further improve accuracy after the successful ap-
plication of vanilla transformers [2] in natural language
processing (NLP). DETR [3] was one of the first object
detection models based on transformers, and it introduces
the conception of object query which only contain features
from one instance. More recently, the Mask2Former [4]
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architecture was proposed which is capable of state-of-the-
art semantic, instance-based, and panoptic segmentation by
extracting masked attention within predicted mask regions.
Despite the improved accuracy provided by transformer-
based models their complicated structures inevitably in-
creases the computational complexity and hampers their ap-
plication in real-time scenarios.

One of the most effective ways to improve the efficiency
of deep neural networks is through knowledge distillation,
by imparting knowledge from complex networks (teachers)
to efficient networks (students). There are many kinds of
knowledge that can be used to distill information from us-
ing features from the final or intermediate layers through to
using the mutual relationship between features. However,
the majority of these distillation schemes are designed for
use with convolutional neural network (CNN) -based struc-
tures.

This means that distillation of joint image- and pixel-
level classification of transformer-based networks are yet to
be explored. Thus, how to distill instance-level knowledge
from a transformer-based structure is the key contribution
of this paper.

In this paper, we compress complex transformer-based
models into more efficient networks while retaining a high
degree of accuracy. First, we produce an optimal bipartite
matching scheme between the queries from the teacher and
the student as shown in Figure 1 by using the Hungarian
algorithm [3]. Second, we train our efficient networks by
distilling the class probabilities and mask maps from the
teacher network. For our experiments we perform distilla-
tion using the Mask2Former [4] architecture due to its high
accuracy for instance-based semantic segmentation and the
ability to easily switch the backbone network. Finally, We
show the validity of our approach by performing knowledge
distillation in multiple domains: arable farmland, horticul-
ture, and traffic scenarios.

Our results, on challenging agricultural and traf-
fic datasets, demonstrate that our knowledge distillation
scheme can be employed to learn efficient and accurate
lightweight models. Our models are 2.3 or 2.0 times faster
than the original complex teacher while only degrading
AP (average precision) performance by as little as 2.8 or
4.0 points, and in one case outperforms the teacher by 1.0
point. The main contribution of our paper is that we estab-
lish pair-wise query matching between transformer-based
models with different complexities (backbones and number
of queries) and distill the query-based knowledge from the
teacher to the student.

2. Related Work

2.1. Instance Segmentation

Instance-based semantic segmentation can be regarded as
the process of labeling pixels with categories and object ids.
This pixel-wise classification is fundamental for many ad-
vanced computer vision based tasks, such as medical im-
ages analysis [5], autonomous driving [6], and scene un-
derstanding [7]. The methods can be roughly divided into
two main categories: single-stage and two-stage methods.
Two-stage methods dominate instance segmentation and
can be further divided into top-down methods and bottom-
up methods. Top-down methods [8–10] predict bounding-
boxes first and then generate the instance masks within
these boxes which means that the final performance is
highly dependent on detection results. In contrast, bottom-
up methods [11, 12] classify pixels into the corresponding
categories and from this post-processing is applied to form
the instances which means that the final performance is
highly dependent on the post-processing approach. Single-
stage methods jointly perform detection and segmentation,
and are further divided into anchor-based and anchor-free
methods. For anchor-based methods [13, 14], most de-
tectors rely heavily on pre-defined anchors which vary in
scale depending on the target dataset. These techniques also
rely on handcrafted approaches like non-maximal suppres-
sion (NMS) to remove redundancies, which can increase the
computational burden. For anchor-free methods [15, 16],
they distinguish instances on the basis of predicted loca-
tions and shapes of the objects. A limitation of anchor-free
methods is that their performance generally decreases when
many instances overlap, this is because each grid can only
predict one location and mask.

2.2. Transformer-Based Dense Prediction

A variety of transformers have been designed for vision
tasks [17, 18]. A standard backbone for various dense vi-
sion prediction tasks is the Swin-Transformer [19] which
consists of a hierarchical architecture with multi-scale fea-
ture maps. Inspired by the transformer structures, re-
cent work has exploited self-attention to capture the long-
range relationships needed to perform instance-based se-
mantic segmentation. A query-based instance segmenta-
tion method based on the structure of Sparse R-CNN [20]
is proposed by Fang et al. [21]. In the approach, a mask
pooling operator is designed to extract the current stage in-
stance mask features and a dynamic convolution module is
employed to set a linkage between mask features and query
embedding. In ISTR [22], three task-specific heads and a
fixed mask decoder work together to accomplish the classi-
fication, localization, and segmentation prediction by taking
in the image-level features and learnable position embed-
ding. Dong et al. [23] propose a structure to complete clas-
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sification, bounding box regression, and mask segmentation
in one head linking segmentation and detection as a unified
query representation. However, complex transformer-based
models do not currently meet the real-time requirements of
robotic platforms.

2.3. Knowledge Distillation

Knowledge distillation has proven effective at compress-
ing models while maintaining performance. This enables
a lightweight network (student) to boost its performance
learning soft labels from a more complicated (teacher) net-
work [24]. The form of knowledge is traditionally divided
into three categories when performing distillation with
CNN-based models: response-based knowledge, feature-
based knowledge, and relation-based knowledge respec-
tively [25]. Response-based knowledge relies on the re-
sponse of the last output layer of the used networks [26, 27].
Feature-based knowledge uses the features from selected in-
termediate layers, and an adaptation layer is often required
to address the dimension mismatch between the teacher and
the student when doing distillation [28, 29]. Relation-based
knowledge focuses more on the relationships between fea-
tures from different network layers or data samples, with
typical examples being [30].

These distillation techniques have been shown to
perform well for CNN-based networks, however, for
transformer-based networks they are not directly applica-
ble due to the inherently different network structures. Due
to these differences self-attention based knowledge distil-
lation approaches are required. Lin et al. [31] propose the
target-aware transformer. Their approach assumes that the
semantic information usually varies on the same spatial lo-
cation since the teacher’s and the student’s receptive field
are different. The model generates the similarity between
each pixel of the teacher’s feature and all spatial locations
of the student’s features during the distillation process. The
performance of their technique surpasses the state-of-the-art
methods by a significant margin on common benchmarks.
In [32], the authors find that the dominant factor that affects
the distillation performance lies in inductive teacher bias
rather than teacher accuracy. The student is more likely to
learn diverse knowledge by transferring the inductive biases
from both the CNN and involution-based neural network
(INN) teacher when distilled. Touvron et al. [33] propose
a novel attention distillation mechanism and achieve state-
of-the-art performance on ImageNet. The authors exploit a
distillation token, similar to the classification token within
ViT [34], to enable the student to learn the attention maps
from the teacher. To gain cross-architecture knowledge, a
novel distillation scheme is proposed by Liu et al. [35] to
combat the heterogeneous architectures’ gap. Two projec-
tors, one for partial cross-attention and one for group-wise
linear, are designed to align the student’s immediate fea-

tures into the teacher’s attention space during this process.
As the complex structure of the teacher consumes a large
amount of resources during the process of supervising the
student, a framework [36] that stores the teacher’s predic-
tions in advance was proposed.

The distillation methods with transformed-based models
mentioned above focus mainly on image-level or pixel-level
classification, but new distillation schemes on instance-
based semantic segmentation and other dense prediction
paradigms are currently not explored. In this paper we in-
vestigate this dense prediction by using a bipartite matching
scheme to distill information from a teacher to a student.

3. Proposed Approach
In this paper, we propose a knowledge distillation scheme
for instance-based semantic segmentation with transformer-
based models. We build an ordered permutation for queries
from the student and the teacher in an innovative way, then
we distill the query-based knowledge based on the estab-
lished matching. Finally, we test our scheme on two agri-
cultural datasets and a common city scene dataset. The ap-
proach consists of three aspects.
1. We adopt Mask2Former as the framework for both

teacher and student networks. For the teacher network
we use the Swin-Large backbone [19] with a high num-
ber of queries. For the student networks we explore the
use of both ResNet [37] and Swin for the backbones with
fewer queries to explore a trade-off between efficiency
and accuracy.

2. We build a new matching technique to facilitate the
query-based distillation process. We match the un-
ordered queries from a set of predictions from the
teacher and the student by calculating their instance sim-
ilarity using class probabilities and mask maps. We
achieve this by exploiting the available groundtruth la-
bels and the matching scheme is explicitly described in
III-B.

3. Based on the result of the matching scheme, we per-
form instance-based knowledge distillation using both
the teacher and groundtruth labels. For this, we define
a teacher to student loss function that incorporates both
class probabilities and segmentation masks. When us-
ing both the teacher and groundtruth labels we combine
them using a weighted loss function. This is described
in III-C.

3.1. Teacher and Student Network Architectures

We adopt Mask2Former as the framework, which is
an encoder-decoder structure with self-attention layers.
Mask2Former is composed of a backbone, pixel decoder,
and transformer decoder which results in N queries which
are used to predict the class probabilities (including ob-
ject or not) and the associated per-pixel mask. The back-
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Figure 2. An illustration of our instance knowledge distillation process. Given the association of the predicted queries from the teacher to
the student model we then use an L2 loss to perform joint distillation on the class probabilities and mask predictions. In this process, only
queries with effective instances will be distilled and other redundant ones are discarded.

bone extracts information from an image and outputs fea-
tures with different resolutions. The pixel decoder gener-
ates high-resolution per-pixel embedding by sampling the
features from the previous backbone. The transformer de-
coder processes the long-range relationship of the image in-
formation and generates object queries, with which the final
heads predict the probabilities and the masks. More details
on this approach can be found in [4].

We take competitively performed and commonly used
ResNet and Swin-Transformer as the backbones of our
models. The model inference complexity can be varied by
selecting a set of backbones, from ResNet-18 to ResNet-
101 or from Swin-T (tiny version) to Swin-L (large ver-
sion). We set the teacher backbone to be the top performer
(Swin-L) and the student uses either ResNet-50 or Swin-T
as backbones as they computationally more efficient. The
teacher backbone was selected to ensure that it can capture
deeper relationships within the scene and it consists of 200
queries. As the student backbone is simpler we reduce its
number of queries to be 100.

3.2. Student-Teacher Query Matching

In order to perform knowledge distillation we need to find
matching queries between the teacher and student mod-
els. As shown in Figure 1, we establish the teacher-student
matching by exploiting the existing groundtruth labels (gt).
We do this by first resolving the teacher-gt and student-gt
associations. From this, we can then derive the teacher-
student associations, ϕ̂.

To find the optimal bipartite matching, teacher-gt and
student-gt we exploit the commonly used Hungarian algo-
rithm in previous work [3]. This establishes the query per-
mutation by optimizing the total cost involved by combin-
ing both class probabilities and instance mask predictions.

For this we use the following matching loss (cost),

Lmatch = δclsLcls + δmskLmsk, (1)

where δcls = 2 and δmsk = 5. Lcls and Lmsk are the corre-
sponding losses of class probabilities and mask predictions.

For the matching cost of classes, we only use probabili-
ties from the query set that match to an object (i.e. Ci ̸= Ø),

Lcls = −1Ci ̸=Øp̂σ(i)(Ci), (2)

where p̂σ(i) is the predicted probability of the class, and Ci

is the groundtruth class label.
As for the matching cost of masks, we calculate similar-

ities of pixels and overlaps between instances,

Lmsk = −1Ci ̸=Ø[Ldic(mi, m̂σ(i))+Lxe(mi, m̂σ(i))] (3)

where mi and m̂σ(i) are masks from gt and predictions in
one image, and Ldic and Lxe are the Dice loss and Cross
Entropy loss respectively.

3.3. Knowledge Distillation Loss function

As shown in Figure 2, the student uses both the teacher in-
formation and groundtruth labels during distillation. This
leads to our loss function being composed of two parts, the
groundtruth loss and the teacher-student loss,

Lall = Lgt + αLdis, (4)

where α is the balancing weight which varies according to
the different datasets. Lgt and Ldis are the corresponding
losses from the hard labels and soft labels during distilla-
tion.
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For the groundtruth loss, we compare the similarity of
the predicted class possibilities and mask predictions with
the corresponding hard labels as,

Lgt = δclsLxe(GTcls, Scls) + δmskLmsk (5)
Lmsk = Ldic(GTmsk, Smsk) + Lxe(GTmsk, Smsk), (6)

where GTmsk is the groundtruth mask, Smsk is the pre-
dicted mask, GTcls is the groundtruth class, and Scls is the
predicted class. The balancing weights are set to δcls = 2
and δmsk = 5. The class-based loss Lxe is a standard cross-
entropy loss. The mask-based loss Lmsk uses a weighted
combination of a standard cross entropy loss and a Dice loss
Ldic; similar to [4] we use equal weights of 5 for each.

The distillation loss is defined as follows,

Ldis =

N∑
i

||T i
cls, S

ϕ̂(i)
cls ||22 + β

N∑
i

||T i
msk, S

ϕ̂(i)
msk||

2
2 (7)

where T i
cls is the teacher class logits, Sϕ̂(i)

cls is the student

class logits, T i
msk is the teacher predicted mask logits, Sϕ̂(i)

msk

is the student predicted mask logits, and β is the balancing
weight. The i-th teacher-student association is denoted as
ϕ̂(i). To compare the teacher and student logits we use an
L2 loss. To address the imbalance between the class and
mask losses we set the balancing weight β = 0.02.

4. Experimental Setup and Results
We evaluate our instance semantic segmentation systems
on two challenging agricultural datasets, BUP20 and SB20,
and Cityscapes dataset. BUP20 [38] is a sweet pepper
dataset (glasshouse) which consists of 280 images which
are split into three sets with 124 images to train, 63 im-
ages to validate and 93 images to evaluate (test). SB20 [39]
is a sugar beet dataset (arable farming) which consists of
143 images which are split into three sets with 71 images
to train, 37 images to validate and 35 images to evaluate
(test). Cityscapes [40] is a traffic scene dataset which con-
sists of 5000 images, which are split into three sets with
2975 to train, 500 to valid and 1525 to evaluate (test). Sam-
ples of the three real-world datasets can be seen in Fig-
ure 3. BUP20 and Cityscapes both have high levels of
occlusion while SB20 has large variation due to different
growth stages of the plants.

Table 1. Instance knowledge distillation results on BUP20 in terms
of AP , AP50 and AP75.

models AP AP50 AP75
teacher (M2Fsl) 51.3±0.1 81.1±0.1 53.3±0.3

baseline (M2Fr50) 44.8±0.3 72.3±0.8 46.2±0.6
dis (Sr50) 46.1±0.8 73.4±0.6 48.3±0.9

baseline (M2Fst) 47.7±0.3 76.9±0.2 49.6±0.3
dis (Sst) 48.5±0.3 77.2±0.4 50.9±0.7

All of our models are implemented in Detectron2 [41]
and trained on an NVidia A6000 GPU. We fine-tune all the
models with weights pre-trained on the COCO dataset [42]
and do this 3 times to get the mean and variance of the per-
formance. The only exception is that on Cityscapes we do
not train multiple teacher models but instead use the pre-
trained model provided by Mask2Former. For BUP20 and
SB20, we set AdamW optimizer [43] with a step learning
rate of γ = 1e−4 and γ = 1e−5 respectively for the back-
bone ResNet and Swin-Transformer with a batch b = 1;
the small batch size is due to the low number of training
images. We search for the optimal weight α to combine
groundtruth and teacher labels using ranges 0.2 to 5.0. For
Cityscapes, we set AdamW optimizer with a step learning
rate of γ = 1e−4 with a batch b = 16. Here we set the
search for α to in the range 0.2 to 2.0.

We report performance primarily using average preci-
sion (AP ). Our teacher network has 200 queries with a
Swin-Large backbone, referred to as M2Fsl. The student
networks have only 100 queries and use either a ResNet-50
(Sr50) or Swin-Tiny (Sst) backbone.

4.1. Experiments on Agricultural Data

4.1.1 Results on BUP20

Table 1 outlines the results for BUP20 where there is a clear
improvement based on our distillation scheme. Our most
efficient network, Sr50, obtains the greatest performance
boost with an absolute AP improvement of 1.3 points when
compared to its direct baseline M2Fr50 (44.8 to 46.1). The
other distilled network, Sst, also improves results with an
absolute improvement in AP of 0.8 points.

We attribute the greater increase of the Sr50 model to the
overall performance gap between the baseline (M2Fr50)
and the teacher network when compared to that of the
M2Fst to the teacher. The difference between the two
baseline approaches (M2Fr50 and M2Fst) is believed to
be based on more informative features output by the Swin-T
backbone. Interestingly, it can be seen that the main perfor-
mance gain for the distilled models occurs at higher APs.

It can be seen that there are large performance gains for
AP75 but much lower gains for AP50. The performance
gain for AP75 is 2.1 and 1.3 points for Sr50 and Sst respec-
tively. By comparison the performance for AP50 is 1.1 and
0.3 points for Sr50 and Sst respectively. This indicates that
the distillation approach is providing models which provide
considerably more accurate semantic segmentation masks
which is important for downstream tasks for automating the
estimation of phenotypic attributes (e.g. size of fruit) as
well as robotic tasks such as harvesting.
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Figure 3. Example images from the three datasets with groundtruth instance segmentation masks of BUP20, SB20 , and Cityscape from
left to right.

4.1.2 Results on SB20

The results for SB20, see Table 2, demonstrate that our dis-
tillation approach consistently improves the performance of
our models. For SB20, the student network Sst is able
to achieve the greatest performance improvement. For the
Sr50 network we achieve an absolute improvement in AP
of 2.0 points (34.9 to 36.9) compared to 3.0 points for the
more complex Sst (36.4 to 39.4). The impact of our dis-
tillation scheme is most evident when comparing Sst to the
teacher network where we improve our performance by 1.0
point, however, we note that this improvement is still within
the bounds of the variance of the models where the teacher
network has an AP of 38.4±0.7 and the distilled model Sst

an AP of 39.4±0.5.
Similar to BUP20 the biggest performance improve-

ments occur for higher APs which can be seen by exam-
ining the performance gains of AP50 vs AP75. The perfor-
mance gain for AP75 is 3.5 and 5.2 points for Sr50 and Sst

respectively. By comparison the performance for AP50 is
1.1 and 1.5 points for Sr50 and Sst respectively. For arable
farming data such as SB20, providing considerably more
accurate segmentation masks is important for phenotyping
tasks such as estimating leaf-area as well as precise robotic
weeding.

4.2. Ablation on Cityscapes

To further validate the generalizability ability of our distilla-
tion system, we apply this to Cityscapes. Cityscapes is very
different to BUP20 and SB20 as it consists of pedestrians
and vehicles. For our analysis we use a pre-trained teacher
model by downloading the online pre-trained weights from

Table 2. Instance knowledge distillation results on SB20 in terms
of AP , AP50 and AP75.

models AP AP50 AP75
teacher (M2Fsl) 38.4±0.7 79.2±0.9 31.9±0.7

baseline (M2Fr50) 34.9±1.3 75.3±2.0 28.1±2.1
dis (Sr50) 36.9±0.5 76.4±0.9 31.6±0.9

baseline (M2Fst) 36.4±0.8 78.6±0.6 29.8±1.5
dis (Sst) 39.4±0.5 80.1±0.5 35.0±1.0

Mask2Former [4].

Our results in Table 3 demonstrate our distillation ap-
proach is also effective on this data. The student Sr50 gains
an absolute performance increase in AP of 2.1 points from
35.8 to 37.9, and the student Sst gains 1.8 points improve-
ment from 37.9 to 39.7. Despite these considerable perfor-
mance gains there is still a large gap in performance be-
tween the students and the teacher. For the Sr50 network
the absolute performance in terms of AP is 5.8 points while
for Sst it is 4.0 points, when compared to the teacher.

4.3. Best Student Model and Inference Time

In the previous experiments we demonstrate that our distil-
lation approach consistently improves performance. Over-
all, we demonstrate that our distillation scheme achieves
considerable improvements with an average absolute per-
formance improvement in terms of AP of 1.8 points for
Sr50 and 1.9 points for Sst across the three datasets. On
average, over the three datasets, the two student models are
2.0 and 2.3 times faster, for Sst and Sr50 respectively. Fur-
thermore, the Sst model consistently outperforms Sr50 and
so in most cases it would be the preferred distilled model.
However, for SB20 the relative performance degradation is
smallest, with Sr50 dropping by 1.5 points for AP which
is a 3.9% relative reduction in performance. Therefore, for
this case it might be considered as preferable if the lower
inference time is considered imperative as it is 14 millisec-
onds, or 14%, faster than Sst; SB20 has a smaller image
size so that relative speed difference is lower than on other
high resolution datasets.

Table 3. Instance knowledge distillation results on Cityscapes in
terms of AP , and AP50.

models AP AP50

teacher (M2Fsl ) 43.7 71.3
baseline (M2Fr50) 35.8±1.0 62.6±1.1

dis (Sr50) 37.9±0.3 64.2±0.3
baseline (M2Fst ) 37.9±0.8 65.1±0.6

dis (Sst ) 39.7±0.7 66.4±1.4
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5. Summary

In this paper, we have proposed a bipartite matching ap-
proach to perform knowledge distillation on output queries
from Mask2Former, transformer-based network. The bipar-
tite matching allows us to associate the queries predicted by
the student and the teacher. Using this association we then
distill the corresponding query-based class probabilities and
instance masks from the teacher to the student. We apply
this to the student models with vastly different backbones
which consist either of a transformer backbone (Swin-Tiny)
and even a DCNN backbone (ResNet-50). To be the best
of our knowledge, this is the first that such an approach for
knowledge distillation has been proposed.

We evaluate our knowledge distillation scheme on two
challenging agricultural datasets as well as Cityscapes
which consists of pedestrian and vehicle data. In all cases,
applying our approach leads to improved performance for
the distilled models with an average absolute performance
improvement in terms of AP of 1.8 points for Sr50 and 1.9
points for Sst across the three datasets. In particular, our ap-
proach leads to more precise detections as demonstrated by
higher values for AP75 than AP50. Overall, we show that
simple student networks trained with our instance knowl-
edge distillation scheme can retain a high accuracy with
faster inference than the teacher model. Future work should
examine the potential implication of changing not just the
backbone but also the pixel decoder to further improve the
tradeoff between accuracy and computational efficient.
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