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Abstract

Robotics paired with computer vision are widely used in
precision agriculture. Simulations are critical for safety
and performance estimation by verifying their routine in
a virtual world before real-world testing and deployment.
However, many simulators used in agricultural robots lack
photorealism in their virtual worlds compared to the real
world. We implemented Unreal Engine 5 (UE5) and the
Robot Operating System (ROS) to develop a robot simulator
tailored to agricultural tasks and synthetic data generation
with RGB, segmentation, and depth images. We designed a
method for assigning multiple segmentation labels within a
single plant mesh. We experimented with a semi-spherical
routine for two robot arms to perform 3D point cloud re-
construction across 10 plant assets. We showed our sim-
ulator produces much more accurate segmentation images
and reconstruction compared to existing UE5 solutions. We
extend our results with Neural Radiance Field (NeRF) re-
constructions. The packaged simulator, UE5 project, and
ROS package with the Python routine can be found at
https://github.com/NCSU-BAE-ARLab/AgriRoboSimUE5.

1. Introduction
Robotics paired with computer vision are widely used in
precision agriculture. However, the development and verifi-
cation of these systems are challenging due to dynamic and
ever-changing agricultural environments. Similar issues ex-
ist across all robotics fields, and simulation is a common
solution to reduce test waiting times. Gazebo [12] has been
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one of the most popular simulators because of its integra-
tion with the Robot Operating System (ROS). However, its
rendering capabilities lag behind other modern approaches
using Isaac Sim, Unity, or Unreal Engine (UE) which have
seen applications in autonomous driving or aerial vehicles
[7, 11, 22]. For agricultural robots with image sensors such
as RGB and depth cameras, developing an agricultural-
specific simulator could accelerate advancements in percep-
tion and decision-making specific to agricultural tasks [15].

There have been previous attempts to create photo-
realistic agricultural scenes using UE4, but they only pro-
duce RGB and depth information [5] or ignored robot simu-
lations and developed purely as a data generation tool [6, 9].
In agricultural simulations, primitive geometry (cubes and
circles) were used as plant models [10, 13] because accu-
rate plant and foliage models are difficult to obtain due to
their complex geometry and textures. This issue has also
restricted the digitization of plant models. While realistic
digital plant models can be created using 3D reconstruction
techniques such as LiDAR scans or NeRFs [19, 30], there
has yet to be a public library hosting these formats with a
good amount of variety.

An alternative to synthetic data generation from simula-
tions is to use diffusion models. This technique enabled
photo-realistic weed image generation [17] but was lim-
ited to the camera views from the training dataset. Robots
should also consider various view angles for finding effi-
cient workflows and optimal designs. Integrating a robot
simulator into a 3D simulation would provide better clarity
and perspective realism in generated synthetic images and
also provide the execution time to reach these positions.

We used UE5.3 to develop our simulation environment.
Compared to UE4 used in AirSim [22] and CARLA [7],
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UE5 offers many new features for better rendering and de-
velopment tools. Lumen and Nanite are new features in
UE5 enabling highly detailed meshes rendered with realis-
tic dynamic lighting in real-time [23, 24]. UE5 also changed
the default physics engine from PhysX to Chaos Engine for
lightweight simulation. However, there is a limited amount
of documentation or research about this engine’s perfor-
mance for robotics purposes.

We developed a UE5 robot simulator focused on photo-
realistic plant image generation for photogrammetry tasks.
Using UE5 also licensed the unlimited use of Quixel
MegaScan1 assets for high-quality realistic 3D plant mod-
els optimized for video game purposes (artistically designed
meshes). The simulated task would be appropriate for plant
3D reconstruction and phenotyping research in agriculture
with stationary robot arms. In addition to mesh assets, we
experimented the same task over point clouds, a data struc-
ture for 3D mapping commonly used in robotics.

Our main contributions to this project are:
• We present a multi-robot simulator with RGB, segmen-

tation, and depth image data generation capabilities as a
packaged application.

• The development of a texture-based segmentation tech-
nique for automatic annotations with multi-labels for a
single mesh.

• We develop a novel ROS-UE5 pipeline for concurrent 3D
point cloud reconstruction.

2. Related Works
2.1. Agricultural Synthetic Data

Generating synthetic data currently is a cost-efficient ap-
proach for creating the training dataset for neural networks.
Cicco et al. [6] demonstrated synthetic data from UE4 were
cheaper and competed well against networks trained on real
images in weed detection tasks, even for networks trained
exclusively using synthetic data. Similarly, Choi et al. [4]
released many synthetic image datasets with instance seg-
mentation on the fruits through the Helios renderer for mul-
tiple crops.

Aside from using 3D renderers, other approaches like
image stitching or generative models are used to create agri-
cultural synthetic datasets. Toda et al. [27] demonstrated
instance segmentation models trained on synthetic images
stitched from a pool of seed images achieved high aver-
age precision (>95%) in real-world images in a controlled
environment. Cap et al. [3] developed a generative adver-
sarial network (GAN) using real-world data to transform
images of healthy leaves into diseased leaves. Moreno et
al. [17] proposed Stable Diffusion models to generate weed
images for training object detection models, and Anagnos-
topoulou et al. [2] applied ControlNet, a diffusion model, to

1Quixel: https://quixel.com/megascans

Figure 1. Simulator and GUI.

create realism effects in rendered mushroom images using
text prompts.

Depth sensing is important in robotics and precision
agriculture to create a 3D mapping of the robot’s surround-
ings. However, none of these synthetic agricultural data
generation pipelines currently include synthetic depth gen-
eration. Furthermore, our tool provided more freedom
in segmentation labeling, where multiple labels could be
marked in a single mesh.

2.2. Photorealistic Robot Simulations

Vision-enabled robotics have seen adoption across various
fields with advancements in computing hardware and com-
puter vision. This also created the need for simulators with
photorealistic features, e.g., global illumination, dynamic
materials, and complex scene creation. These features are
difficult to implement in traditional robot simulators such as
Gazebo [12]. Habitat 3.0 [18] is a recent human-robot sim-
ulator for home environments, this simulation trained end-
to-end reinforcement learning models for simulated robots
with RGB and depth cameras. FlightGoggles [8] is a Unity-
based simulation for drones with various sensor outputs
and integration with ROS. Similar simulators exist in au-
tonomous driving with CARLA [7] and AirSim [22] built
on UE4 to integrate computer vision and autonomous vehi-
cles.

However, there is very little development toward this
type of simulator for agricultural tasks. Cicco et al. [6] and
Choi et al. [4] attempted photorealism through 3D render-
ing as mentioned before, but there is no agricultural-specific
simulator known to us that connects both robotics and pho-
torealism. Such simulators exist for home robots, Truong et
al. [28] demonstrated visual robot navigation and successful
sim-to-real transfers of end-to-end policies trained in both
Habitat and iGibson simulators.

3. Simulation Environment
We designed a simulated indoor environment with four con-
trolled lighting sources, two from the ceiling facing down
and two on the robot stands facing the plant. We manually
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(a) The 10 meshes selected with both segmentation and original view. From left to right, top to bottom are Indian Cress, Boston Fern, Amaryllis, Bog
Marshcress, Chinese Evergreen, Hydrangea, Boxwood, Coltsfoot, Basket Grass, and Common Fern.

(b) Multi-label Hydrangea. (c) The segmentation mesh using the RepOpa method.

Figure 2. Top-down view of plant assets.

recreated Universal Robot 10 (UR10) for our simulator. The
robots were constructed with meshes from ur description
with kinematics and dynamics defined from their corre-
sponding config files. Physics constraint components were
used to represent the revolute joints between static meshes.
The robot was constructed as a blueprint for multi-arm sim-
ulation and can be controlled using ROS topics detailed in
Sec. 3.4. Two UR10 were placed 1.5 meters from the center
of the pot as shown in Fig. 1. We also created a graphi-
cal user interface (GUI) for any runtime adjustments on the
robot, camera, and environment settings without a UE5 ed-
itor.

3.1. Robot Cameras

We attached two different camera models, namely Robot-
Cam and CineCamera, to the robot end effector, where
RobotCam represents an ideal camera defined simply on
horizontal field of view (FOV) and aspect ratio, and
CineCamera represents a more realistic model that can be
defined by settings such as sensor dimensions, focal length,
and aperture. We used three Capture Scene 2D to load the
one of the camera settings to render RGB, segmentation,
and depth textures respectively. These textures can be saved
as images asynchronously or streamed over WebRTC using
the PixelStreaming2 plugin.

UE5.3 offers several rendering options including vari-
ous color spaces, HDR/LDR, base color, depth, and normal.
Specifically, we used BaseColor in RGB to obtain the seg-
mentation masks under SegmCaptureScene2D. For regular
RGB rendering, we used Final Color (HDR) to match the
player view in the application. We used SceneDepth in R

2PixelStreaming Plugin: https://docs.unrealengine.com/5.3/en-
US/pixel-streaming-in-unreal-engine/

to save the ground truth depth as EXR images with 16-bit
information at 1 cm. Furthermore, these Scene Capture 2D
would only render Actors tagged with ColoredImageGen or
SegmentImageGen. This allows control over which objects
to render which is useful in generating plant segmentation
masks using the technique described in Sec. 3.2.

We enabled hardware raytracing for the RGB camera for
realistic soft-shadow calculations. UE5 offers other shadow
map options but those have visually inaccurate shadows for
these plant assets. Enabling raytracing costs the simulator’s
frames per second (FPS) but still enough to generate static
images for individual runs.

3.2. Plants and Automatic Annotation

We used 10 Quixel Megascan plants with 4K textures as
listed in Tab. 1. These plants covered a wide variety of fea-
tures in leaf shape, texture, and colors. We also created
a blueprint for changing the plant assets’ appearances and
adding new plants in the editor. A data table was used to
store mesh references and manage their segmentation tex-
ture and scale in the world. Figure 2a shows the top-down
view of two blueprints (one segmentation and one RGB) of
each plant asset used in our work.

Our segmentation method operates on the textures and
UV mappings instead of existing, free, UE5 solutions like
EasySynth [29] which replaces every material within the
mesh with a single color, leading to fully opaque meshes.
We only replaced the base-color (Albedo) textures with a
segmentation texture and thresholded the opacity mask as
shown in Fig. 3d. This technique produced precise seg-
mentation masks for assets with opacity/transparent tex-
tures which is common in artist-designed 3D plant assets.
We thresholded the opacity texture to fully opaque or fully
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Plants Vertices Triangles
Hydrangea 72409 77836
Indian Cress 1790 1463
Amaryllis 2129 2352
Boston Fern 2773 2816
Common Fern 621 752
Bog Marshcress 708 896
Boxwood 485871 697847
Coltsfoot 1078 1648
Chinese Evergreen 1688 1968
Basket Grass 25180 23850

Table 1. Plant assets used for the simulator.

(a) Albedo (b) Opacity (c) Segmentation

(d) Blueprint calls to adjust opacity threshold and segmentation parame-
ters. Segmentation is done by replacing Fig. 3a with Fig. 3c for the mate-
rial during runtime.

Figure 3. Plant textures and automatic segmentation. Notice the
red color in the Segmentation texture corresponds to some of the
purple flowers in the Albedo texture. Other purple sections were
not labeled because they were outside of the UV map for the Hy-
drangea and thus unnecessary to edit.

transparent instead of a gradient using a step function be-
cause any transparency would lead to color blending in the
final renders. Based on this technique, we also assigned
multiple labels for a single mesh instance with the texture as
shown in Fig. 3c. The end appearance is shown in Fig. 2b.
Our method requires a similar amount of annotation effort
in the singular label (creating a flat color texture) compared
to Cicco et al. [6], and does not require additional modifica-
tions (turning off lights) in the environment when capturing
segmentation images.

We added two of these plant blueprint actors into the
scene, one for the RGB view tagged with ColoredImage-
Gen and the other for the segmentation view tagged with
SegmentImageGen. The latter actor was only visible for the
segmentation capture without affecting RGB and depth cap-
tures, and vice versa for the former actor on the segmenta-
tion capture.

(a) PCG Seed variations. Left: 0. Right: 1

(b) Raytrace Samples variations on shadow quality in rendered images.
Left: 1. Right: 32

Figure 4. Simulation variations.

3.3. Addition Parameters

Many robot simulators take advantage of randomization
to increase the environment coverage in their simulations.
Data generation using these techniques has been successful
in Sim2Real transfer for object detection tasks [26]. We in-
cluded a rule-based lab environment randomizer using Pro-
cedural Content Generation (PCG)3 in our simulator for de-
terministic randomization noted as PCG Seed. We select
cabinet, pallet, and drums from Quixel for indoor back-
ground randomization as added image features in our ex-
periments. The rules are as follows:
• Random z-axis (up) rotation with U(0, 180).
• Sampled with [0.1, 0.5, 0.75] per m2 for the cabinet, pal-

let, and drum mesh.
• Removed mesh overlaps with priority of cabinet, pallet,

and last drum.
• The center of the mesh cannot be generated within the

middle 6x4m of the room.
We also implemented a Raytrace Samples slider to ad-

just the number of light raytraces between 0-32. This led
to variations in shadow quality at the exchange of FPS. We
implemented additional arm dynamics options for adjusting
the response of joints. Figure 4 highlights some of these
variations.

3.4. ROS Communication

ROS is commonly used in research on agricultural robot ap-
plications, it provides a Pub-Sub architecture to connect and
control various sensors in robotics. We used the ROSInte-
gration plugin [14] to enable ROS topics within the UE5
environment as shown in Fig. 5. We also used ROS Bridge
over a local WebSocket to expose UE5 topics in Windows

3PCG Plugin: https://docs.unrealengine.com/5.3/en-US/procedural-
content-generation-overview/
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Figure 5. System flowchart. The setpoints were predetermined,
in this experiment there were 100 setpoints, 50 for each arm
with 5 levels using spherical coordinates with r = 0.5m, ϕ =
linspace(π

5
, 3π

7
, 5) radians and θ = linspace( π

19
, 18π

19
, 10) radi-

ans.

11 to ROS-Noetic topics in WSL2. ROS Bridge is an ad-
ditional ROS package launched with the custom ROS envi-
ronment.

The simulator directly subscribed to the /joint states
topic with additional header parsing to control the joint po-
sitions. Each UE5 robot also subscribed to a unique /take-
data topic as a trigger for image generation. To keep track
of the UE5 robot position, the simulator also published the
current robot position in both cartesian and joint spaces.
These topics were started immediately upon running the
simulator.

4. Experiments

We packaged the simulation into a Windows application to
take synthetic images around the plant to generate RGB,
segmentation, and depth images. The images were rendered
and saved at 1920x1080 pixels for later processing and visu-
alization. The 100 setpoints, including positions and orien-
tations, were predetermined with semi-spherical motion at a
0.5m radius around the plant as shown in Fig. 5. The robot
trajectories were then planned during the simulation using
the RRTConnect planner. The world coordinates of both
arms’ end effectors in UE5 and ROS were recorded for tra-
jectory comparison. The packaged simulator is around 2.8
GB for Windows build. The simulations were done on an
i7-12700k, RTX3060, and 96GB memory desktop.

The simulation used similar parameters from the Rasp-
berry Pi v3 Wide camera model RaspPiv3Wide(1080p) with
32 for the Raytrace Samples and 42 for the PCG Seed. The
camera configuration was set with 6.45mm sensor width
and 3.63mm sensor height, with a fixed 2.75mm focal
length and 2.2 f-stops. However, this gave a horizontal FOV
of 99.090668 degrees in simulation, slightly less than the
102 degrees horizontal FOV in the hardware specifications
[1].

Figure 6. Reconstruction flowchart. Left shows the RGB, Seg-
mentation, and Depth images at one setpoint. Middle shows the
intermediate reconstruction PWi for the four labels. Right shows
the corresponding final reconstruction PW .

The Python routine will trigger the cameras to render
and save for 1 second upon reaching each setpoint within
a 0.05 mm L2 distance between ROS and the simulator. If
the robot fails to reach the set point after 5 seconds, we
restarted the script with a manual reset for the image count
in the simulator to ensure matching image names. We clar-
ify how the dataset quality are evaluated in Secs. 4.1 and 4.2

4.1. Semantic Segmentation

To measure the quality of our masking method, we first
complete the trajectories in Fig. 5 for each plant model
with our segmentation method and the replace opacity (Re-
pOpa) method by checking the RemoveOpacity option in
the GUI. RepOpa method replaces the opacity mask with
a completely white texture (fully opaque) to mimic the
EasySynth’s technique of replacing the material. We show
some end-appearances of RepOpa in Fig. 2c. At the end of
each trajectory, the total number of labeled pixels from 100
segmentation images was measured. Since EasySynth can-
not handle multi-label segmentations, we only compare the
single-label of the ten plants.

Generally, we used a simple green mask for the plants
and black for every other object for the entire plant recon-
struction. For the Hydrangea plant, we also create a multi-
label mask. We used GIMP to create the multi-label mask
with the white flowers labeled as blue, purple flowers as red,
stems as deep purple, and the leaves as green as shown in
Figs. 3 and 6. We only modified sections corresponding to
the UV map of the mesh, so not all purple flowers in the
texture were labeled.

4.2. 3D Reconstruction

We used RGB, segmentation, and depth images collected
from Sec. 4.1 runs to create the point cloud for 3D recon-
struction. The reconstruction process shown in Fig. 6 first
removes any pixels with depth >1m, then masks the depth
image using the segmentation image. Using this filtered

5484



depth image we reprojected the RGB information to create
a point cloud from each setpoint, the camera intrinsic was
modeled as a pinhole camera with Eq. (1) and horizontal
FOV = 99.090668.

We merge the point clouds PEi ∈ R3×Ni at each lo-
cation i into one overall reconstruction PW ∈ R3×N , we
transform PEi

to the world PWi
with respect to the cur-

rent pose of the ROS robot’s end effector E to the world
W as 4x4 transformations W

E T using Eq. (2). We visualize
each PWi

in RViz and append it to an overall reconstruction.
Since we use high-resolution captures, we also downsample
using 1mm voxels if there are >100k points to obtain PW as
noted by Eq. (3). We compare the total number of points N
that exist in the overall point cloud PW . We do not perform
any additional denoising beyond the downsampling men-
tioned above.

Cintrinsics =

f 0 960
0 f 540
0 0 1

 , f =
1920

2 tan(FOV π
360 )

(1)

[
PWi

1

]
= W

E T ·
[
PEi

1

]
(2)

PW = Downsample(Concat(PWi)) (3)

4.2.1 Point Cloud Visualization

Since we can edit and visualize point clouds in the UE5
editor through its LiDAR plugin, we repeated the 3D re-
construction procedure on one of the point clouds gener-
ated by the simulator. This experiment provides additional
insights when using point clouds instead of artistically de-
signed meshes, which can be difficult to obtain in some agri-
cultural applications. However, point cloud assets caused
packaging to fail so we used the editor mode to run our ex-
periments in this section.

We used the Coltsfoot point cloud obtained from our
method as it has a relatively simple geometry for visual-
ization and clear results. We first import the point cloud in
LAS format, then delete the obvious incorrect points using
UE5. To enable auto-annotation for point clouds, we place
two point clouds in the same location following the tagging
procedure in Sec. 3.2. We then change the color of the seg-
mentation point cloud to green. We used the square shape
and the PerPoint scaling method for the plugin, which sets
equal sizes for all points.

4.3. Neural Radiance Fields

In addition, we collected RGB images without arm ren-
dering using the same environment and setpoints for Neu-
ral Radiance Fields (NeRF) reconstruction implemented by

Figure 7. Segmentation images for Boxwood, Coltsfoot, Basket
Grass, and Common Fern. Top: Our method. Bottom: RepOpa
method.

(a) Our method.

(b) RepOpa method.

Figure 8. Reconstructed point clouds, same ordering as Fig. 2a.
See Fig. 6 for multi-label reconstruction of the hydrangea plant
using our method.

Nerfstudio using the nerfacto model [16, 25]. As a prereq-
uisite step for Nerfstudio, COLMAP [20, 21] is run on all
10 datasets with exhaustive preselection, where matches for
100% of the images were found. To train a nerfacto model
on each plant, 90% of the 100 images are randomly se-
lected for training, and 10% randomly for testing. We pro-
vide standard metrics including the peak signal-to-noise ra-
tio (PSNR) and structural similarity index measure (SSIM)
for all ten plants. The multi-label Hydrangea was not re-
constructed because we used the full RGB images without
segmentation and thus unnecessary.

5. Results and Discussion

With our experiment settings from Sec. 4, the simulator runs
at around 20 FPS with the application running at a 960x540
window. This is largely due to 32 ray-trace samples, with 0
samples the application could run at the capped 60 FPS. The
frame rate drops further (8 FPS) while the robot cameras
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Segmentation Image (106 Pixels) Reconstructed Point Cloud (Points) NeRF/Nerfacto
Plant Ours RepOpa % Ours RepOpa % PSNR ↑ SSIM ↑

Hydrangea 24.224 24.990 3.16 686045 851382 24.10 26.197 0.799
Indian Cress 28.017 29.822 6.44 495769 699976 41.19 27.021 0.816
Amaryllis 27.483 30.713 11.75 439466 718772 63.56 28.234 0.819
Boston Fern 12.515 16.710 33.52 318746 714887 124.28 17.616 0.680
Common Fern 19.808 28.212 42.43 449209 1137598 153.24 28.632 0.828
Bog Marshcress 3.523 4.759 35.08 93898 191003 103.42 29.007 0.842
Boxwood 14.629 14.651 0.15 810085 812073 0.25 27.710 0.810
Coltsfoot 13.050 14.054 7.69 133002 329628 147.84 28.785 0.828
Chinese Evergreen 30.213 34.518 14.25 356625 836139 134.46 28.392 0.820
Basket Grass 26.029 43.561 67.36 622526 1144729 83.88 26.321 0.736

Table 2. Comparison of qualities in segmentation, reconstruction using ground truths between two methods. Right also shows the NeRF
reconstruction results. Images were collected from the same environment and positions with the Plant as the only variable. ↑ in NeRF
columns indicate that higher values show better test set performance [25].

are active with 32 ray traces, which is expected with the
additional rendering cost from the 1080p cameras.

We show the visual results for the segmentation images
in Fig. 7 and point cloud in Fig. 8, with tabular results in
Tab. 2. In addition to raw results, we provide the percent-
age increase of the RepOpa method to our method using
100(RepOpa/Ours − 1). The RepOpa results in an over-
all increase in both categories compared to ours. Combined
with the visual results, our method produces more precise
segmentation labels than the RepOpa method offered in ex-
isting plugin.

We notice there is a significant percentage variation
among different plant assets, specifically ranging from
0.15% to 67.36% for the segmentation mask. Boxwood
showed the least amount of discrepancy between the two
methods at 0.15%. This is likely due to Boxwood’s com-
plex mesh compared to others as shown in Tab. 1, thus less
dependence on opacity mask for this plant. This is sup-
ported by Common Fern and Bog Marshcress having high
discrepancies (42.43% and 35.08%) and low triangle num-
bers (752 and 896), where opacity is used for the details be-
tween the leaves. Interestingly, Basket Grass has the highest
discrepancy at 67.36% while being a detailed mesh (23850
triangles), which is likely because of the quantity and the
shape of the plant structure as shown in Fig. 7.

Table 2 also showed larger percentage differences in
point clouds than segmentation across all plant assets. The
RepOpa method’s imprecise segmentation and voxel down-
sampling likely amplified this difference in 3D. Figure 8b
showed the varying levels of inaccurate reconstructions of
these plants compared to Fig. 8a. Boxwood’s reconstruc-
tion is visually similar while the Basket Grass reconstruc-
tion included the entire pot, table surface, and robot arm
parts. Generally, the final point cloud is a fraction of the to-
tal pixels collected, where none of the point clouds from our
method exceeded 1 million points with many plants having

Size Pixels Points Size Pixels Points
0.01 0.079 78576 0.8 15.11 371619
0.1 5.84 207594 1.0 15.49 440251
0.2 12.87 217163 1.5 16.37 493712
0.4 14.27 271858 2.0 17.19 785191
0.6 14.72 308115 5.0 21.49 1924660

Table 3. Reconstruction of Coltsfoot point cloud with varying
point sizes. Pixels measured in 106.

>10 million pixel labels. This observation also indicates
inefficiency in our robot routine because most ground truth
points were discarded for reconstructions at 10−3 voxels. In
our experiment, the number of pixels and points would be
similar to indicate an efficient reconstruction process.

5.1. UE5 Point Clouds

We also show the Coltsfoot’s cleaned point cloud in the
UE5 editor using the LiDAR plugin in Fig. 9. We then
performed reconstruction using this point cloud with re-
sults shown in Fig. 9 and Tab. 3. We notice that except
for very tiny point sizes (0.01) where most points were in-
visible in segmentation images, this type of reconstruction
led to an increased number of points in the new reconstruc-
tion (>200000) compared to the original (132874). We
also notice the thickness of the leaves and stem increases
as the point size increases, which likely led to the increased
number of points to the original. Leaves and stems are fre-
quently modeled as 2D planes in meshes which typically
have no thickness, we believe this technique of using point
clouds with varying point sizes could bring depth and thick-
ness traits in synthetic plant datasets generated by a 3D ren-
dering engine.
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Figure 9. Coltsfoot point cloud reconstruction. Notice the changes
in stem thickness. Top left: cleaned point cloud with point size 0.2.
From left to right, top to bottom are reconstructions of point sizes:
0.01, 0.1 0.2, 0.6, 1.0, 2.0, and 5.0.

Figure 10. Example NeRF renderings of Basket Grass, Coltsfoot,
and Hydrangea, respectively. Plant models were rendered in Nerf-
studio at full resolution and cropped to a 1x1x1 box in the view-
port. The images shown are screenshots from an arbitrary perspec-
tive within the viewer.

5.2. NeRF

Example NeRF renderings are shown in Figure 10. Ta-
ble 2 shows similar metrics across all plants, except Boston
Fern, for which COLMAP could not find the correct camera
poses for a majority of its training images. The slight dif-
ferences between the other plants could be attributed to the
plant’s complexity. We observe the lowest PSNR in high-
density leaf structures with Hydrangea (26.197) and Basket
Grass (26.321), compared to the highest PSNR among low-
density leaf structures with Bog Marshcress (29.007) and
Coltsfoot (28.785). With a similar trend in SSIM metric, it
is likely that higher leaf density led to lower metrics because
of less reference images for individual leaves.

6. Future Work and Conclusion
This work presented a dual robotic arm workflow simu-
lated in UE5 and ROS to perform photogrammetry tasks
across a variety of ten plants. The simulation environment
is packaged as a Windows application with a GUI for run-
time adjustments without downloading the UE5 editor and
assets. The simulator generated high-quality images with
corresponding segmentation labels and depths. We demon-
strated the accuracy of the synthetic data through 3D re-

construction experiments with 100 setpoints. We believe
the results demonstrated our simulator’s potential in various
agricultural applications such as plant phenotyping, disease
detection, generating synthetic datasets, and robotic simu-
lation.

In future work, we plan to adopt the simulator to other
agricultural robotics tasks or optimize the workflow pre-
sented in this study to minimize the necessary number of
views for reconstruction. Furthermore, we plan to develop
an outdoor environment with extensive randomization to
simulate more complicated field tasks. It is also in our in-
terest to explore the performance of the simulation routines
in the real world.
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