
Tracking and Counting Apples in Orchards Under Intermittent Occlusions and
Low Frame Rates
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Figure 1. Overview of the proposed method. (A) Fruits are tracked throughout the image sequence by projecting them onto a 3D point
cloud and re-projecting them back onto the following 2D frames. (B) 3D projection of three fruits. Rotating the point cloud, the noise in
the depth direction is noticeable. (C) A linear assignment is used to match the most probable 3D objects to 2D detections. The method is
robust to occlusions (e.g. fruit 3 is occluded in frame t) and false positives (e.g. “fruit” 59 in frame t is actually a leaf).

Abstract

Estimating what will be the fruit yield in an orchard
helps farmers to better plan the resources needed for har-
vesting, storing, and commercialising the crop, and also to
take some agricultural decisions (like pruning) that may in-
crease the quality of the yield and increase profits. There-
fore, over the last years, several methods based on com-
puter vision were proposed to automate this task, by di-
rectly counting the fruits on trees using a video camera.
However, existing works and methods usually assume ideal
conditions, and may fail under more challenging scenar-
ios with unconstrained camera motion and intermittent oc-
clusions of fruits. Here we show that combining Structure-

from-Motion (SfM) with a bipartite graph matching has the
potential to address those challenges. We found that our ap-
proach applied to real-world datasets, with unconstrained
camera motion and low frame rates, outperforms existing
methods by a large margin. Our results demonstrate that
the proposed method is robust to multiple intermittent oc-
clusions under challenging conditions, and thus suitable to
be used in diverse real-world scenarios in orchards, either
with a camera operated by hand or mounted on an agricul-
tural vehicle. Although not shown here, we believe that the
proposed method can also be applied to other object track-
ing problems besides counting fruits, under similar settings
— i.e. static objects and a freely moving camera.

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Estimating crop yield is a crucial task in modern agriculture
as it conditions the demand for resources (e.g. workers for
harvesting, packaging) and the planning of activities (e.g.
pruning) which, ultimately, affect the quality of the product.
Due to its flexibility and breadth, computer vision systems
are becoming a key technology in monitoring crop growth.

In this article we propose a methodology to estimate fruit
counts in orchards from sequences of images captured by a
moving camera. The distinguishing feature stands on the
resilience to occlusions and misdetections, conferring our
method a surprisingly high precision of the counts, specially
in such a complex visual context. The complexity stems
from the shape of the tree canopy, its porosity, the intricate
patterns of leaves and branches, and how the fruits them-
selves develop (close to other fruits). Furthermore, we de-
liver precise counts in long extensions that include multiple
trees, often disposed in a continuum.

Figure 1A) shows part of a reconstructed orchard and the
images illustrate the complexity of the scene and type of de-
tections. Our method proposes to keep track of detections
(Figure 1C) by a virtuous combination between 2D and 3D
data, schematically represented in Figure 1B). Representing
fruits as 3D (very noisy) point clouds, we track the fruits
across images by solving a sequence of linear assignment
problems between labelled 3D points and the detections in
each image. The robustness of the search lies on the as-
signment process that easily handles occlusions (e.g. pink
path in Figure 1C) and to an incremental update to the 3D
representation that reinforces the geometrically correct so-
lution. As we document in the experiments, our method is
quite reliable to both missing and false detections as well as
to assignment errors due to point cloud noise or proximity
between fruits.

We do not impose restrictions on motion neither on the
scene. The images can be acquired closely (e.g. video)
or largely spaced, as long as they overlap enough to form
a connected pose-graph allowing a global reconstruction.
Fruits are detected by some detector (e.g. YOLO [19])
trained for high precision, but we admit a low recall. Intrin-
sic parameters are known and the camera matrices are esti-
mated, for example, by some sparse Structure-from-Motion
(SfM) algorithm. Finally we assume that some device (e.g.
depth camera) or Multi-View Stereo (MVS) algorithm pro-
vides a dense depth estimation just of the fruit patches (de-
tection boxes).

The main contributions of this paper are as follows:
• An object tracking algorithm that is robust to multiple

intermittent occlusions, and can be applied to any sce-
nario with fixed objects and a freely moving camera;

• Four datasets for fruit detection and tracking/counting,
one of them synthetic.

2. Related work

Regarding the problem of fruit tracking, the approaches that
can be seen in the literature usually rely either on multiple-
object tracking algorithms that work on the image domain
(2D), and are mostly based on finding similarity between
detections in consecutive video frames, or on some kind of
3D data, such as sparse or dense reconstructions achieved
by SfM algorithms or specialised depth cameras.

Most works that fall into the first category generally use
Kalman filters combined with some other computer vision
technique, like the optical flow, to try to predict what will be
the position of current frame’s detections on the next frame
and hence match detections between consecutive frames.
This is the approach followed, for example, in [14, 15].
Other works in this category rely on affine transformations
to approximate the relationship between frames, under the
assumption that the camera movement is small on consec-
utive frames — this is the case, for example, in [20, 21].
However, this assumption does not hold for all use cases —
in particular, due to fast camera motion and low frame rates,
finding similarities between consecutive video frames may
be a challenging task. Moreover, these methods are not usu-
ally robust under intermittent occlusions, because they lose
track of objects if they are not visible on the next frame.

If we move out of the literature specialised in fruit track-
ing and look at the more general problems of multi-object
tracking or optical flow, several algorithms have been pro-
posed to track multiple objects or pixels in video sequences
based on their 2D appearance. These include FlowNet [4],
SORT [2], DeepSORT [27, 28], ByteTrack [29], Omnimo-
tion [26], and CoTracker [12]. The most reported difficul-
ties with this kind of approaches — for example, in [18, 25]
— are usually the lack of robustness to occlusions and, in
the case of tracking to count objects, the possibility of miss-
ing some objects if they appear only after the Region of In-
terest (ROI)1. These methods usually do not work well with
low frame rates, either. Moreover, the kind of fruit count-
ing followed by [18] assumes that the camera moves with a
relatively constant speed and always in the same direction,
and hence that each object crosses the ROI only once. This
is not the case if we allow the camera to freely move, and
to be operated by hand or mounted on an agricultural ve-
hicle that may accelerate/decelerate, for example. Finally,
some of these methods require training data, and may not
generalise well for new scenarios without training.

Another family of approaches rely on the use of 3D data
that is either produced by depth cameras or stereo cam-
eras, or that is estimated by running a SfM pipeline such
as COLMAP [22]. In this category fall the works [15, 23],
which rely on a sparse 3D reconstruction and on epipolar

1The ROI is usually a line that crosses the video frame and that is used
by counting algorithms to count objects only once, as they cross the line.
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geometry to match fruit detections. On the other hand, other
authors [7, 8, 14, 17, 24] actually relied on a dense depth
map to match their fruit detections in 3D. While being com-
putationally more demanding than the 2D tracking methods,
this category of methods has the advantage of not being so
dependent on 2D similarity between consecutive frames to
track objects, and hence has the potential to be more robust
to intermittent occlusions. However, most authors use the
3D information only to identify fruits that were tracked in
2D (for example, with Kalman filters) and avoid duplicate
counts. Since their tracking is actually performed in 2D
with Kalman filters, it assumes a dynamic model which is
not compatible with certain types of camera motion and/or
low frame rates. We propose a different method to assign
3D fruits to 2D detections that takes advantage of this 3D in-
formation to perform the actual tracking, and thus imposes
less requirements on camera motion. Furthermore, some of
the existing solutions require special setups, such as light
shields or “tunnels” to block light, that require some man-
ual labour and do not scale well for a whole orchard. We
propose a solution that requires only a video camera, and is
thus suitable to be mounted on an agricultural vehicle and
be used at scale to cover a whole orchard. The interested
reader may find other fruit tracking methods in the excel-
lent reviews of [9, 10].

3. Proposed approach
3.1. Problem statement

We may formulate the problem that is the focus of this work
in the following terms:

Given a sequence of images and a set of fruit detections
in each image, assuming a static scene and a moving cam-
era, assign a unique ID to each fruit and track it along the
whole image sequence, regardless of the multiple occlusions
and appearances that each fruit may have due to the erratic
camera movement and/or natural structures that may inter-
mittently block it from view.

3.2. Overview of the method

First we either collect video frames with a camera or syn-
thetically generate them. Then, we estimate the camera
intrinsics and extrinsics, and a depth map for each frame
with SfM. For this task, we used COLMAP [22], for con-
venience. In parallel, we detect the objects of interest in
each image of the sequence. For this matter, we trained a
YOLOv4 [3] for apples detection, but any other object de-
tector would work. We also annotated four datasets that
served as “perfect” detections for the results listed in this
paper. Finally, our tracking algorithm — which is sum-
marised in Figure 1 — is fed with the 2D detections, the
camera intrinsics and extrinsics, and depth maps for each
image in the sequence. Having these inputs, we can relate

any pixel in any image with a 3D point in a coordinate sys-
tem that is common to the whole video. In particular, the
pixels representing the same fruit in different images should
be mapped to roughly the same 3D region, and that is the
rationale used to match the 2D detections with the 3D lo-
cation of each tracked object. From those tracked objects,
the total object count in the video can be directly retrieved.
This component is the major contribution of this paper, and
to it is devoted Subsection 3.3.

Following up on the introduction, Figure 1 shows the
main steps of our approach. Despite the perceived accu-
racy of the global reconstruction shown in sub-figure A),
the fruit’s shape is poorly reconstructed, delivering very
noisy point clouds as shown in B). The 3D points pertain-
ing to pixels in each bounding box are rigidly transformed
to another camera frame and then projected back to the im-
age. As it can be easily inferred, the 3D data per se does
not allow fruit identification or matching because it is ex-
tremely noisy and the point cloud contains data correspond-
ing to both the fruit and the background. However, when
back-projected, despite the point spread, the majority of
the 3D points fall within the area of the correct detection
bounding box, thus counterbalancing the error in the depth.
After matching the fruits to the boxes, the new detections
contribute with new points to update the 3D representation
thus reinforcing the “central cloud”, if correct, or spread-
ing around, if the matching is wrong. Finally, sub-figure
C) illustrates the assignemnt process that pairs correspond-
ing detections along the sequence. Dashed lines symbolise
potential matches, full lines the correct match and the bot-
tom path includes an occluded fruit that must be dealt with.
False detections must survive 5 frames or are eliminated.

3.3. The fruit tracking algorithm

The fruit tracking algorithm that we propose is actually a
multi-purpose object tracker for image sequences that can
be applied to any kind of objects, provided that the objects’
positions are fixed in world coordinates — i.e. static ob-
jects, moving camera. In the case of trees, this is guaranteed
by collecting the images in a windless day, and is easier to
achieve if the trees are also trained against a flat surface (e.g.
trellis), which is the case in our datasets and on many mod-
ern orchards. We make no other assumptions, namely with
regards to camera trajectory, which can be freely chosen.

The inputs required by the tracking algorithm are the
camera intrinsics and extrinsics, dense depth map and
bounding boxes of the detected objects, for each image. It
outputs a set of objects, that correspond to the tracked fruits’
detections along the image sequence, and the 3D coordi-
nates of their centroids in a global coordinate system.

Algorithm 1 summarises how the tracking algorithm
works. To make Algorithm 1 easier to read, we encap-
sulated a few components in functions in the following
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pseudo-code that we detail in the next Subsections.

Figure 2. Projection of fruits’ 3D points onto 2D detections, on
an image of the dataset Galafab-west. The re-projected points of
each 3D fruit are represented with a unique colour for that fruit.
On the right, a closeup over three detections is shown.

Algorithm 1: Fruit tracking algorithm
Data: video, detections, intrinsics, extrinsics, depth map
Result: fruits

1 fruits← [];
2 frameNr ← 1;
3 newId← 1;
4 while video not ended do
5 frameNr ← next frame number(video);
6 projected points←

project(fruits, intrinsics, extrinsics[frameNr]) ;
/* Project 3D points onto current frame */

7 votes←
count(projected points, detections[frameNr]) ;
/* Count how many points fall inside each
detection */

8 assignment← Hungarian(votes);
9 for detection in detetctions[frameNr] do

10 if assignment[detection] exists then
/* Add detection to existing fruit */

11 fruit id← assignment[detection];
12 fruits←

update fruit(fruits, fruit id, detection,
intrinsics, extrinsics[frameNr],
depth map[frameNr]);

13 else
/* Create new fruit */

14 fruit id← newId;
15 newId← newId + 1;
16 fruits[fruit id]←

create fruit(detection, intrinsics,
extrinsics[frameNr],
depth map[frameNr]);

17 end
18 end
19 end
20 return fruits

3.3.1 Project 3D fruits onto the current 2D image

The project function takes all the 3D points of the cur-
rently tracked fruits and projects them onto a 2D image
as observed by the camera in the current frame of the se-
quence, keeping the ID of the fruit where each point came
from. The 3D points that we (re-)project onto the current
2D image correspond to the pixels from all the detections of
that same fruit in previous images, projected on a global 3D
coordinate space for the whole image sequence. Figure 2 il-

lustrates such a re-projection in one image of the sequence.
The coloured patches correspond to the 3D points of previ-
ously seen fruits re-projected onto the current image, while
the yellow boxes correspond to 2D detections on the current
image. There is some distortion of the patches, specially on
fruits that were first seen a long time ago, because they were
usually first seen in a frontal view and are currently being
seen in a considerably different angle, and there is some
amount of noise in the depth estimation particularly in the
direction perpendicular to the camera.

3.3.2 Match 3D fruits to 2D detections

The count function is used to build a score matrix for a
Hungarian assignment from 3D fruits to 2D detections. It
counts how many re-projected 3D points from a given fruit
fall inside the bounding box of a given 2D detection, and
puts these results in a 2D matrix.

The Hungarian function corresponds to running the
bipartite graph matching (Hungarian) algorithm [13] with
the score matrix just described to assign existing 3D fruits
to 2D detections of the current image, i.e. to assign an ID of
a fruit to each detection. As became evident in the closeup
detail of Figure 2, there is some overlapping between re-
projected points of different fruits onto the same 2D detec-
tions. This happens, mainly, on fruits that are physically
close to each other, but also on fruits that only seem to be
close to each other when re-projected in 2D because they
are on the same line of sight in the particular point of view
of the camera for the current image. Furthermore, some 2D
detections also overlap each other and compete for the same
fruits. This is the reason why we resort to the Hungarian al-
gorithm, to disambiguate overlapped re-projections and as-
sign them to the most probable detection.

3.3.3 Keep track of fruits

When a 2D detection in the current image is assigned to
an existing fruit, we enter the block starting in line 10 of
Algorithm 1. In that case, the existing fruit is updated to
include the 3D points from the new detection. Function
update_fruit updates the existing fruit by projecting
all the pixels from the new 2D detection onto the corre-
sponding 3D points, using the camera intrinsics and ex-
triniscs and the depth map.

When a 2D detection in the current image cannot not
be assigned to an existing fruit we enter the block initi-
ated by line 13 of Algorithm 1. In this case, the func-
tion create_fruit is used to project all the pixels of
the 2D detection onto 3D points, similarly to the func-
tion update_fruit, but then a brand new object, with
a unique fruit ID, is created and added to the fruits list,
containing these 3D points.
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In the end of the algorithm, the list of fruits is returned.
This list contains all the 3D objects that were tracked
throughout the video and their respective 2D locations on
each image. The total number of fruits is simply the num-
ber of objects in this list. In our implementation, we discard
too short tracks — with less than 5 detections — that usu-
ally correspond to false detections. This was experimentally
determined to be a good threshold for our use cases.

4. Experimental setup
4.1. Description of the data

In order to test the performance of the proposed algorithm
and to elaborate the results presented in Section 5, we col-
lected 4 datasets corresponding to video sequences captur-
ing 3 to 6 trees under different settings. These are sum-
marised in Table 1. For each dataset, we indicate in the last
column the ground truth number of apples that are visible in
the video, and which will be used later to compute the errors
of the estimations. We leave to the supplementary material
some figures that illustrate the kind of frames that compose
each video, and a representation of the camera trajectories
as well.

Table 1. Datasets description.

Dataset # trees # frames frame rate (fps) # apples

Galafab-west 3 110 ∼3 233
Schnico-Red-east 5 155 ∼3 356
Schniga-Schnico-west 6 200 ∼3 373
Synthetic-apples-1 5 250 25 204

The first three datasets correspond to video sequences
obtained with a manually operated camera, moved by a
person on foot, in an apple orchard from INIAV [11] in
Alcobaça, Portugal. The captured trees correspond to three
different varieties of apples — named Galafab, Schnico Red
and Schniga Schnico — in the final stages of maturity, close
to harvest. Trees in these datasets are flat and trained against
horizontal wires. These datasets are challenging due to the
camera movement, which moves freely on the three axis,
panning and tilting to capture the whole tree’s canopies that
do not fit entirely in one single video frame. Sometimes the
camera moves backwards, causing the same fruits to leave
and re-enter the video frame a few times. Moreover, there
are heavy occlusions caused by leaves and other fruits.

We also synthetically generated a dataset composed of 5
apple trees using the open-source 3D modelling and anima-
tion tool Blender [5]. In this dataset, we animated a camera
moving horizontally with initial acceleration and final de-
celeration, simulating the kind of movement one would ob-
tain with a camera mounted on an agricultural vehicle. Ap-
ples are red and in their final maturity level, close to harvest.
This dataset has perfect data (i.e. no noise) in what concerns

the camera intrinsics, extrinsics and depth maps, a higher
frame rate (smaller jumps between frames) and softer shad-
ows, compared to the previous datasets. It was meant to be
an easier scenario for object tracking.

The datasets are available at https : / / www .
siscog.pt/en-gb/lp/paper-v4a2024/.

4.2. Ground truth annotation

Due to the nature of our problem, which can be decom-
posed into fruit detection and fruit tracking sub-problems,
two kinds of annotations are needed. For the former, we
need to annotate with bounding boxes the location of all the
fruits that appear in each video frame. For the latter, we
have to manually assign a unique fruit ID to each bounding
box in the video, thus effectively performing fruit tracking
by hand. The two tasks were performed by using a graphical
tool that we developed ourselves. For the synthetic dataset,
we created a Python script that programmatically generates
both the bounding box and the tracking annotations for each
fruit present in the images. These annotations are gener-
ated at the same time that the images are rendered, inside
Blender.

4.3. Comparison procedure

We compared the performance of our algorithm with that of
other publicly available tracking algorithms that were pro-
posed in the literature for fruit tracking, on our datasets.
We conducted this experiment using the ground truth an-
notations as input detections for the trackers, to simulate a
scenario where the fruit detector was perfect — i.e. Preci-
sion and Recall of the detector are both 100%. With this
experiment, we assess the performance of each tracker in
isolation, under perfect detection conditions.

We took the code of a fruit counter proposed by Gené-
Mola et al. [6], and adapted it to receive as input our
ground truth detections. It has the ability to run using dif-
ferent multi-object tracking algorithms — namely, SORT
[2], DeepSORT [27, 28] and ByteTrack [29] — that the
user/programmer may easily switch in the code, which al-
lowed us to compare the performance of several object
trackers on our datasets using the same code base. Al-
though the code was prepared to run the three aforemen-
tioned trackers, only the source code for ByteTrack was ac-
tually included in the repository. Therefore, we added the
source code of SORT from the official repository [1] and a
PyTorch implementation of DeepSORT [16] to Gené-Mola
et al. fruit counting algorithm [6]. For the SORT tracker,
we set the parameters max_age=30 and min_hits=1 to
work better in our datasets — the default max_age=1 and
min_hits=3 did not work so well in our shaky footage
with intermittent occlusions, so the tracker outputted al-
most no tracks in the majority of the video frames. For the
remaining trackers, we used the default parameters, which
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produced already the best results for them.

4.4. Comparison metrics

In order to compare the performance of the different track-
ers, given their output tracks and fruit IDs and the ground
truth ones, we compute the Absolute Percentage Error
(APE) defined as:

APE =
|Estimated−Actual|

Actual
× 100 (1)

where Estimated is the number of fruits estimated by the
algorithm, while Actual is the ground truth. Lower APE
values are better. We also computed the Multple Object
Tracking Accuracy (MOTA), which is commonly seen in
the literature related to object trackers in general. It is a
metric valued in ]−∞, 1], according to the formula:

MOTA = 1− FN + FP + IDS

GT
(2)

where FN is the total number of False Negatives in the
whole sequence, FP is the total number of False Positives,
IDS is the total number of identity switches — i.e. the num-
ber of times two objects mistakenly take the identity of one
another —, and GT is the ground truth number of objects.
The closer the MOTA is to 1, the better the tracker.

To count false positives and false negatives and compute
the metrics, we considered a minimum Intersection over
Union (IoU) of 0.3 for two detection bounding boxes to be
considered the same — i.e., if a detection bounding box in
a candidate solution overlaps a ground truth detection by at
least 30% of their area, it is considered the same detection,
hence we tolerate some inaccuracies in the positions and
sizes predicted by the tracker that do not affect significantly
the task of tracking and counting fruits.

The metrics Precision and Recall are used in the next
Sections to evaluate how well the trackers process the in-
put detections, which are deemed perfect in this scenario.
In fact, even with perfect detections, the Recall may be
lower than 1.0 because many trackers simply omit a detec-
tion if for some reason they cannot track it. For example,
our tracker fails to process a detection if depth information
is unavailable for the pixels contained in it2. On the other
hand, the Precision may also be lower than 1.0, because
some trackers try to estimate the future position of a previ-
ous detection (e.g. using Kalman filters) and they fail to do
so, ending up with a detection box that does not match the
ground truth’s position and/or dimensions.

On the tables presented in the next Sections, the column
APE % (raw) refers to the computation of the APE metric
on the total number of tracked fruits without any kind of fil-
tering, while the column APE % (filtered) corresponds to the

2Sometimes the depth maps have missing values due to the SfM inabil-
ity to estimate the depth of a particular pixel.

Table 2. Comparison of different trackers on the Galafab-west
dataset. The ground truth number of apples is 233.

Tracker Precision Recall # apples
(estimated)

APE %
(raw)

APE %
(filtered) MOTA

Ours 1.00 0.99 203 15.93 12.88 0.7591
ByteTrack 1.00 0.69 365 47.80 56.65 0.2099
SORT 1.00 0.53 79 380.77 66.09 0.0468
DeepSORT 0.53 0.04 40 82.42 82.83 -0.1639

Table 3. Comparison of different trackers on the Schniga-Schnico-
west dataset. The ground truth number of apples is 373.

Tracker Precision Recall # apples
(estimated)

APE %
(raw)

APE %
(filtered) MOTA

Ours 1.00 0.91 356 27.75 4.56 0.6068
ByteTrack 0.99 0.70 798 165.04 113.94 0.2079
SORT 1.00 0.30 67 497.03 82.04 -0.1841
DeepSORT 0.63 0.08 162 35.38 56.57 -0.2829

Table 4. Comparison of different trackers on the Schnico-Red-east
dataset. The ground truth number of apples is 356.

Tracker Precision Recall # apples
(estimated)

APE %
(raw)

APE %
(filtered) MOTA

Ours 1.00 0.96 359 4.44 0.84 0.6982
ByteTrack 0.99 0.63 418 60.23 17.42 0.1600
SORT 1.00 0.43 49 295.95 86.24 -0.0498
DeepSORT 0.54 0.05 71 78.19 80.06 -0.1684

Table 5. Comparison of different trackers on the Synthetic-apples-
1 dataset. The ground truth number of apples is 188.

Tracker Precision Recall # apples
(estimated)

APE %
(raw)

APE %
(filtered) MOTA

Ours 1.00 1.00 186 9.90 1.06 0.9375
ByteTrack 1.00 0.79 180 109.38 4.26 0.5375
SORT 1.00 0.55 81 448.96 56.91 0.2930
DeepSORT 0.94 0.32 74 60.42 60.64 0.1977

actual fruit count estimated and returned by our algorithm
after discarding the fruit tracks with less than 5 detections
(as explained in Subsection 3.3.3). To make a fair com-
parison, we apply the same filter to the ground truth data
and to the output of the other object trackers. These filtered
fruit counts are reported in column # apples (estimated) and
in the ground truth indicated in the table’s captions. The
MOTA is always computed over the raw data, to make it
more generally comparable with other trackers in the litera-
ture without the specificity of our filters for fruit counting.

5. Results
5.1. Comparison with other trackers under perfect

detections

The results are presented in Tables 2, 3, 4 and 5. The re-
sults show that our tracker is consistently better than the
others in all the four datasets, and in all the aspects that are
being evaluated. Our proposed approach achieves a Preci-
sion of 1.00 in all datasets, meaning that it never predicts
a wrong object location or size, because in fact it never
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changes the bounding boxes provided as input. DeepSORT,
on the other hand, presents significantly lower values for
this metric, because it changes considerably the input de-
tections. This suggests that its learned feature descriptor is
not very reliable for the particular kind of images in this do-
main. With respect to the Recall metric, our proposed algo-
rithm achieved values consistently above 0.90 in all datasets
with a clear margin over the remaining trackers. This metric
reveals that our tracker can process almost all the detections,
while other trackers struggle to track certain fruits.

Regarding the total estimated number of apples in the
video, our proposed algorithm also achieves the best results,
with the lowest APE (filtered) on all datasets. ByteTrack
also achieves a remarkable result in the Synthetic-apples-1
dataset, which has only horizontal movement, however it
falls to much higher estimation errors on the other datasets,
where the camera moves freely and the frame rate is lower.
The Galafab-west dataset, though, seems to be particularly
challenging for our algorithm. There are frames in this
dataset where several fruits have their identities swapped or
lost to a new ID, particularly on a set of fruits that are lying
on the ground that enter and leave the frame several times.
We believe that these issues, while few enough to not affect
the MOTA metric too much, are responsible for the higher
estimation error in the number of fruits.

When we look at the quality and consistency of the
tracks, our proposed algorithm achieves the highest values
for the MOTA metric, again with a large margin over the
other trackers. This means that it is not simply giving an ac-
curate estimation for the total number of fruits, which could
still be achieved with many identity changes between the
tracked fruits, but it is actually following each unique fruit
with a a high accuracy.

5.2. Ablation studies

5.2.1 Post-processing filter

Another remark that can be derived from the previous re-
sults is the relative importance of the filtering procedure.
In most cases, the filtered APE exhibits a better value than
the raw APE, which means that by discarding fruits with
very few observations we are in fact discarding more track-
ing errors and/or false detections (in case we use a real ob-
ject detector) than true positives. Taking into account that
most false positives correspond to unmatched or spurious
detections that usually do not have a following detection in
the next video frame, simply imposing a limit of at least 2
observations for each fruit would already filter out the ma-
jority of false positives, without sacrificing too much true
positives in the final result. The minimum of 5 observations
for each fruit used in this paper was determined experimen-
tally for the presented datasets and may need to be adjusted
for very different scenarios.
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Figure 3. APE (filtered) and MOTA achieved by each tracker, as a
function of the Recall of the detector.

Figure 4. Closeup over three adjacent fruits on frames 50-54 from
Galafab-west dataset, where YOLO incorrectly merged two fruits
in the same detection. Occlusions also occur. Colours and num-
bers correspond to the tracking output of our algorithm.

5.2.2 Robustness under imperfect detections

To assess the degradation on the fruit counts under imper-
fect object detections, we randomly removed some detec-
tions from the ground truth of each dataset, to simulate an
object detector with a Recall of 0.7, 0.5 and 0.3. Then, we
ran all the fruit trackers with the same “imperfect” detec-
tions as input, and we plot the average APE across all the 4
datasets in Figure 3. Results show that our proposed method
is consistently more accurate than all the other methods, and
it can still provide satisfactory estimations even when paired
with an object detector that has a high false negative rate.

The behaviour of the APE curve for ByteTrack is due to
its tendency to overestimate the number of fruits. There-
fore, by reducing the number of detections, the error re-
duces. The MOTA curve, however, shows that its perfor-
mance is actually getting worse. On the other hand, the
DeepSORT MOTA curve increases with lower Recalls be-
cause it is tracking very few fruits, and hence the number
of identity switches is very low. However, the APE curve
shows that its real performance is actually very poor.

5.3. Challenging cases

5.3.1 Multiple fruits merged in one detection

For this matter, we consider the proposed fruit tracking al-
gorithm paired with a real object detector — a YOLOv4
model trained to detect apples. Figure 4 illustrates one fail-
ure case of the object detector, where two fruits were in-
correctly merged into a single detection. Intermittent occlu-
sions also occur in that example. In a situation like this, if
the incorrect detection happens consistently on a significant
number of images for that pair of fruits, our tracker will un-
avoidably track those two fruits as one 3D object, resulting
in an error in the final count. Even if the fruits were initially
detected separately and originated two 3D objects, the in-
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Figure 5. Closeup over two adjacent detections on frames 60-63
from Galafab-west dataset. The blue detection is tracking a fruit
on a tree, but is switched to a fruit on the ground in the third frame.

correct merge of two fruits over multiple images may con-
taminate one of the 3D objects with too many points from
the other 3D object, up to a point from where the mistake
is unrecoverable. However, it may also be the case that the
incorrect detection is not persistent between images if, for
example, the object detector can correctly resolve the two
separate fruits in another image, perhaps from a different
viewing angle. In the latter case, sometimes our tracker can
recover from the error. When the fruits appear as separate
detections, one of them may “attract” the former 3D object
in the Hungarian assignment phase and the second detec-
tion gets a brand new 3D object — and thus, the final fruit
count ends up being correct. Luckily, this was the case in
Figure 4, where our tracker recovered the three initial fruits
in the last image.

5.3.2 Ambiguities in Z depth

This case happens if two distinct fruits, when re-projected
in the point of view of a particular image, end up overlap-
ping the same detection or appear to be roughly on the same
line of sight. Figure 5 illustrates one such case, where the
detection in blue, corresponding to a fruit hanging on a tree,
is mistakenly assigned to a fruit lying on the ground in the
background, but on the same line of sight. Luckily, in Fig-
ure 5, the ambiguity only lasted 1 frame and our tracker
could recover from it. However, several cases like this end
up in a wrong track from that point onwards.

5.3.3 Missing depth data

When the depth maps are produced by SfM packages like
COLMAP, sometimes it is not possible to estimate the depth
for a particular pixel, or the confidence level of that estima-
tion is too low. Therefore, depth maps may contain null
values, i.e. missing depths for some pixels. Under some
circumstances, such as fast camera motion, low frame rate,
or poor distinctive textures in the image to match, the depth
map may end up with large areas of missing values. If the
area contained in a 2D detection has very few pixels (or no
pixel at all) with estimated depth, our tracker cannot project
the detection into 3D space, and hence the corresponding
fruit cannot be tracked. This situation is responsible for
some of the Recall values in Tables 2, 3 and 4 that are lower
than 1.00 under perfect detections.

6. Conclusions
In this work, we propose a new object tracking algorithm
that is applicable to use cases with a camera moving freely
in a static scene, and we apply it to count apples in an or-
chard under a challenging visual context. The results show
that the method is robust to intermittent occlusions and, to
some extent, to imperfect detections, responding linearly to
the decrease in the detection’s recall, and outperforming all
the other tested trackers on all the datasets. Moreover, the
results also suggest that it is robust enough to be applied
to diverse real-world use cases, without imposing any con-
straints to the camera motion nor to the frame rate, and
where tree canopies may be dense and thus generate mul-
tiple intermittent occlusions of fruits. These characteristics
make the solution versatile, in the sense that a farmer may
use such a system with virtually any camera, either operated
by hand — which generates more erratic camera motions —
or mounted on an agricultural vehicle — which, while gen-
erating a smoother trajectory, usually implies a higher pace
for the video, which may pose a challenge if the frame rate
is low.
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