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A. Appendix
A.1. Image collection

All SkySat images were downloaded using the Planet Python
SDK. This process includes account authentication, creating
a session to call Planet servers, creating an order request,
and downloading the order when it’s ready. For our analysis
we downloaded SkySat Collects, which are approximately
50-70 SkySat Scenes and 20 x 5.9 square kilometers in size.
Collects were subsetted differently based on their use case.
Images used for inference were produced by subsetting en-
tire Collects into 512 x 512 pixel sized areas. Images that
were partially empty were thrown away. Unlike PlanetScope,
SkySat has very limited spatial and temporal availability, lim-
iting our choices to specific regions of Tigray and Amhara.
We addressed this issue while maintaining our quota by di-
versely sampling areas in Tigray and Amhara. All of our
images were originally stored in different folders in Google
Drive based on region and time, but were later merged into
one folder while still maintaining temporal and spatial infor-
mation.

A.2. Accessing the dataset

The dataset is made partially accessible through
this link https : / / figshare . com / s /
45a7b45556b90a9a11d2. The labels and PlanetScope
images will be shared, but unfortunately we cannot release
the SkySat images due to Planet Labs’ licensing require-
ments which would render the labels useless. Additionally,
the benchmark code can be found on GitHub: https:
//github.com/jonxuxu/harvest-piles.

We provide the dataset in a .zip folder structured as fol-
lows:

Dataset
|- planetscope_images/
|- lables_all.csv
|- train.csv
|- test.csv

A.3. Computational resources

We trained our models on a single NVIDIA GeForce RTX
2080 Ti GPU with a fixed seed. MOSAIKS was trained with
3 different seeds and the average of these seeds was reported.
The Swin masked autoencoder was pretrained on the task of
reconstructing masked patches, and the model converged in
23 hours. The pretrained models were fine tuned for at most
5 hours.

A.4. Training parameters

In Appendix Table 1, we outline the different hyperparame-
ters of the deep models we used. Our models were all trained
for 200 epochs, and the epoch count where they converged
is recorded in the table. All other unlisted parameters were
set to their defaults.

A.5. Split counts

In Appendix Table 2, we provide counts for each train test
split in both Tigray and Amhara, we also show counts of
positives and negative examples in each split.

A.6. Ablation studies

In this section we explore the impact of various hyperparam-
eters on the performance of models trained on HarvestNet.

ResNet-50 was trained using fp16 mixed precision, using
the one cycle lr learning rate scheduler with a learning rate
of 0.001.
We first modified the default Satlas model by modifying its
final projection layer output dimension from 1000 to 1, and
appending a sigmoid layer on top.
We then modified the default Satlas model by appending an
FC layer with input dimension 1000 and output dimension
1 to the model, and appending a sigmoid layer on top. This
performed better, which we believe is due to the fact that
appending a layer maintains of the the latents learned in the
pretrained weights.

A.7. Dataset distribution

In Appendix Figure 1, we show distributions of latitude,
longitude and altitude on train, test sets as well as on the
entire labelled set and unlabelled set. One notable feature
of the dataset is that for each bucket in the histogram, there
is a roughly equal number of positive and negative labels.
Moreover, the ratio of train to test is also around 80:20 in
all buckets. Most of our labelled altitude was between 500-
1000m, this is because we were targeting lowlands, since
previous work [1] had errors in lowlands in particular.

A.8. Examples of harvest piles

In Appendix Figure 2 and Appendix Figure 3 we provide
more examples of harvest activity.

A.9. Ground truth collection

During February and March 2023, we sent teams of six indi-
viduals to Tigray and Amhara regions respectively to collect
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Figure 1. Statistics of HarvestNet dataset distribution



Table 1. Hyperparameters of models trained on HarvestNet

Model Batch size Scheduler Learning rate Training steps Convergence epochs
Satlas 50 Warmup cosine 3e-4 6000 55
SatMAE 64 Warmup cosine 3e-4 2500 29
Swin Autoencoder 50 Linear 1e-3 4500 40
ResNet-50 32 One cycle 1e-3 2600 15

Table 2. Split counts for the train and test set, based on region and label

Tigray Amhara Positives Negatives Total
Train 4737 795 2547 2985 5532
Test 1171 212 608 781 1383

ground truth data. These teams had diverse backgrounds:
Tigray’s team included staff from Mekelle University’s De-
partment of Dryland Crop and Horticultural Sciences and
Department of Land Resources Management and Environ-
mental Protection, and staff from the College of Agriculture
and Natural Resources in Mekelle, Tigray. The Amhara team
was comprised of staff from the Irrigation and Lowland Area
Development Bureau in Bahir Dar, Amhara.

To gather data, the teams used handheld GPS devices, rental
cars, pens, notebooks, and laptops for encoding. Guided by
a map featuring available SkySat images in the 2022 harvest
season, the team selected sites near roads for accessibility.
Local farmers played a vital role in locating harvest pile sites.
Importantly, no gathered data was discarded throughout the
process. The data collection spanned about a month.

Both regions encountered unique challenges. In Amhara,
farmer hesitation stemmed from fears of losing land to non-
agricultural industries. There was also a prevailing distrust
regarding the purpose of the collected data, given the signifi-
cance of harvest piles for livelihoods.

Tigray presented a unique set of challenges. Many of the
chosen sites had been active battlefronts in recent years,
carrying high risks of unexploded bombs. Additionally, the
team faced instances of dog attacks, particularly prevalent
in the Central zone where dogs had not received vaccina-

tions for approximately two years due to the conflict. Since
the troops had not yet left Tigray territory, the team faced
exposure to troops from Amhara and Eritrea. There were
also snake attacks in areas like the Menji-Guya line. The
security situation was precarious and frightening during the
field work.
Appendix Figure 5 illustrates the geographical distribution of
the 2,296 data collection points acquired by our survey team.
These points span across the Tigray and Amhara regions.

A.10. I. Closeup of ESA comparison

In Appendix Figure 6 we show close up examples of the
locations in squares shown in Figure 9a, overlaying the ESA
map in pink.

To accurately determine the additional cropland area pro-
jected by our model, we employed a systematic process.
Surrounding each prediction point generated by our model,
we established bounding boxes measuring 256x256 meters.
Within these boxes, we evaluated the extent of coverage by
the ESA cropmask, specifically targeting positive bounding
boxes. If a given box had an ESA cropmask coverage of 20
percent or less, we classified it as newly predicted cropland
by our model. For the shared cropland area recognized by
both our model and ESA, we summed the areas of positive
squares exhibiting an 80 percent or higher overlap with the

Table 3. ResNet-50 Ablations

Pretrain Optimizer Accuracy AUROC Precision Recall F1-Score
None Adam 65.05 69.31 60.00 60.41 59.34

IMAGENET1K V2 Adam 79.18 87.23 79.04 71.75 74.19
IMAGENET1K V2 MADGRAD 79.85 88.45 80.34 72.65 75.65

Table 4. Satlas ablations

Variation Accuracy AUROC Precision Recall F1-Score
Modify pretrained output layer 64.78 60.08 82.76 24.00 37.21

Append new output layer 67.17 62.47 80.0 30.61 44.28



Table 5. Swin ablations

Freeze pretrained Accuracy AUROC Precision Recall F1-Score
Yes 70.10 68.57 68.28 57.43 62.37
No 80.87 80.15 79.88 74.79 77.23

Figure 2. Examples of harvest piles at various stages, circled in red

ESA cropmask. Employing a similar methodology, we iden-
tified non-cropland areas mutually disregarded by both our
model and ESA, by tallying the area of negative squares with
an ESA cropmask coverage of 20 percent or lower.

A.11. Partition assignment code

The code for assigning partitions is described in Appendix
Listing 1.

A.12. Labelling procedure

We conducted a labeling procedure with the primary objec-
tive of optimizing accuracy and leveraging expert knowl-
edge, while simultaneously expanding the scale of our la-
beled dataset. In Stage 1: knowledge distillation (Appendix
Figure 4), we (coauthors) did a walkthrough of some ex-
amples guided by experts to familiarize ourselves with the
appearance distribution of positive and negative examples of
harvest piles. In Stage 2: high bandwidth labeling we focused
on transferring a foundational proficiency to teach public
labellers how to detect trivial examples of harvest activity. To
achieve this, we instructed labellers by presenting multiple
illustrations depicting harvest-related activities highlighted
in red circles, of the same composition as shown in Ap-
pendix Figure 2. The illustrative samples were intentionally
broad in classifying harvest piles; for instance, even strictly
negative cases such as plastic tarps concealing sesame and
accumulations of harvest remnants repurposed as animal

feed were presented as affirmative instances of harvest piles.
This inclusive approach was done to minimize false negative
labels.
In Stage 2 we used public labellers to relabel 3792 negative
examples that were previously labelled by coordinators but
denoted by experts to have many false negatives. To pro-
mote dataset quality while minimizing costs, each image
was presented to two labellers, who gave a binary label after
reading the instructions. Details about the batch job are listed
in Appendix Table 6. We chose to increase the quality of our
workers by setting minimum requirements for their historic
task approval rate and count.
It is interesting to note that our entire batch job was com-
pleted within 4 hours and 45 minutes. The efficiency of
MTurk’s crowd-sourced labeling capacity open the prospects
of automated quality control in significantly enhancing our
labeling throughput.
By the end of the crowdsourced labelling step, we had 3792
SkySat images, each labelled by two labellers. For 437 of the
images, the labellers both agreed the image did not contain
piles. For 1708 of the images, the labellers agreed the image
contained piles. For the remaining 1647 images where the
labellers did not agree, we (the coauthors and project coordi-
nators) manually labelled the images again, using our better
knowledge of the appearance of harvest piles on SkySat im-
ages. After our manual pass through, we had 1997 positively
labelled images and 1795 negatively labelled images.



Table 6. Labelling Job Details

Task details Job completion status
Reward per assignment $0.01 Assignments completed 7584

Number of assignments per task 2 2 Average time per assignment 8 min 24 sec
Time allotted per assignment 1 hour Creation time June 30, 2023 9:56 AM PDT

Task expires in 2 days Completion time June 30, 2023 2:40 PM PDT
Auto-approve and pay workers in 3 days

Worker Requirements Cost summary
Require workers to be masters No Total reward $75.84

HIT approval rate % Greater than 98 Fees to Mechanical Turk $75.84
Number of HITs Approved Greater than 50 Total cost $151.68

The 1997 positively labelled images were then sent to Stage
3: Expert QA. Here, our subject experts manually reviewed
each image that we decided were highly probable candidates
for positive examples of harvest piles. After review, 341 of
the 1997 images were labelled as positives, and the remain-
ing were labelled as negatives. When we combined these
updated labels with our dataset, we ended up with our current
labelled dataset of 2547 positives and 2985 negatives.
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Figure 3. Additional examples of harvest pile activity, randomly selected



Figure 4. Labelling diagram

Figure 5. Ground truth collection zones in Tigray(left) and Amhara(right)
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Figure 6. Close up view of ResNet-50 model predictions overlaid on top of ESA map



Listing 1. Contiguous shape group partitioning algorithm

# C re a t e a graph w i t h r e c t a n g l e s as nodes and o v e r l a p s as edges
import pandas as pd
import os
import ne tworkx as nx
from s h a p e l y . geomet ry import box
from s h a p e l y . s t r t r e e import STRtree

d f = pd . r e a d c s v ( os . p a t h . j o i n (FOLDER PATH , ” m e r g e d l a b e l l e d . csv ” ) )
d f = df . i l o c [ : , 1 : ]

G = nx . Graph ( )

# C re a t e sha pe s and nodes
def c r e a t e r e c t a n g l e ( row ) :

re turn box ( row [ ’ l a t 2 ’ ] , row [ ’ l o n 1 ’ ] , row [ ’ l a t 1 ’ ] , row [ ’ l o n 2 ’ ] )

geomet ry = [ ]
f o r index , row in df . i t e r r o w s ( ) :

G. add node ( i n d e x )
geomet ry . append ( c r e a t e r e c t a n g l e ( row ) )

t r e e = STRtree ( geomet ry )

# Add edges f o r each o v e r l a p p i n g box
f o r idx , shape in enumerate ( geomet ry ) :

f o r i n t e r s e c t i n g in t r e e . que ry ( shape ) :
i f not shape . t o u c h e s ( geomet ry [ i n t e r s e c t i n g ] ) and i d x != i n t e r s e c t i n g :

G. add edge ( idx , i n t e r s e c t i n g )

c o n n e c t e d c o m p o n e n t s = l i s t ( nx . c o n n e c t e d c o m p o n e n t s (G) )
g r o u p s o f r e c t a n g l e s = [ l i s t ( component ) f o r component in c o n n e c t e d c o m p o n e n t s ]
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