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Abstract

Thermal cameras are an important tool for agricul-
tural research because they allow for non-invasive mea-
surement of plant temperature, which relates to important
photochemical, hydraulic, and agronomic traits. Utilizing
low-cost thermal cameras can lower the barrier to intro-
ducing thermal imaging in agricultural research and pro-
duction. This paper presents an approach to improve the
temperature accuracy and image quality of low-cost ther-
mal imaging cameras for agricultural applications. Lever-
aging advancements in computer vision techniques, par-
ticularly deep learning networks, we propose a method,
called VisTA-SR (Visual & Thermal Alignment and Super-
Resolution Enhancement) that combines RGB and thermal
images to enhance the capabilities of low-resolution ther-
mal cameras. The research includes calibration and vali-
dation of temperature measurements, acquisition of paired
image datasets, and the development of a deep learning net-
work tailored for agricultural thermal imaging. Our study
addresses the challenges of image enhancement in the agri-
cultural domain and explores the potential of low-cost ther-
mal cameras to replace high-resolution industrial cameras.
Experimental results demonstrate the effectiveness of our
approach in enhancing temperature accuracy and image
sharpness, paving the way for more accessible and efficient
thermal imaging solutions in agriculture.

1. Introduction

Agricultural research often uses crop temperature mea-
surement to detect abnormal plant characteristics, calculate
crop water stress indices, or model complex biophysical in-
teractions. Since various methods have been attempted to
measure crop temperature, thermal imaging cameras are
widely used because they can quickly measure the temper-
ature at many points in the image [20]. Also, thermal imag-
ing can quickly and non-invasively measure crop temper-

ature compared to other temperature measurement devices.
These benefits can help identify areas where crops are expe-
riencing disease or stress, allowing for timely intervention.

Previous studies using thermal cameras in agriculture
have utilized high-resolution industrial-grade thermal cam-
eras [16]. However, these cameras are very expensive, often
costing over $10,000 which limits their accessibility. This
low accessibility can restrict the widespread deployment of
thermal cameras in agriculture, especially for researchers
who cannot afford costly sensors.

An alternative approach is to use low-cost sensors.
Recent developments in thermal image sensors and im-
age processing technologies have made various affordable
consumer-grade thermal cameras available. These thermal
cameras have the advantages of being relatively lightweight
and easy to operate. Therefore, there have been attempts to
use low-cost thermal cameras in agriculture [5, 14, 15]. For
example, Bhandari [4] obtained an image mask from visi-
ble light images and applied it to thermal images to mea-
sure wheat canopy temperature and estimate water stress.
Another study used a low-cost thermal camera to calcu-
late crop canopy temperature automatically [15]. However,
these low-cost thermal cameras have not been able to com-
pletely replace high-resolution industrial thermal cameras
due to their lower pixel count and resolution.

Thermal camera resolution has a significant impact on
the capability and accuracy of agricultural research. For ex-
ample, low-resolution thermal cameras may only be able to
recognize crops at the plant-level rather than organ-level,
making it challenging to observe temperature differences
between leaves, stems, flowers, and fruits, for instance. This
limited feature resolution will limit the temperature mea-
surement capability at various phenological stages, which
is essential for developing precise crop biophysical models.
Therefore, improving the quality of low-cost thermal im-
ages can increase the feasibility of using low-cost thermal
cameras in agriculture.

Enhancing the resolution of low-resolution thermal im-
ages is a challenging task. It is an ill-posed problem, as
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Figure 1. Structure of the proposed VisTA-SR network. The network has two main stages: the Image Alignment and the Super-Resolution
Network. The Image Alignment aligns the RGB and thermal images, while the Super-Resolution Network enhances the resolution of the
thermal image.

multiple high-resolution ground truths can exist for a sin-
gle low-resolution image. Nevertheless, various computer
vision and machine learning techniques have been proposed
to overcome the challenge. Particularly with the recent ad-
vancements in deep learning, there have been many re-
ported cases of upsampling low-resolution images to high-
resolution. Some researchers have used ResNet and GANs
to perform image super-resolution [21]. Others have com-
bined multiple low-resolution images to create a single
high-resolution image [26]. Some have also used multi-
modal data to improve the resolution of the data [2, 8, 17].
However, research on improving the quality of thermal im-
ages in the agricultural domain has been limited. Applying
these techniques to agricultural thermal images could po-
tentially improve the image quality of low-resolution ther-
mal cameras, allowing them to replace high-resolution ther-
mal cameras.

Therefore, this paper studies how computer vision tech-
niques can improve the image quality of low-resolution
thermal cameras for agricultural applications. We propose
a deep learning network that leverages complementary in-
formation from RGB and thermal image domains for both
image alignment and super-resolution enhancement.

The specific contributions of this paper are as follows:
• Calibration and validation of the temperature measure-

ment of a low-cost thermal camera in the agricultural do-
main

• Acquisition of a paired low-resolution thermal camera
image dataset, as well as RGB and high-resolution ther-
mal camera data in the agricultural domain

• Proposal of an integrated image alignment and super-
resolution deep learning algorithm to improve the image
quality of low-resolution thermal cameras by combining
RGB and thermal images

2. Related Work

2.1. Traditional Image Enhancement

Before the advent of deep learning-based image sharp-
ening approaches, filter-based techniques were used to en-
hance image quality, including fundamental Gaussian ker-
nels and image sharpening kernels such as Bilinear filter-
ing [28], Bilateral filtering [30], and Lanczos filtering [11].
Despite their ability to reduce image noise and enhance ob-
ject edges, these approaches have been criticized for intro-
ducing artificial noises not present in the original image or
producing unsatisfactory sharpness.

2.2. Deep Learning Based Super Resolution

Recently, there have been attempts to improve sharp-
ness using deep learning. These attempts include making
super-resolution images from low-resolution images using
ResNet and GANs, resulting in various developed meth-
ods [9, 21, 31]. These methods have shown the ability to
restore low-resolution images with higher quality compared
to traditional filter-based algorithms. However, they still
face challenges in overcoming the ill-posed problem of cre-
ating shapes that do not exist in the original image.

2.3. Multi-Image or Multi-Modal Super Resolution

To address the ill-posed problem in super-resolution
methods, attempts have been made to create a single high-
resolution image using various low-resolution or comple-
mentary information. For example, one approach is to uti-
lize the high-resolution panchromatic channel of satellite
imagery to enhance the sharpness of lower-resolution chan-
nels [10]. Another approach is to combine information from
multiple frames to improve the sharpness of thermal im-
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ages [7]. Additionally, multi-modal super-resolution tech-
niques that combine RGB and thermal information have
also been tried [2, 8, 17].

2.4. Use Cases of Thermal Cameras in Agriculture

Most agricultural research studies have traditionally re-
lied on high-resolution thermal cameras in their research.
For example, Gonzalez-Dugo et al. [16] showed promis-
ing results assessing water stress within a commercial or-
chard using a high-resolution thermal camera, which costs
more than $20,000. Yan et al. [33] recently employed a Pro
SC TIR camera (640x512 resolution, $17,250) to estimate
evaporation, transpiration, and evapotranspiration, crucial
parameters for understanding water dynamics in agricul-
tural systems. However, these cameras can be prohibitively
expensive, limiting their accessibility for many researchers
and farmers.

In recent years, the emergence of low-cost thermal cam-
eras has opened up new possibilities for agricultural ap-
plications. Several studies have explored the use of low-
cost thermal cameras in agricultural research. Garcı́a-Tejero
et al. [13] compared the performance of a low-cost FLIR
One camera (80x60 resolution, $400) with a high-end FLIR
SC660 camera (640x480 resolution, $20,000) for assessing
crop water status. They found that the low-cost camera was
able to provide valuable insights, demonstrating the poten-
tial for more affordable thermal imaging solutions. Simi-
larly, Iseki et al. [18] used a FLIR C2 camera (80x60 res-
olution, $500) to estimate leaf stomatal conductance, a key
indicator of plant water status. Parihar et al. [25] utilized a
FLIR E6 camera (240x180 resolution, $2,000) for irrigation
scheduling of horticultural plants, demonstrating its utility
in optimizing water use. While low-cost thermal cameras
offer an attractive alternative, their lower resolution and im-
age quality than their high-end counterparts may limit their
ability to provide the same level of detailed information.
Additionally, the temperature accuracy of low-cost cameras
in various environmental conditions and crop types needs
further investigation. Nonetheless, the studies reviewed here
highlight the potential of low-cost thermal cameras in agri-
cultural research.

3. Materials and Methods
3.1. Thermal Cameras

In this study, three types of thermal cameras were uti-
lized. Table 1 shows the specifications of the thermal cam-
eras. The VarioCAM HD camera, known for its high spatial
resolution and temperature accuracy, was primarily used to
create a dataset for temperature accuracy validation. The
VarioCAM HD images were collected using their propri-
etary software on the Windows Operating System. The
FLIR Boson camera, with a resolution of 640x512, was

employed to capture high-resolution thermal image data in
the field. Positioned between high-end and consumer-grade
thermal cameras in terms of price, the FLIR Boson camera
offered a lightweight form factor and flexible video output
interface for easy field image capture. FLIR Boson images
were collected from the ROS-based system on Ubuntu PC.
Lastly, the FLIR One Pro, a low-cost and low-resolution
thermal camera, was used in this study. It has a thermal
resolution of 160x120 and an RGB camera resolution of
1440x1080. FLIR One Pro image acquisition and storage
were performed using a custom Swift-based app developed
with the FLIR Mobile API on an iPhone.

3.2. Low Cost Thermal Camera Calibration

Radiometric thermal cameras have a logarithmic rela-
tionship between the digital number and temperature [23,
29]. The parameters for converting the digital number to
temperature are stored in the EXIF tag information of the
FLIR radiometric JPEG images. These parameters, which
are pre-calibrated values from the factory, are used to con-
vert the digital numbers of the thermal imaging camera to
temperatures using Equation 1. Upon comparing the factory
parameters of different thermal imaging cameras, it was ob-
served that only the values of R1 and O differed, while the
values of R2, B, and F remained constant. The parameter B
is derived from the Planck constant h and Boltzmann con-
stant kb, and the parameter F value is 1. For the FLIR One
Pro cameras, R2 was fixed at 0.0125, and R1 and O are
empirically calibrated depending on the individual camera.

Temperature (°C) =
B

ln( R1

R2(DN+O) ) + F
− 273.15 (1)

However, the accuracy of these factory parameters can-
not be fully trusted as the manufacturer does not fully guar-
antee the temperature accuracy of the low-cost thermal cam-
eras. To ensure the accuracy of temperature measurements,
it is necessary to recalibrate the parameters of the thermal
imaging camera. Therefore, the optimization process fo-
cused on optimizing the values of R1 and O. The optimiza-
tion was performed using the Nelder-Mead method [24],
which is a widely used optimization algorithm, with a toler-
ance of 1e− 6. The optimization process was implemented
using the ‘scipy.optimize.minimize’ function in Python.

Experiments were conducted to verify the temperature
accuracy of the FLIR One Pro thermal imaging camera.
The surface temperature of a controlled water bath was
measured using a thermocouple with a digital data logger.
The thermocouple measured the temperature starting from
4.0 °C, the initial temperature of the cold water, and reach-
ing 100.0 °C, the boiling point of water. The air temperature
and relative humidity were maintained during the experi-
ment at 24.0 °C and 40%.
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VarioCam HD Head 800 FLIR Boson FLIR One Pro

Spectral Range 7.5 - 14 µm 8 - 14 µm 8 - 14 µm
Detector Resolution 1,024 × 768 640 × 512 160 × 120
Temperature Measuring Range -40 - 2,000 °C Non Radiometric -20 - 120 °C
Measurement Accuracy ±1.5°C or ±1.5% Non Radiometric ±3°C or ±5%
Temperature Sensitivity 30mK 40mK 70 mK
Frame Rate 30 Hz & 60 Hz 9 Hz 8.7 Hz
Dimensions 221 × 90 × 94 mm 21 x 21 x 11 mm 68 × 34 × 14 mm
Weight 1.15 kg 21g 36.5 g
Price (Approx.) $20,000 $4,000 $400

Table 1. Specifications of thermal cameras used in this study
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Figure 2. Comparison between thermocouple, factory, and cali-
brated temperature values in a time series

Figure 2 shows the temperatures calculated using the fac-
tory parameters. The results showed that the temperatures
calculated using the factory parameters were higher than
reference temperatures below 30 °C. However, at tempera-
tures near the boiling point of water, the measured tempera-
tures were almost 20 °C lower than the actual temperatures.
This indicates that the low-cost thermal camera’s tempera-
ture values are inaccurate, especially at high temperatures.

The original and optimized parameters are shown in Ta-
ble 2, and the temperatures calculated using the optimized
new parameters are shown in Figure 2. The temperatures
calculated using the new parameters are more accurate than
the results using the factory parameters, and they are almost
identical to the temperatures measured by the thermocouple
(Figure 3).

R1 B F O R2

Factory 18333.4 1435 1 -2284 0.0125
Optimized 12755.4 1435 1 -6707 0.0125

Table 2. Comparison of factory and lab calibrated parameters
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Figure 3. Comparison between factory and calibrated temperature
values in a 1:1 plot

3.3. Matching Low-Resolution and High-
Resolution Thermal Imaging Cameras

As part of a more extensive set of breeding experi-
ments, Cowpea (Vigna unguiculata L. Walp.) and Common
Bean (Phaseolus vulgaris) images were collected from June
to September 2022 in Davis, California, to obtain high-
resolution and low-resolution thermal images in the field.
To match the low-resolution and high-resolution thermal
imaging datasets, camera calibration was performed to cal-
culate each camera’s intrinsic parameters, and camera ex-
trinsics were also measured. The two cameras were installed
at a height of approximately 1.5m from the ground, and the
distance between the centers of the two camera lenses was
5cm.

However, the high-resolution and low-resolution thermal
images were captured on different platforms at different
frame rates, so matching the two datasets was challenging.
Initially, SIFT [22] feature extraction and matching were at-
tempted, similar to the previous temperature accuracy test.
However, the quality and the number of the extracted fea-
tures in the images sometimes incorrectly estimate the ho-
mography between the low-resolution and high-resolution
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pair, which led to unstable matching and alignment results.
Since the field of view difference between the two im-

ages is only due to the scale difference based on the image
resolution and the transitional offsets caused by the capture
timings, template matching [27] was performed to robustly
match the images by setting the high-resolution image as
the template image T and calculating the Normalized Cross
Correlation (NCC) [6] between the template image and the
low-resolution image I , finding the coordinates x∗ and y∗

where the NCC value was maximized, and resizing the tem-
plate image to a predefined scale for this process.

R(x, y) =

√ ∑
x′,y′(T (x′, y′)− I(x+ x′, y + y′))2∑

x′,y′ T (x′, y′)2 ·
∑

x′,y′ I(x+ x′, y + y′)2

(2)

(x∗, y∗) = argmax0≤x<M
0≤y<N

R(x, y) (3)

The template matching was performed using Python
OpenCV code. Figure 4 illustrates matching the low-
resolution and high-resolution thermal imaging cameras.
For cases where the NCC value was 0.75 or higher, the
bounding box was calculated and limited to the area within
the padding of the low-resolution thermal image coordi-
nate system. Then, it was converted to the coordinate sys-
tem before resizing the template image. Image cropping
was performed using the original resolution of the tem-
plate and background images. The FLIR One Pro also has
an integrated RGB camera, allowing simultaneous acquisi-
tion of RGB images. Therefore, the RGB images were also
cropped using the Template Matching results.

3.4. Improving Image Resolution by Combining
RGB and Thermal Imaging

In this paper, complementary information from the RGB
image’s structural details and the thermal imaging camera’s
intensity information is utilized to enhance the resolution
of the low-resolution thermal imaging camera. The RGB
and thermal images obtained from the FLIR One Pro have
the same field of view, but they are not perfectly pixel-
aligned due to differences in camera lens position and video
stream delays, which poses a challenge in combining the
two modalities for resolution improvement. We tested deep-
learning based image registration methods such as Spatial
Transformer Networks [19] and Deformable Field-based
approaches [35]. However, those methods tended to learn
a shortcut existing in the dataset, which is a mean offset of
the images rather than the differences between the input im-
ages, resulting in unstable experimental results.

Therefore, a template matching method based on image
intensity was employed to align the domain-transformed
image and the thermal image, which yielded more stable

results compared to other methods. Figure 5 illustrates the
input RGB image, the RGB-to-thermal image translated by
Cycle GAN, and the low-resolution thermal image to be
aligned. Inspired by the approach of Arar et al. [3], the RGB
image was first translated to the thermal imaging camera’s
domain using Cycle GAN [34]. Then, template matching
was performed between the domain-translated RGB image
and the input low-resolution thermal image. The maximum
correlation value was calculated based on the image convo-
lution operation from one image to another, which can be
hardware-accelerated and integrated into a super-resolution
module using PyTorch.

After aligning the domain-transformed RGB image with
the thermal image, the original RGB image was also trans-
formed using the alignment result. Subsequently, the RGB,
domain-transformed, and low-resolution thermal images
were combined and inputted into a ResNet-based Convolu-
tional Neural Network (CNN). The output image was then
fed into a Discriminator CNN for Generative Adversarial
Network (GAN) training. This architecture is depicted in
Figure 1, referred to as VisTA SR.

Except for CycleGAN [34] and Template Matching, the
implementation followed that of SRGAN [21] and ESR-
GAN [31], and the loss function used is as follows:

Cycle Consistency Loss [34]:

lCycle
Consi = |IRGB −GIR2RGB(GRGB2IR(IRGB))| (4)

Identity Loss [34]:

lCycle
MSE = ||IHR −GRGB2IR(IRGB)|| (5)

MSE Loss [21, 31]:

lSR
MSE = ||IHR −GSR(ILR, IRGB)|| (6)

Content Loss ([21, 31]):

lSR
VGG = ||ϕVGG(IHR)− ϕVGG(GSR(ILR, IRGB))|| (7)

Adversarial Loss [21, 31]):

lSR
Adv = − logDSR(GSR(ILR, IRGB)) (8)

Total Loss:

ltotal,G = (lCycle
Re + lCycle

MSE ) + (lSR
MSE + lSR

VGG + αlSR
Adv) (9)

4. Results
4.1. Low-Cost Thermal Camera Field Validation

with High Fidelity Thermocouple Camera

Field data was collected to validate the temperature ac-
curacy of the low-resolution thermal imaging camera in a
real-world environment with crops and soil. The data was
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collected in the Garbanzo bean (Cicer arietinum) field lo-
cated in Davis, California. The ground truth temperature
values were measured using a VarioCAM HD camera and
compared with the temperature measured by the FLIR One
Pro thermal camera, and a total of 170 image pairs were col-
lected on April 5, 2022. Image feature points were extracted
from both images using the SIFT [22] feature extractor, and
they were matched using the Flann matching algorithm [1].
Then, the homography between the two images was calcu-
lated, and outliers were removed using the RANSAC algo-
rithm [12]. As a result, the temperature values from the cor-
responding points in the two images were compared (Figure
6).

The matching result for the 170 image pairs is shown in
Figure 7, and Table 3 summarizes the results. It indicates
that the temperature measurement accuracy was improved
from R2 = 0.86 to R2 = 0.89 after calibration, and the

Figure 6. An example of feature matching based temperature com-
parison between FLIR One Pro and VarioCam HD Camera

Root Mean Square Error (RMSE) was also improved from
1.52 °C to 1.40 °C. Since using the factory parameters tends
to overestimate the temperature when it is below 20 °C, as
shown in Figure 3, the temperature values obtained using
the factory parameters in Figure 6 also showed higher tem-
perature measurements than the actual temperatures.

Table 3 also indicates that when calculating RMSE and
R2 using only data between 15 °C and 30 °C, the tempera-
ture measurements with calibrated parameters showed bet-
ter accuracy. Considering the typical leaf temperature of
plants, the accuracy within this temperature range is cru-
cial for thermal cameras used in agriculture. Therefore, the
thermal camera calibration in this study demonstrates the
potential to enhance temperature measurement accuracy in
agricultural research.

4.2. VisTA SR Result

In 2022, a total of 2612 image pairs were collected from
a warm-season grain legume field across the growing season
by matching low-resolution(160x120, FLIR One Pro) ther-
mal images with high-resolution (640X512, FLIR Boson)
thermal images. 80% of these pairs were used as training
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Plotted all matched temperature points for a total of 170 images

All data 15 °C - 30 °C
R2 RMSE (°C ) R2 RMSE (°C)

Factory 0.86 1.52 0.83 1.52
Calibrated 0.89 1.40 0.86 1.39

Table 3. Low-cost thermal camera (FLIR One Pro) temperature
accuracy validation result before and after parameter calibration

data, while the remaining 20% were used for validation. The
network was trained over 200 epochs with a batch size of
4. Figure 8 demonstrates the image conversion quality and
image alignment performance of the CycleGAN module,
which was trained simultaneously with the SR Network.
As depicted in the example images, CycleGAN success-
fully translated the image domain and template matching
successfully aligned low-resolution thermal images based
on image intensity.

Figure 9 presents the results from the multiple input im-
age scales obtained from the VisTA SR algorithm using
the input of the combined RGB image aligned with Cy-
cleGAN and Template Matching, compared to the results
of the Super-Resolution Generative Adversarial Network
(SRGAN) algorithm [21, 31] that utilizes only the exist-
ing thermal image modality. Our VisTA-SR demonstrated
higher sharpness by leveraging higher-frequency structural
information from the RGB image. This demonstrates that
VisTA-SR improved the performance of capturing thermal
properties of smaller features at the organ level, as opposed
to the plant level.

Table 4 compares the performance of Bilinear interpo-
lation, Super-Resolution Generative Adversarial Network
(SRGAN), and our proposed VisTA SR algorithm, where
the Bilinear interpolation method exhibited the highest Root
Mean Square Error (RMSE) but the highest Structural Sim-
ilarity Index (SSIM[32]) and the lowest Peak Signal-to-

Noise Ratio (PSNR), while SRGAN and VisTA SR demon-
strated similar performance with an RMSE of 2.75 °C. It
can be inferred that the higher RMSE value of the Bilin-
ear algorithm is because SRGAN and VisTA SR learned the
temperature distribution of the training dataset, and Bilin-
ear’s higher SSIM value is believed to be a result of the orig-
inal dataset already being aligned with the template match-
ing process. Additionally, SRGAN showed a higher PSNR
value than VisTA SR, but VisTA SR exhibited excellent vi-
sual quality, indicating that evaluating the performance of
the Super-Resolution (SR) algorithm solely based on these
image metrics is not ideal.

Technique RMSE (°C) SSIM PSNR

Bilinear 2.84 0.74 23.84
SRGAN[31] 2.74 0.63 24.26
VisTA SR (Ours) 2.75 0.63 23.67

Table 4. RMSE, SSIM, and PSNR comparison of Bilinear, SR-
GAN, and VisTA SR algorithms

5. Conclusion & Future Work

This paper proposes a method to enhance temperature
accuracy and image sharpness using a low-resolution ther-
mal imaging camera for agricultural image acquisition.
First, we conducted a calibration process to improve the
temperature accuracy of the low-resolution thermal imag-
ing camera, followed by field experiments for validation. It
is confirmed that the temperature accuracy improved when
using the calibrated parameters. We propose the VisTA-SR
algorithm for converting low-resolution thermal images to
high-resolution ones by aligning and combining RGB and
low-resolution images. Through such improvements in tem-
perature accuracy and image sharpness, we will be able to
detect small temperature differences between crop tissues
or parts, and analyze them in relation to genotypes, growth
environments, growth stages, and various other factors.

One limitation was the difficulty of evaluating the per-
formance of super-resolution algorithms in agricultural data
using existing image metrics. Since most super-resolution
studies generate low-resolution images by down-sampling
the high-resolution images. In this case, the pixels of
the low-resolution and high-resolution pairs are perfectly
aligned, so the image metrics are proportion to the al-
gorithm’s super-resolution performance. However, in our
study, low-resolution thermal images were actually col-
lected with high-resolution images. Therefore, the output
result of our algorithm from low-resolution input may not
have a perfect pixel match with the high-resolution image.
Considering the characteristics of those image metrics that
change significantly even by a few pixel changes, it can
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Figure 8. Input low-resolution images, domain translated images, and aligned images using CycleGAN and template matching

Figure 9. Comparison of input RGB, low-resolution thermal im-
age input, SRGAN[21] output in multiple image scales (64x64,
128x128, and 256x256), VisTA-SR output, and ground truth high-
resolution thermal image

be inferred that the image evaluation metrics used in Ta-
ble 4 reflected errors derived from multiple camera systems
problem, even if the VisTA-SR had excellent visual quality
result than others. However, from an agricultural research
perspective, temperature accuracy and the ability to detect
plants are important for understanding their complex bio-
physical characteristics. In other words, developing special-
ized thermal image metrics for agricultural data that reflect

these features for performance evaluation in future research
is necessary. In future studies, we will examine whether
the thermal image improvement algorithm maintains, im-
proves, or hallucinates temperature information in thermal
images. Also, using the thermal images processed with the
algorithm developed in this paper, we will estimate biophys-
ical parameters such as stomatal conductance in plants and
compare accuracy with original and high-resolution image
inputs.
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gencio Soto-Valles, Manuel Jiménez-Buendı́a, Honorio
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