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Abstract

The large-scale rearing of edible insects, of which Tene-
brio Molitor is a representative, requires monitoring using
vision systems to control the process and to detect anoma-
lies. Previously proposed solutions by researchers relied on
multiple modules related to specific tasks (calculated coef-
ficients) and specific types of models (instance segmenta-
tion, semantic segmentation). Long processing times and
difficulties in maintaining and updating modules encour-
age the search for a more condensed solution as an end-
to-end model. This paper proposed a modified YOLOv8
architecture extended with additional heads related to spe-
cific tasks. Heads were trained on problem-oriented small
datasets, which significantly reduced the time spent on sam-
ple annotation. The proposed solution also included esti-
mation of prediction uncertainty based on variation among
predictions in model ensemble and detection of domain shift
phenomenon. Quantitative results from the conducted ex-
periments confirmed the potential of the developed solution.

1. Introduction

Increasing demands on the quantity and quality of food pro-
duced worldwide are necessitating the search for new food
sources and alternative approaches to food production [9].
Insect rearing (including edible insects) for feed and food
purposes is becoming an increasingly important part of the
agri-food industry. Among the most popular insect species
reared for feed purposes are Hermetia Ilucens (HI) [3] and
Tenebrio Molitor (TM) [12]. The distinguishing factor of
farming the mentioned insects is the possibility of obtain-
ing a product rich in protein, fat and minerals at much lower
environmental costs (greenhouse gas emissions, water con-
sumption) as in the case of traditional farming (pigs, cat-
tle) [21, 24]. The profitability of HI and TM insect farming

is closely related to its large-scale nature, which necessitates
the automation of basic farming operations (e.g. feeding,
harvesting) [22] on the one hand and the need for its moni-
toring on the other. Information obtained from data analysis
is also needed to control rearing and make critical decisions,
e.g. to end rearing and to change the feeding strategy.

Researchers have already addressed the problem of mon-
itoring insect rearing on the example of the TM using a vi-
sion system and computer vision methods [16, 20]. The
proposed solutions allowed (1) detection and counting of
the TM growth stages (larva, pupa, beetle, (2) detection and
counting of anomalies (dead larva), (3) estimation of the
amount of chitinous moults and feed, and (4) estimation of
size indicators of larvae (referred to as phenotyping). The
developed methods were based on the following models:
Mask R-CNN [13] for instance segmentation, U-Net [23]
for semantic segmentation, and YOLOv5 [14] for object de-
tection and classical image processing methods.

An undeniable disadvantage of existing solutions for TM
rearing monitoring is their multi-module nature, i.e. many
separate models related to a specific task. With such an
approach, the problems of long image processing time (dif-
ficulty of achieving real-time inference), maintenance and
updating of specific modules are of great importance. Re-
searchers have also addressed the problem of simplifying
some parts of processing, e.g., the phenotyping module, by
proposing custom regression deep convolutional neural net-
work instead of multistage image processing. However, the
problem of developing a comprehensive solution should be
considered still open [18].

With the above in mind, we propose an end-to-end so-
lution for monitoring the rearing of the TM based on the
YOLOv8 [15] object detection model extended with addi-
tional heads associated with a specific task (calculated indi-
cators). To reduce labelling efforts, an approach of training
individual heads on problem-oriented small datasets was
proposed. Given the importance of some of the calculated
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indicators in terms of rearing control and in order to in-
crease the reliability of the solution, a method for estimating
prediction uncertainties using an ensemble of models was
also proposed. The calculated prediction uncertainties were
also used to detect the domain shift phenomenon, which,
considering the changeable conditions on the farm, is a sig-
nificant problem.

2. Related Work
The problem of reducing multiple tasks to a single model ar-
chitecture (with a shared backbone) and developing end-to-
end solutions is eagerly addressed in many application areas
of computer vision [2, 32], including agriculture and pheno-
typing of biosystems [6, 30]. Many approaches to develop-
ing condensed model architectures can be distinguished. In
this section, three selected ones will be discussed, namely
(1) multioutput regression models, (2) extending basic mod-
els with new heads (branches), and (3) multi-task learning.

Multioutput regression models. With this approach,
all defined tasks are implementable by calculating a cer-
tain number of numerical values representing specific in-
dicators. In [31], an architecture based on a backbone pre-
trained on ImageNet [8] was proposed for the simultane-
ous calculation of six physical indicators that characterize
cattle, namely the length and width of specific body parts
(shoulder, hip, body) along with the estimated weight. The
input to the model was recorded depth images. A com-
bined loss based on MSE (mean squared error) was used
for training, consisting of parts corresponding to predic-
tion errors for a specific indicator. In [19], different fruit
traits, i.e. moisture content (MC) and soluble solids con-
tent (SSC), were predicted simultaneously based on spec-
tral signals from NIR spectroscopy. The proposed custom
architectures consisted of a certain number of convolution
layers and fully connected layers. The combined loss MSE
for different coefficients was used for training as in [31].

Extending basic models with new heads (branches).
A common approach to extend the functionality of the solu-
tion with new tasks is to extend the basic architecture with
additional heads. Applying this approach, the Faster R-
CNN [11] architecture was extended in [4] to include an
additional branch for weight estimation. In [29], an addi-
tional block for direct counting of soybean pods was pro-
posed as a modification to the YOLOv5 [14] model.

Multi-task learning. For some types of tasks, there is a
need for output in the form of predictions of different types,
for example, returning simultaneously bounding boxes for
an object detection problem along with a predicted map for
a semantic segmentation problem. For these types of is-
sues, multi-task learning methods are helpful. The chal-
lenge in multi-task learning is to propose a suitable loss
function that takes into account predictions in different for-
mats, often with fine-tuning the weights of specific parts

in the loss function. In [5], the problem of detection and
determination of cherry tomato maturity was extended to
the task of detection and determination of maturity of the
whole bunch. For this purpose, additional improved heads
to the YOLOv7 [26] model and a combined loss function
for the tasks posed were proposed. In [27], inspired by the
YOLOP [28] model, a solution was proposed for the simul-
taneous detection of peppers, pepper segmentation and stem
segmentation. The minimized loss during training consisted
of three parts related to the defined tasks.

3. Problem Definition

The problem addressed in this paper is the calculation of
multiple indicators that characterize the current status of
TM rearing based on RGB images of TM rearing boxes
(shown in Fig. 1).

Figure 1. Example image of a rearing box with Tenebrio Molitor.

The tasks undertaken include: (1) counting TM states
(beetles, dead larvae and pupae), (2) estimating indicators
of box coverage with chitinous moults and feed, and (3)
calculating size indicators (width, length) of larvae.

Compared to the nomenclature in [16], the presented ar-
ticle combines object classes from the ’growth stages’ and
’anomalies’ groups into a single group called ’states’ due to
the possibility of counting objects from all classes related to
TM using a single object detection model.

The counting of live larvae was abandoned from the
tasks undertaken since the number of live larvae in the rear-
ing box should be constant under normal conditions. The
estimated number of live larvae will also strongly depend
on the growth stage of the larvae, which is related to the
influence of occlusion on the results and the tendency of
larvae to hide in the substrate. With these problems present,
interpreting the change in the number of live larvae over
time can be problematic for the farmer.
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4. Dataset

Multiple datasets were developed for the experiments, and
each dataset was associated with a specific task. The defined
datasets contained tiles of a certain size extracted from the
whole image (with the size of 4096x3000 pixels) of a rear-
ing box with Tenebrio Molitor as in Fig. 1.

The base dataset contained 640x640 images for train-
ing the basic YOLOv8 model to detect objects from three
classes: beetles (B), dead larvae (DL) and pupae (P). Sam-
ple images with objects from the classes under considera-
tion are shown in Fig. 2. The base dataset contained 373
images with a total number of annotations of 3442 (367 for
beetles, 1781 for dead larvae and 1294 for pupae). For the
base dataset, the annotations were bounding boxes.

Figure 2. Classes of detected and counted objects with example
bounding boxes.

For the task of estimating the chitin coverage index
(CCI) and feed coverage index (FCI), labelling was per-
formed for 150 images with 640x640 size. Labelling con-
sisted of marking all areas in the image representing chitin
or feed. Based on the annotated images, CCI and FCI coef-
ficients were calculated as target values. Selected samples
with assigned values of CCI and FCI coefficients are shown
in Fig. 3.

For the larvae phenotyping task related to calculating
the three quartiles of larvae width (lower, median, upper),
a dataset described in [18] consisting of 739 images of
1024x1024 size was used. Sample images from this dataset
are also shown in Fig. 3.

To conduct experiments for the detection of the domain
shift effect, a separate dataset was developed, consisting of
images from three domains related to image registration by
different vision systems (different cameras, lighting). The
developed dataset contained 640x640 images, respectively
87 from the base domain, 29 from domain A and 15 from
domain B. Sample images from the three considered do-
mains are presented in Fig. 4. Details on the defined do-
mains can also be found in [17] (data source ’JA’ is the base
domain, ’LU’ is domain A, ’CA’ is domain B).

Figure 3. Examples of samples from problem-oriented datasets for
training machine learning models to proposed additional heads in
YOLO architecture.

Figure 4. Examples of images from defined domains.

5. Proposed Approach
The proposed approach to calculating informative indica-
tors for monitoring the rearing of TM is a modified archi-
tecture of the YOLOv8 model for object detection, which
has been extended with additional problem-oriented heads,
namely (1) feed coverage estimation head, (2) chitin cov-
erage estimation head and (3) larvae phenotyping head. At
the training stage, each head was separately fine-tuned us-
ing a different dataset prepared for a specific problem, sav-
ing considerable annotation time. The YOLOv8 base model
allowed the detection of objects from the beetle, dead larvae
and pupae classes and their counting. Feed and chitin cov-
erage estimation heads calculated image coverage indices
for feed or chitin, respectively. Coverage indices should
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be understood as the number of pixels associated with the
considered classes (feed or chitin) divided by the total num-
ber of pixels. In the case of the larvae phenotyping head,
the output was three quartiles (lower, median, upper) of the
width of the larvae as proposed in [18].

5.1. Model Architecture

The developed model architecture is shown in Fig. 5. The
proposed three heads used features extracted from specific
backbone layers of the YOLOv8 model (these are the lay-
ers with indexes from 0 to 9 shown in Fig. 5). In the case
of the YOLOv8 model under consideration, the backbone
is the CSPDarknet53 [25] feature extractor. The indexes of
the layers used for feature extraction for the problems posed
were determined experimentally, and the procedure is de-
scribed in the following sections of the paper. Based on the
extracted features, the selected classical machine learning
models calculated the specified indices. Fig. 5 places the
heads in specific locations associated with the results ob-
tained in the conducted experiments.

5.2. Model Ensemble and Uncertainty Estimation

To increase the estimation accuracy of the proposed indices
and enable the estimation of prediction uncertainty, an en-
semble of models was considered for prediction. A boot-
strap method was used to train successive models, which
involved training successive YOLOv8n models on different
subsets of samples determined from the basic object detec-
tion dataset. The prediction of an ensemble of models was
the unweighted average of single model predictions. Un-
certainty was calculated as the standard deviation among
single-model predictions.

5.3. Domain Shift Detection

The possibility of a domain shift effect is associated with
a change in the nature of the registered images. The first
source of changes can be different acquisition conditions,
for example, due to significant dust or contamination of the
elements of the vision system. Changes can also be asso-
ciated with a variation in the type of feed used or the type
of rearing box used. The domain shift effect can also occur
when implementing a monitoring system for a new large-
scale farm.

The method for detecting the domain shift effect was
based on calculated prediction uncertainties. A logistic re-
gression model was used for the binary classification task.
In addition to the standard approach of detecting domain
shift for single samples, the detection of this phenomenon
was also considered when averaging the uncertainty values
from a subset of samples of a specific size. It was justi-
fied from the point of view of the problem addressed (regis-
tration of multiple images under large-scale rearing condi-
tions).

6. Experiments
6.1. Selection of YOLO Core Architecture

The first stage of the conducted experiments was training
YOLOv8 models using architectures with different com-
plexity and number of parameters (n, s, m, l and x versions).
The training was repeated in 5 iterations of cross-validation,
where the whole dataset was divided into train/val and test
parts. Model training was performed on the training set.
Based on the validation set, the best training epoch was se-
lected. On the test set, an evaluation was carried out. The
best architecture was selected for further experiments based
on the averaged results (metrics) obtained on the test set.

6.2. Selection of Best Settings for Proposed Heads

The next experiment aimed to determine the optimal set-
tings (layer ID for feature extraction and the type of classi-
cal machine learning model for the regression task) for the
proposed heads. Using the GridSearch approach, further
combinations of settings were examined, whereby layers for
feature extraction with indexes from 0 to 9 and the follow-
ing machine learning models for regression were consid-
ered: linear regression (LR), k-nearest neighbours regres-
sion (KNN), support vector regression (SVR) [7] and gradi-
ent boosting regression (GBR) [10]. As in the first experi-
ment, training was repeated for different iterations of cross-
validation, and the results were averaged. The search for
the best settings was conducted for each defined head sepa-
rately. The selected best settings of each head were used for
further experiments.

6.3. Model Ensemble and Uncertainty Estimation

The next experiment involved developing an ensemble of
YOLOv8 models. For this task, the train/val and test splits
from the cross-validation from the first experiment were
used. Training of subsequent models was carried out on sets
determined using bootstrapping. Each determined training
set was extracted from the train/val part, with about 70%
of the unique samples from the train/val part in the training
set. To check the effect of the number of single models in
the ensemble on the results, the prediction was performed in
ensemble mode, averaging the single model predictions us-
ing an unweighted average. Prediction uncertainty was also
determined based on the standard deviation among single
model predictions in the ensemble.

6.4. Domain Shift Detection

The last experiment was developing a model for detecting
the domain shift effect based on estimated prediction uncer-
tainties. The Logistic Regression model was used for this
task. The cases of two domains (A and B) that differed from
the basic domain were considered. The obtained values of
the metrics in the stratified cross-validation were referred
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Figure 5. Modified YOLOv8 architecture with proposed additional heads: feed coverage estimation head, chitin coverage estimation head
and phenotyping head.

to as the results of this experiment. The study also tested
the hypothesis of the possibility of increasing the detection
accuracy of the domain shift effect by averaging the pre-
diction uncertainty over several samples. Experiments were
conducted with different numbers of samples considered for
averaging.

7. Evaluation

The proposed methods were evaluated using standard met-
rics for a specific problem. The referred averaged values
of the specified metrics with standard deviation were based
on the results obtained in successive cross-validation itera-
tions. Consistently, the number of splits in cross-validation
was set at five for all problems posed.

7.1. Metrics for Regression Problems

For the evaluation of regression tasks (TM states counting,
estimation of chitin and feed coverage indexes), three met-
rics were used: mean absolute error (MAE), coefficient of
determination (R2) and Pearson correlation coefficient (r),
which can be calculated using formulas Eq. (1), Eq. (2), and
Eq. (3).

MAE =
1

nsample

nsample∑
i=1

|gi − pi| (1)

R2 = 1−
∑nsample

i=1 (gi − pi)
2∑nsample

i=1 (gi − g)2
(2)

r =

∑nsample

i=1 (gi − g)(pi − p)√∑nsample

i=1 (gi − g)2
√∑nsample

i=1 (pi − p)2
(3)

Where nsample is the number of samples, pi - predic-
tion for the i-th sample, gi - target value (true) for the i-th
sample, p - averaged prediction values, g - averaged target
values.

7.2. Metrics for Uncertainty Estimation

Evaluation of the prediction uncertainty estimation method
was carried out as follows. Using a specified number of pre-
dictions in an ensemble of models, the 95 percent prediction
uncertainties interval (95 PPU) was determined, calculating
the lower (XL

i ) and upper (XU
i ) bounds of the interval being
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the 2.5th and 97.5th percentiles, as in the article [1]. Hav-
ing the limits of the interval, it was checked what part of the
predictions fell within the determined uncertainty interval,
which was referenced under the metric called pred. in 95
PPU. Based on the XL

i and XU
i values, the degree of un-

certainty dx was also determined from the formula Eq. (4)
and then the d-factor metric from the formula Eq. (5).

dx =
1

nsample

nsample∑
i=1

(XU
i −XL

i ) (4)

d− factor =
dx
σx

(5)

Where σx is the standard deviation among the target val-
ues for the selected problem

7.3. Metrics for Domain Shift Detection

To evaluate domain shift detection models, precision, re-
call and F1-score metrics were used, whose formulas can
be found in Eq. (6), Eq. (7) and Eq. (8).

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 =
2TP

2TP + FP + FN
(8)

Where TP, TN, FP and FN represent the number of true
positive, true negative, false positive and false negative pre-
dictions, respectively.

7.4. Inference Time

The referenced inference time values were based on pre-
dictions made using hardware with the following specifica-
tions: GeForce RTX 2060 SUPER 8 GB (GPU) and AMD
Ryzen 7 1700 3 GHz (CPU). When referencing inference
times for the entire rearing box (size of 4096x3000), the
inference was assumed for 54 individual tiles (dividing the
entire image into 640x640 tiles with 25% overlap).

8. Results and Discussion
8.1. Selection of YOLO Core Architecture

In the first step of developing the proposed solution, the ap-
propriate architecture of the YOLOv8 model was selected,
the results of which are presented in Tab. 1.

Based on the results obtained in Tab. 1, it was decided to
select the YOLOv8n architecture for further experiments.
The YOLOv8n architecture had the highest metrics for the
counting task and the highest throughput, which is particu-
larly important for inference in model ensemble mode.

model class MAE R2 r

YOLOv8n B 0.20±0.04 0.959±0.011 0.985±0.007

YOLOv8n DL 1.07±0.21 0.908±0.020 0.962±0.005

YOLOv8n P 0.82±0.05 0.969±0.012 0.988±0.006

YOLOv8s B 0.21±0.06 0.955±0.009 0.982±0.004

YOLOv8s DL 1.19±0.09 0.893±0.019 0.955±0.002

YOLOv8s P 0.88±0.10 0.966±0.011 0.988±0.006

YOLOv8m B 0.21±0.08 0.949±0.020 0.977±0.012

YOLOv8m DL 1.14±0.12 0.897±0.022 0.955±0.009

YOLOv8m P 0.85±0.14 0.966±0.017 0.989±0.005

YOLOv8l B 0.21±0.07 0.956±0.032 0.979±0.017

YOLOv8l DL 1.26±0.15 0.888±0.022 0.951±0.008

YOLOv8l P 0.83±0.09 0.969±0.015 0.987±0.008

YOLOv8x B 0.23±0.08 0.954±0.012 0.982±0.007

YOLOv8x DL 1.22±0.22 0.889±0.012 0.953±0.010

YOLOv8x P 0.85±0.05 0.973±0.010 0.988±0.004

Table 1. Results for Tenebrio Molitor states (beetle/B, dead
larva/DL, pupa/P) counting for different types of YOLO models.

It is noteworthy that already at the level of the object
detection model, it was possible to achieve a significant re-
duction in computation time compared to [16], where the
YOLOv5x model characterized by an inference time of 40
ms/tile was used. In the case of the YOLOv8n model, the
inference time was 7.9 ms/tile. The reduction in computa-
tion time would be even greater assuming batch inference
(the throughput for YOLOv8n was 395 tiles/s). This results
in a computation time of about 0.14s for the entire rearing
box (composed of 54 tiles). With such values of process-
ing times, even ensemble mode inference, with a reasonable
number of single models, is reasonable.

8.2. Selection of Best Settings for Proposed Heads

In the next step, the best settings (machine learning model
for regression and layer ID for feature extraction) were
searched for the proposed additional heads. The results
from this step are presented in Tab. 2.

Based on the results in Tab. 2, it can be concluded that
different models and features extracted from different lay-
ers were the best choice for different tasks. Finally, for the
chitin coverage estimation head, the GBR model based on
features extracted from the 7th layer was chosen; for the
feed coverage estimation head - the LR model and features
from the 3rd layer; and for the phenotyping head - the GBR
model along with features from the 6th layer. The relatively
high results (R2 > 0.78) confirmed the validity of the pro-
posed solution based on attaching additional heads to the
base YOLOv8n model. The lowest results were achieved
for the estimation of the chitin coverage index. This may be
due to the high similarity between live larvae and chitinous
moults. It is noteworthy that the results obtained for the
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head model layer MAE R2 r

chitin LR 3 0.082±0.024 0.752±0.128 0.919±0.031

chitin KNN 9 0.075±0.023 0.716±0.185 0.911±0.036

chitin SVR 4 0.070±0.018 0.786±0.130 0.947±0.022

chitin GBR 7 0.062±0.025 0.785±0.169 0.948±0.030

feed LR 3 0.042±0.008 0.949±0.025 0.983±0.007

feed KNN 6 0.065±0.017 0.857±0.113 0.938±0.042

feed SVR 0 0.046±0.009 0.941±0.026 0.976±0.012

feed GBR 6 0.065±0.021 0.850±0.137 0.945±0.038

pheno LR 6 0.106±0.005 0.863±0.012 0.930±0.007

pheno KNN 9 0.119±0.008 0.829±0.023 0.917±0.010

pheno SVR 6 0.101±0.002 0.868±0.008 0.932±0.004

pheno GBR 6 0.103±0.004 0.869±0.012 0.935±0.006

Table 2. Results for the tasks related to the proposed heads,
i.e., chitin coverage estimation (chitin), feed coverage estima-
tion (feed) and larvae phenotyping (pheno) using different settings
(chosen machine learning models for prediction based on embed-
dings from a specific layer of the YOLO model).

phenotyping head are comparable with the results reported
in [18], where a special architecture was used for the task of
phenotyping larvae based on the ResNet18 model with fine-
tuning of all model parameters. In the approach considered
in this article, we assume frozen weights for the backbone.

8.3. Predictions with Proposed Heads

The evaluation results in the form of true versus predicted
charts for the regression tasks of estimating feed coverage
index and larvae phenotyping are shown in Fig. 6

Figure 6. Comparative analysis of true vs. predicted values for se-
lected regression tasks: (a) feed coverage estimation and (b) phe-
notyping based on the results from the selected cross-validation
iteration.

The results in Fig. 6 confirm the validity of the devel-
oped approach to calculating the proposed indices and indi-
cate the great potential of extracted features from the chosen
backbone layers of the YOLOv8n model.

8.4. Model Ensemble and Uncertainty Estimation

The results for prediction in model ensemble mode for the
Tenebrio Molitor state counting task are shown in Tab. 3 in
the context of prediction efficiency and Tab. 4 for estimation
of prediction uncertainty.

mode class MAE R2 r

single model B 0.212±0.082 0.949±0.040 0.981±0.011

single model DL 1.134±0.155 0.898±0.021 0.955±0.009

single model P 0.906±0.166 0.965±0.023 0.987±0.008

ensemble(n=5) B 0.194±0.055 0.967±0.013 0.987±0.006

ensemble(n=5) DL 1.004±0.120 0.924±0.013 0.965±0.006

ensemble(n=5) P 0.759±0.087 0.979±0.012 0.991±0.006

ensemble(n=10) B 0.189±0.054 0.970±0.011 0.988±0.005

ensemble(n=10) DL 0.989±0.114 0.927±0.012 0.966±0.006

ensemble(n=10) P 0.732±0.08 0.981±0.011 0.991±0.006

ensemble(n=20) B 0.188±0.054 0.971±0.011 0.988±0.005

ensemble(n=20) DL 0.982±0.114 0.929±0.010 0.966±0.005

ensemble(n=20) P 0.718±0.075 0.981±0.012 0.991±0.006

Table 3. Comparison of results for single-model and ensemble of
models approaches for Tenebrio Molitor states counting.

mode class pred. in 95 PPU d-factor

ensemble(n=5) B 0.928±0.029 0.119±0.032

ensemble(n=5) DL 0.714±0.040 0.251±0.045

ensemble(n=5) P 0.777±0.046 0.138±0.019

ensemble(n=10) B 0.956±0.026 0.156±0.034

ensemble(n=10) DL 0.811±0.030 0.328±0.049

ensemble(n=10) P 0.859±0.037 0.180±0.023

ensemble(n=20) B 0.975±0.017 0.185±0.044

ensemble(n=20) DL 0.865±0.010 0.381±0.053

ensemble(n=20) P 0.920±0.019 0.214±0.023

Table 4. Results for prediction uncertainty estimation using model
ensemble for Tenebrio Molitor states counting.

Based on the results in Tab. 3, it can be concluded that, as
expected, using an ensemble of YOLOv8 models resulted in
a significant increase in counting performance compared to
the results achieved by single models. The optimal number
of models for the ensemble is not obvious. On the one hand,
increasing the number of models in the ensemble from 10 to
20 no longer resulted in a significant increase in prediction
accuracy. On the other hand, based on the results in Tab. 4,
we can see that using more models in an ensemble results
in more accurate uncertainty estimation (a larger proportion
of predictions bracketed by 95 PPU). Of course, this is also
related to the larger d-factor associated with the size of the
uncertainty interval. The final decision on the number of
models for the ensemble should be made, taking into ac-
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count the characteristics of the problems, that is, the cost of
potential FP and FN errors.

8.5. Domain Shift Detection

The distributions of prediction uncertainties for samples
from the defined domains are shown in Fig. 7

Figure 7. Comparison of the distributions of estimated uncertainty
for samples from the base domain and samples from other domains
(A and B).

In Fig. 7, we can see that considering the uncertainties
for single samples, there is a noticeable overlap between the
distributions for the defined domains. Considering the sig-
nificant difference between the average uncertainty for the
considered distributions, averaging the uncertainty values
for a subset of samples of a certain size can significantly
improve the separability of the distributions. We can find
confirmation of this hypothesis in Tab. 5, where quantita-
tive results are presented for detecting the domain shift phe-
nomenon at a certain size of the subset of samples used to
calculate the averaged uncertainty.

With 10 samples taken for averaged uncertainty,
F1 > 0.94 was achieved for the two domains considered.
Quantitative indicators confirm the validity of detecting the
phenomenon of domain shift in the proposed way based on
an increase in the value of prediction uncertainty. Carrying
out a procedure for detecting the phenomenon of domain
shift in production conditions for the problem posed also
does not seem complicated, given the thousands of images
recorded daily (which may represent a subset for averaging
uncertainty).

set size new domain F1 precision recall

1 A 0.622±0.071 0.573±0.067 0.693±0.118

1 B 0.620±0.104 0.487±0.086 0.867±0.163

5 A 0.833±0.140 0.787±0.181 0.893±0.088

5 B 0.876±0.123 0.800±0.187 1.000±0.000

10 A 0.945±0.078 0.971±0.057 0.933±0.133

10 B 0.971±0.057 0.950±0.100 1.000±0.000

Table 5. Results for domain shift detection for different sizes of
the subset of samples used for averaged uncertainty calculation.

9. Conclusion and Future Work

The research proposed an end-to-end solution for calculat-
ing indicators to support the monitoring of Tenebrio Molitor
rearing. Compared to previous approaches, multiple (sep-
arate) models trained for specific tasks were reduced to a
single architecture based on a shared backbone. The ex-
tended YOLOv8 architecture with three problem-oriented
heads made it possible to perform predictions for specific
regression tasks. Training for each head was done sepa-
rately, which made it possible to develop smaller datasets
focused on defined object classes and significantly reduce
the time spent on labelling. The proposed solution is flex-
ible and allows rapid architecture extension for new prob-
lems by adding the following heads. Using an ensemble of
models made it possible to increase the accuracy of predic-
tion and estimate the uncertainty of prediction, which will
increase the reliability of the developed solution and facili-
tate critical decision-making on the farm.

Future work should focus on multi-task learning prob-
lems, making it possible to jointly learn the separated heads
of the architecture. Given the dependencies between the cal-
culated indicators (e.g., the occurrence of pupae is related to
a certain size of larvae), this approach seems reasonable.
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