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Abstract

Small farms contribute to a large share of the produc-
tive land in developing countries. In regions such as sub-
Saharan Africa, where 80% of farms are small (under 2
ha in size), the task of mapping smallholder cropland is an
important part of tracking sustainability measures such as
crop productivity. However, the visually diverse and nuanced
appearance of small farms has limited the effectiveness of
traditional approaches to cropland mapping. Here we in-
troduce a new approach based on the detection of harvest
piles characteristic of many smallholder systems throughout
the world. We present HarvestNet, a dataset for mapping
the presence of farms in the Ethiopian regions of Tigray and
Amhara during 2020-2023, collected using expert knowl-
edge and satellite images, totaling 7k hand-labeled images
and 2k ground-collected labels. We also benchmark a set of
baselines, including SOTA models in remote sensing, with
our best models having around 80% classification perfor-
mance on hand labelled data and 90% and 98% accuracy
on ground truth data for Tigray and Amhara, respectively.
We also perform a visual comparison with a widely used
pre-existing coverage map and show that our model detects
an extra 56,621 hectares of cropland in Tigray. We conclude
that remote sensing of harvest piles can contribute to more
timely and accurate cropland assessments in food insecure
regions. The dataset can be accessed through https://
figshare.com/s/45a7b45556b90a9a11d2, while
the code for the dataset and benchmarks is publicly avail-
able at https://github.com/jonxuxu/harvest-
piles.

1. Introduction
Smallholder farming is the most common form of agriculture
worldwide, supporting the livelihoods of billions of people
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Figure 1. Various examples of harvest piles.

and producing more than half of food calories [18, 24]. Cost
effective and accurate mapping of farming activity can thus
aid in monitoring food security, assessing impacts of natu-
ral and human-induced hazards, and informing agriculture
extension and development policies. Yet smallholder farms
are often sparse and fragmented which makes producing ad-
equate and timely land use maps challenging, especially in
resource constrained regions. Consequently, many land use
datasets [4, 5, 28] are inaccurate and updated infrequently in
such regions, if at all.

Machine learning algorithms for remote sensing have
proved to be successful in many sustainability-related mea-
sures such as poverty mapping, vegetation and crop mapping
as well as health and education measures [27]. Moreover,
satellite images are now widely available at different res-
olutions with global coverage at low to no cost [20]. The
performance of methods for mapping croplands in small-
holder systems, however, remains limited in many cases
[4, 28].

Existing approaches to mapping croplands typically rely
on either the unique temporal pattern of vegetation growth
and senescence in crop fields compared to surrounding
vegetation, the identification of field boundaries in high-
resolution imagery, or some combination of both [8, 23]. In
non-mechanized smallholder systems like Ethiopia, where
subsistence rain-fed agriculture predominates [2], these tech-
niques face limitations. Weeds and wild vegetation often
exhibit growth and spectral reflectance patterns resembling
cultivated crops, causing confusion in spectral-based classi-
fication. The landscape’s heterogeneity in smallholder sys-
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Figure 2. Photos of harvest piles. Left: person for scale.

tems, encompassing various land uses such as crops, fallow
land, and natural vegetation, also poses challenges in ac-
curately demarcating field boundaries and distinguishing
different land cover types.

We highlight another feature that is common in small-
holder systems throughout the world — the presence of har-
vest piles on or near fields that cultivate grains at the end of a
harvest season. Crops, particularly grains, are manually cut
and gathered into piles of 3-10m before threshing, a process
of separating the grain from the straw. Figure 2 shows what
a harvest pile can look like on a natural image scale. The
harvest pile footprints are present until after threshing and
finally disappear when the land is prepared for the upcoming
season. Since the piles are valuable, they are not abandoned
in fields. Unlike houses, roads, and field boundaries, harvest
piles are a more dynamic indicator that signifies seasonal
farming.

We focus our work on Ethiopia, which boasts the third
largest agricultural sector in Africa based on its GDP [26].
Specifically, our attention is directed towards the lowlands
in the Tigray and Amhara regions. This focus is driven by
two main factors: Firstly, the area has historically been in-
correctly mapped in previous works [28]. Secondly, this area
covers arid to subhumid tropical agroclimatic zones within
Ethiopia, where we have available ground data. The ma-
jor crops grown in these regions include teff, barley, wheat,
maize, sorghum, finger millet, and sesame [7, 25].

Harvest pile detection is a novel task, thus we needed
to hand label our dataset to train models. To gather labels
for the presence of a pile in each image, we undertook a
rigorous process of hand-labeling SkySat satellite images. In
this process, experts - who are researchers originally from
the region and have significant field and research experience
in agricultural extension work in the region - guided the
identification of key areas in Tigray and Amhara. Satellite
images were obtained within these areas and then AWS
Mturk identified the obvious negatives while experts labeled
the positives. Figure 1 is a collection of various examples of
piles in satellite images. In Figure 3, we show remote sensing
examples of harvest piles at various stages of harvest. We
then used this labeled data to train some SOTA models in
remote sensing such as CNNs and transformers and achieved

Figure 3. Various stages of harvest activity.

80% accuracy on the best model. Moreover, we generated
a map depicting projected farming activities in Tigray and
Amhara regions, and compared it with the most current cover
map.

Our contributions are as follows:
• We propose a framework to detect farming activity through

the presence of harvest piles.
• We introduce HarvestNet, a dataset of around 7k satellite

images labeled by a set of experts collected for Tigray and
Amhara regions of Ethiopia around the harvest season of
2020-2023.

• We document a multi-tiered data labeling pipeline to
achieve the optimal balance of scale, quality, and con-
sistency.

• We benchmarked SOTA models on HarvestNet and tested
them against ground truth data and hand-labeled data to
show their efficacy for the task.

• We produced a map for the predicted farming activity by
running inference on the unlabeled data, and compared it
against ESA WorldCover [28], one of the most updated
land usage cover map according to [14].

2. Related Work
Mapping croplands using remote sensing has been well re-
searched in the past [4, 5, 9, 12, 13, 16, 28]. Some methods
use feature engineering with nonlinear classifiers [4, 12, 28],
others use deep learning methods [13, 16]. In all these works,
the Normalized Difference Vegetation Index (NDVI) as well
as multispectral satellite bands are used as an input, NDVI
is a numerical indicator used to quantify the presence and
vigor of live green vegetation by measuring the difference
between the reflectance of near-infrared (NIR) and visible
(red) light wavelengths in imagery. ESA [28] and Dynamic
World [4] combine both NDVI and multispectral bands to
provide global coverage of more than 10 classes of land use,
which include crop coverage. These maps are the largest
in scale and have a pixel resolution of 10m. Other methods
[1, 10, 13, 19] introduced a higher resolution but on a smaller
scale in countries such as Mozambique, Ghana, Togo and
Morocco.

Active learning is a method of building efficient training
sets by iteratively improving the model performance through
sampling. Some studies [8, 23] have employed active learn-
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ing to map smallholder farms. This approach helps mitigate
bias in cropland mapping, as it can more accurately detect
larger fields compared to other methods. However, none of
these works have explored the concept of utilizing harvest
piles as indicators when mapping smallholder farms.

3. Method
In many smallholder farms for crops such as grains, farmers
collect the harvest into piles during the harvest season, in
preparation for threshing. These piles can be heaps of various
crop types gathered around the nearest threshing ground.
Therefore, the detection of piles during the harvest season is
a very compelling indicator of farming activity. We propose
using RGB satellite imagery for pile detection due to its wide
accessibility and adaptability for other uses.

3.1. Task Formulation

To demonstrate this method, we defined farmland detection
as a binary classification task using square RGB satellite
images at a set scale. If l is a location represented by latitude
and longitude, the task is to build a machine learning model
that takes a satellite image xl and predicts yl where yl is
a binary output indicating the presence of farming activity
at location l. The output should be positive if the image
contains at least one indication of harvest activity. In our
area of interest, which covers Tigray and Amhara regions in
Ethiopia, the harvest process consists of three stages: cutting
down and grouping crops to be collected (harvesting; Figure
3 left), piling the crops to be processed (piling; Figure 3
middle), and processing the piles to separate grains from the
straw (threshing; Figure 3 right). Each stage results in differ-
ent footprints of harvest patches. We classify the presence of
any of these stages as a positive example of harvest activity
and we use binary cross entropy loss defined by

LCE =
1

N

∑
l

−yl · log (ŷl)− (1− yl) log (1− ŷl) (1)

where N is the number of locations l, yl the predictions and
ŷl the ground truth presence of harvest piles. More examples
of harvest piles are displayed in Appendix Figure 2 and 3.

3.2. HarvestNet Dataset

Here we introduce HarvestNet, the first dataset to our knowl-
edge created for the task of detecting harvest activity from
pile detection. Ethiopia is the second most populated country
in the continent, with a majority of its people primarily de-
pendent on smallholder rain-fed agriculture. In our regions of
interest, the piling of harvests occurs during Meher, the main
harvest season between September and February. These piles
can be observed as early as October and stay on the land as
late as May of the next year. We therefore restrict the time
samples of our dataset to Oct-May months. A geographical

Figure 4. Side by side comparison of two areas, captured in 4.77m
(left), 0.5m (center) and 0.3m (right) resolution. Note that piles
become indistinguishable at 4.77m resolution.

scale of around 250 m was found to be a good fit for our
purposes since piles are typically located within 1km from
the field plot. Our images thus cover square land areas of
dimensions 256x256 m.

3.2.1 Satellite Images

We use two image resolutions (0.5m and 4.77m per pixel)
because the small size of harvest piles necessitates high-
resolution images for accurate hand labeling and mapping,
as Figure 4 shows.

On the other hand, higher-res images are limited in cov-
erage and availability. Thus, we also include around 9k (7k
labeled images + 2k ground truth images) lower-res images
as part of our dataset. We use the high-res images (150k
unlabeled, 7k labeled images) for training and testing on the
hand-labeled test set as well as for creating the crop map,
while we use the low-res images for the ground truth testing
since the higher res is not available in the ground truth loca-
tions. Each dataset entry includes unique latitude, longitude,
altitude, and date, corresponding to SkySat images, with
labeled examples also including PlanetScope images.

SkySat images [21] are 512x512 pixel subsets of or-
thorectified composites of SkySat Collect captures at a 0.50
meter per pixel resolution. SkySat images are normalized
to account for different latitudes and times of acquisition,
and then sharpened and color corrected for the best visual
performance. For our analysis, we downloaded every SkySat
Collect with less than 10 percent cloud cover between Octo-
ber 2022 and January 2023. In total, we have 157k SkySat
images, of which 7k are labeled.

PlanetScope images [20] are subsets of monthly Plan-
etScope Visual Basemaps with a resolution of 4.77 meters
per pixel. These base maps are created using Planet Lab’s
proprietary ”best scene on top” algorithm to select the high-
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est quality imagery from Planet’s catalog over specified time
intervals, based on cloud cover and image sharpness. The
images include red, green, blue, and alpha bands. The alpha
mask indicates pixels where there is no data available. We
used subsets that correspond to the exact location and month
of each of the 7k hand-labeled SkySat images. To maintain
the same coverage of 256x256 m at the lower resolution,
we used the bounding box of each SkySat image to down-
load PlanetScope images at a size of roughly 56x56 pixels.
Since the PlanetScope images are readily available and have
good coverage in geography and time series, we separately
downloaded 4 PlanetScope images for each area of interest
corresponding to the 2k ground truth images collected by
the survey team. They include a capture for each month in
the Oct-Jan harvest season. This window guarantees that
farming activity will be captured in at least one of the 4
images.

3.2.2 Labeling

Since this is a novel task, we hand-labeled our entire train-
ing and test set. We wanted to create a high-quality, high-
coverage dataset despite having limited resources and sparse
access to field data and subject experts familiar with remote
sensing on harvest piles. Thus, we developed a multi-staged
committee approach to label successively more focused data
sets. The majority of images from SkySat Collects contained
no piles, so with the guidance of subject experts on agricul-
ture in Tigray and Amhara, drew polygons outlining areas
our experts knew had harvest piles (Figure 7). Downloading
within those areas so, 30% of our scenes contained harvest
piles.

The first stage of our labeling pipeline is to use crowd-
sourcing to filter out obvious negatives such as images con-
sisting only of bare lands, and shrubs. Each image is shown
to 2 anonymous Amazon Mechanical Turk workers (labeler
details are described in Appendix Table 6, who are each
tasked with deciding whether an image contains a pile. We
teach the workers a very broad definition of a ”pile” so that
they filter out clear negatives without accidentally discarding
potential positives. When one labeler votes no and another
vote yes, we (the coordinators) cast the deciding vote. After-
wards, all images labeled as positive are forwarded to two
experts (co-authors of the paper) for final evaluation by their
consensus.

In Appendix Figure 4 we outline our labeling process
in greater detail. The labeling process was done through
inspection on SkySat images exclusively, afterwards Plan-
etScope images were paired with the corresponding labeled
SkySat images. By the end of this stage, we had roughly 7k
labeled examples, which each consisted of a SkySat image of
size 512x512 pixels and a PlanetScope image of size 56x56
pixels covering the same area at the same month.

During the labeling process, we encountered diverse edge
cases. Some image features resulted from the harvest piling
process but did not match the conventional stage of harvest
activity shown in Figure 1. Notable examples, depicted in
Figure 5, include early-stage light and dark crop bunches
and residual pile footprints. These were labeled as positive
instances. Additionally, some images depicted small dots
resembling harvest piles, which were later identified, through
consultation with our experts, as various entities such as dirt
piles, aluminum sheds, and altered land shown in Figure 6.
These were deemed unrelated to harvest activity and marked
as negative instances.

3.2.3 Ground Truth

In March 2023, we sent a survey team to collect ground
truth data in Tigray and Amhara to validate our models’
predictions for the 2022-2023 harvest season. 1,017 and
1,279 labels were gathered in Tigray and Amhara regions
respectively. Ground truth data were gathered for all harvest
crop types, including maize, teff, wheat, and finger millet. All
the heaps belong to the pile point category and are situated
within a maximum distance of 500 meters from the field
plot. A map of ground truth collection zones is plotted in
Appendix Figure 5. Due to the ongoing armed conflict, the
team was unable to visit areas in Tigray that were covered
by SkySat (higher-res imagery) in our image dataset. In
response, we opted to combine the ground truth data with
PlanetScope images, a more diverse collection that spans the
geographic area with an extensive temporal range.

3.2.4 Dataset Split

Aiming for a balanced dataset, we targeted an equal split of
positive and negative labels. We were able to collect SkySat
images from various regions shown in Figure 7, that are
representative of the diversity of the geography. The exact
distribution of the dataset geography and labels is described
in Appendix Figure 1.

To avoid contamination from overlapping images, we
used graph traversal to form distinct groups. Each group
consists of images that strictly overlap with at least one
other image in the group. Images that did overlap any others

Figure 5. Examples of harvest pile activity that are not strictly piles.
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Figure 6. Examples of edge cases that are not harvest piles.

Figure 7. Training and test splits.

were assigned to their own individual groups. After graph
traversal, our 6915 total images were divided into 5166 non-
overlapping groups. Assigning each connected component
a random color, the non-overlapping nature of groups are
seen in Figure 8 A (the code is provided in Appendix List-
ing 1). Afterwards, we assigned each group between the
train and test split. The largest group (776 images) and the
second largest (323 images) were included in the training
set, because they dominate a significant area in our dataset.
Then, we randomly shuffled the remaining groups, and itera-
tively assigned them to either the train or test set to maintain
a running 80:20 ratio between the train and test sets. This
results in a train/test split (Figure 8 B) that does not over-
lap geographically, while still sharing a similar geographic
distribution.

Figure 8. (A): An example region of image captures, organized into
non-overlapping partitions of overlapping shapes, each assigned a
random color. (B): Partitions are then divided into train (red) and
test (blue).

3.3. Benchmarking

We trained various machine learning models on our dataset
to predict the presence of harvest activity in an image, as
described below.

MOSAIKS [22] This approach uses non-deep learning
to extract features from satellite images by convolving ran-
domly chosen patches. These features are then utilized for
downstream tasks, providing cost-effective performance. We
featurize our dataset with 512 features per image and employ
an XGBoost classifier for target prediction.

SATMAE [6] Based on masked autoencoders (MAE),
this framework is pretrained on FMOW and Sentinel2 for
various tasks, including single image, temporal, and multi-
spectral. It exhibits strong performance in downstream and
transfer learning tasks. We apply transfer learning by training
this pre-trained model to predict the harvest pile’s presence
in our dataset.

Swin Autoencoder [17] is a vision transformer that cre-
ates hierarchical feature maps by merging patches in deeper
layers and maintains linear complexity with image size via
local window self-attention. It’s pretrained with a masked
image autoencoder on 150k Skysat images, scaling inputs
to 224x224 pixels and partitioning them into 28x28 patches
with a 40% mask ratio. A fully connected layer follows the
transformer’s 1x768 pooled output. The model is fine-tuned
on our training set of labeled Skysat images.

Satlas [3] is a pre-trained model based on the Swin trans-
former, and pretrained on 1.3 million remote sensing images
collected from different sources. The model performs well
for in-distribution and out of distribution tasks, suggesting
the benefit of pretraining on a large dataset. We used the
weights pretrained on higher res images, froze the model,
and trained a fully connected layer on top of the pre-trained
model.

ResNet-50 [11] Convolutional Neural Networks (CNNs)
have proven to perform well in several remote sensing tasks.
Here, we used ResNet-50, one of the most popular and effi-
cient networks, to predict our target. Since our input satellite
image is in RGB, we used the ImageNet initialization of the
network and trained a supervised binary classification task
using our labeled dataset.

4. Experiments
4.1. Experimental Details

As our working dimensions are areas of size 256x256 m,
we center cropped the SkySat images to 512x512 pixels and
PlanetScope images to 56x56 pixels before normalizing to
zero mean and unit standard deviation. These images were
then scaled to fit the default input dimensions of the models.

MOSAIKS was trained with 512 features. The deep mod-
els were trained using the Adam optimizer to minimize the
binary cross-entropy loss criterion. The hyperparameters on
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batch size, learning rate, scheduler, and training step count
are described in Appendix Table 1. We experimented with
combinations of hyperparameters and settled on the best per-
forming combinations. For transformers-based models we
chose the batch size that would maximise use of the 24GB
of VRAM in our graphics cards. The models were trained
until they converged, and the step counts were recorded.

4.2. Evaluation

As the task of harvest pile detection depends on the nuances
of real farm activity, it is always desirable to have both a
qualitative test as well as a quantitative one. We describe
both evaluations below.

Qualitative Evaluation We visually compare the ESA
[28] land cover map with our ResNet-50-based classification
map trained on HarvestNet. ESA is a land use map, provid-
ing global coverage for 2020 and 2021 at 10 m resolution,
developed and validated based on Sentinel-1 and Sentinel-2
data. It has been independently validated with a global over-
all accuracy of about 75%. Despite being SOTA in mapping
land cover and land use, our experts identified many errors in
smallholder systems within the area highlighted in Figure 9a.
In Figure 9b, the positive classification (in green) of the best-
performing model trained on our dataset overlays the ESA
map (in pink), revealing our ability to detect new farmland
in those regions. Figure 9d present satellite images of two
example locations, verifying the presence of piles that were
not detected by ESA and correctly identified in our map.

Quantitative Evaluation In this evaluation, we calculate
the classification performance of our trained models using
accuracy, AUROC, precision and recall. We also use the
same metrics to measure the performance of our models
against ground truth data.

4.3. Results

Table 1 shows our benchmark results from the HarvestNet
dataset using hand-labeled test data. Table 2 presents the
ResNet model’s results on ground truth data. We use this
model for its superior precision.

Figure 10 illustrates the Swin masked autoencoder’s re-
construction, pretrained on 150k SkySat images. We can see
that although the model was not trained on the input image,
it generalizes well on filling in the masked area for Ethiopian
landscapes. The model was trained on an 80% split of the
images, and evaluated on the remaining 20% split.

Figure 9 compares the ESA map (Figure 9a) with our pre-
dicted map (Figure 9b). We highlight specific areas, marked
in black rectangles, where experts identified ESA’s classifi-
cation inaccuracies. A closer comparison of these regions of
interest can be viewed in Appendix Figure 6. Satellite im-
ages from two locations (Figure 9d) show examples of ESA’s
inaccurate cropland detection. Table 3 lists the differences
in our and ESA’s map predictions. The aim is to compare

(a)

(b)

(c)

(d)

Figure 9. (a) The ESA map for our study region. (b) Positive predic-
tions from our ResNet-50 model, overlaid the ESA map. (c) shows
a zoom-in view of (b) in the southwest of Tigray region. (d) shows
satellite images of the locations pinpointed in (b).

our number positive/negative predictions with those of ESA,
while highlighting cases where our predictions differ. We
also note the additional cropland area (in hectares) detected
by our model and the overlapping cropland region shared
between the two models.

5. Discussion
Model Performance The outcomes presented in Table 1
highlight a notable trend: deep models consistently outper-
form non-deep models that rely on feature generators such as
MOSAIKS. This disparity in performance can be attributed
to the nature of our task, which involves identifying piles
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Model Accuracy AUROC Precision Recall F1-Score
Satlas 67.17 62.47 80.0 30.61 44.28
SatMAE 60.0 56.35 57.37 29.73 39.17
MOSAIKS 55.46 51.81 47.65 23.59 31.56
Swin Autoencoder 80.87 80.15 79.88 74.79 77.23
ResNet-50 79.18 77.85 81.4 67.61 73.87

Table 1. Results for the proposed models on the hand labelled test set.

Figure 10. Reconstruction results from the Swin v2 masked autoen-
coder trained on 150k unlabelled Skysat imagery.

Model Region Accuracy F1-Score Recall
ResNet-50 Amhara 98.68 99.33 98.68
ResNet-50 Tigray 90.76 95.16 90.76

Table 2. Results for the ResNet model evaluated on the test ground
truth data

Total - , + + , + - , -
Samples 150,577 11,563 24,076 38,989
Area(ha) 986,821 56,621 62,082 137,059

Table 3. Results for the comparison between the positives and
negatives predicted by the ResNet model and ESA. “-,+” are areas
where ESA predicts negative while our model predicts positive
(newly detected cropland), “+,+” and “-,-” are areas where our
model and ESA agree.

– intricate and compact elements within an image. The in-
tricate nature of piles demands the capabilities of a deep
network to adequately capture and detect these distinctive
features.

The second notable finding is that ResNet-50 performs
quite well, even outperforming SatMAE. We believe that
this is mainly due to the fact that CNNs better maintain pixel
structure and generate feature maps that retain spatial infor-
mation, which is a critical aspect for accurately detecting
piles. Following this trend, the Swin autoencoder slightly
outperforms ResNet, thanks to its incorporation of low-level
details in its hierarchical feature maps. Even though Satlas
is based on the Swin architecture, it performs worse than the
Swin autoencoder pretrained on our unlabelled images. This
suggests that although it was pretrained on a very compre-
hensive dataset, it is not uniquely positioned to perform in
specific areas of interest.

Lastly, it is worth noting that our models’ precision are
notably higher than their recall, indicating a relatively high
dataset quality. However, to enhance performance, further in-
clusion of positive samples is required, presenting a potential
avenue for future research.

Evaluation and Coverage Table 2 reveals promising
ResNet outcomes on ground truth data, attributed to two fac-
tors. Firstly, utilizing four distinct images per location, each
representing a different month within the harvest season, en-
hances predictions by considering the union of results. This
approach is feasible due to PlanetScope imagery’s availabil-
ity. Secondly, the ground truth data exclusively comprises
positive samples, eliminating inherent false positives and
contributing to elevated accuracy.

In Table 3 and Figure 9, we demonstrate our model’s
improvement over ESA predictions. Figure 9b highlights
locations predicted as non-crop lands by ESA but as cropland
by our model. Two samples of corresponding satellite images
are shown in Figure 9d. Table 3 indicates instances where
our model predicts farming activity and ESA does not (11k
examples, 57k ha) and cases where both models predict
similarly (62k samples, 199k ha). This added cropland is
estimated by experts to be 90% true cropland, showcasing
potential for improving existing maps in smallholder regions
using harvest pile features. Appendix Figure 6 provides a
higher zoom map for these missed locations.

Potential Bias Labelers may be biased in their interpreta-
tion of piles. Specific areas were chosen for image downloads
based on pile presence, introducing sampling bias. Models
trained on our dataset may exhibit bias toward processing
piles with larger shapes and colors. Geographical bias exists
in ground-collected data, chosen near roads for logistical
reasons.

Limitations and Future Work Our study, focused on
small feature classification due to resource limitations, uti-
lized a dataset with certain constraints. We opted for binary
labels over fixed 256x256 m areas for practical reasons, sac-
rificing spatial resolution for broader land coverage. Future
improvements could include subdividing images for finer
binary classification, leveraging negative sections as training
data to enhance resolution.

Our approach was tailored for binary classification rather
than detailed object detection or semantic segmentation, par-
ticularly of harvest piles. Adopting object detection could
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provide valuable insights into pile locations, sizes, and den-
sities, building on our initial goal to pinpoint areas with any
pile presence. Exploring advanced models like Segment Any-
thing [15] for automated segmentation presents a promising
direction.

As seen in Figures 3, 5, and Appendix Figure 3, the study
also identified various image features indicative of harvest
activities as positive, which, with expert insights, could be
further refined for improved object detection across diverse
activity types.

Considering time series data could significantly enhance
harvest pile detection. Despite our current focus on geo-
graphic diversity due to limited resources, integrating time-
lapse imagery could improve model accuracy. HarvestNet’s
models, proven in this context, show promise for broader
agricultural applications, such as detecting hay bales in North
America, and may facilitate transfer learning across different
agricultural domains.

6. Conclusion

In this work, we present HarvestNet, the first dataset for
detecting farming activity using remote sensing and harvest
piles. HarvestNet includes a dataset for both Tigray and
Amhara regions in Ethiopia, totaling 7k labelled SkySat im-
ages, and 9k labelled PlanetScope images corresponding to
2k ground truth points and the 7k labelled Skysat images.
We document the process of building the dataset, present
different benchmarks results on some of the SOTA remote
sensing models, and conduct land coverage analysis by com-
paring our predictions to ESA, a SOTA land use map. We
show in our comparison that we greatly improve the current
ESA map by incorporating our method of pile detection.
Thus, by combining our approach with existing coverage
maps like ESA, we can have a direct impact on efforts to
map active smallholder farming, consequently helping to bet-
ter monitor food security, assess the impacts of natural and
human-induced disasters, and inform agricultural extension
and development policies.
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