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Abstract

Building and maintaining High-Definition (HD) maps
represents a large barrier to autonomous vehicle deploy-
ment. This, along with advances in modern online map de-
tection models, has sparked renewed interest in the online
mapping problem. However, effectively predicting online
maps at a high enough quality to enable safe, driverless de-
ployments remains a significant challenge. Recent work on
these models proposes training robust online mapping sys-
tems using low quality map priors with synthetic perturba-
tions in an attempt to simulate out-of-date HD map priors.
In this paper, we investigate how models trained on these
synthetically perturbed map priors generalize to perfor-
mance on deployment-scale, real world map changes. We
present a large-scale experimental study to determine which
synthetic perturbations are most useful in generalizing to
real world HD map changes, evaluated using multiple years
of real-world autonomous driving data. We show there
is still a substantial sim2real gap between synthetic prior
perturbations and observed real-world changes, which lim-
its the utility of current prior-informed HD map prediction
models.

1. Introduction

Large scale autonomous driving has long been a mile-
stone for the robotics community and has been pursued for
well over a decade now. Perception and mapping systems
have formed core components of self driving systems, and
mobile robots more generally, enabling comprehension and
understanding of the world around them [10, 39]. In the
field of mobile robotics, the goal of mapping systems at a
high level is to predict semi-static geometry and affordances
in a scene, i.e. elements of the world that rarely change
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(a) Camera View Before Change.

(b) Camera View After Change.

(c) Example Map Before Change (d) Example Map After Change

Figure 1. A real-world map change from an autonomous vehi-
cle dataset. In this paper we investigate which synthetic perturba-
tions applied to a simulated prior map at training time best model
areal prior map (left) for training a prior-informed online mapping
model to produce the updated map (right), evaluated using a vast
collection of real-world changes gathered over multiple years of
autonomous vehicle operation.

over time. These semi-static elements are traditionally en-
coded with human labeled “High Definition” (HD) maps
built atop a high resolution geometric world reconstruction
utilizing many overlapping trajectories. Reducing this cost
within the context of self driving would increase scalability,
cost effectiveness, and robust safety. However, accurately
and consistently constructing online HD maps from sensor
data at sufficiently long ranges to facilitate safe, fully au-
tonomous driving has proven challenging (outside of high-
ways and simple road scenarios which have limited topo-
logical or geometric complexity).
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Despite this, in the last few years, there has been a resur-
gence of interest in this problem. Equipped with modern
machine learning techniques [7, 30], architectures [6, 8, 45],
and open datasets [5, 47], the field has begun to pivot to-
wards this online mapping approach as performance on
other previously out of reach perception tasks has become
more compelling. While exciting, the challenge of predict-
ing highly accurate HD maps at suitable ranges remains,
and the majority of recently published research on online
mapping degrades in prediction performance with range
from the vehicle.

One response to this problem, and one explored by con-
current work in [43], is integrating offline, potentially out
of date or inaccurate HD Map priors into the prediction of
online features. This is particularly compelling because low
quality, out of date HD maps or sparse, low resolution Stan-
dard Definition (SD) maps are often available or cheaply la-
beled, and maps of roads are generally slow to change over
time. The result would be a model that only rarely has to
perform full online mapping, but most of the time is acting
to clean up the discrepancies between the prior and reality.

A major caveat is that real world examples of meaning-
ful map changes are relatively rare, even from the point of
view of large, industrial deployments [15]. To step around
this issue, MapEX [43] instead proposes that one could use
synthetic mutations of labels to imitate these map changes
over time. This allows one to generate a virtually limit-
less number of map changes to train their model to “fix”
the prior, effectively training a change detection/map repair
model rather than a full online mapping model. While this
almost certainly would not be trained on the same noise
distribution as real changes in the world, one would hope
that sufficiently diverse perturbations of the prior map in
training would minimize the sim2real transfer gap by acting
akin to domain randomization [44], where the real distribu-
tion is in the support of the synthetic distribution applied
to the labels. This alternative problem formulation where
we have access to a prior could, in theory, significantly sim-
plify the problem for perception systems, and has empiri-
cally been shown to outperform existing online-only mod-
els [43]. However, the broad applicability of such methods
is predicated on its ability to effectively transfer from syn-
thetic offline perturbation to real world map change events.

In this paper, we aim to answer the following two ques-
tions:

* Does training prior-informed online mapping models on
synthetic prior mutations [43] generalize to real world
map change examples?

» Considering a broad range of prior noise models, how do
mixtures of prior noise models applied in training affect
the generalization performance of these online mapping
models to real world map changes?

In addition, we share details of how our model archi-

tecture differs from existing online mapping models in the
literature to aid in reproducibility of our work.

2. Related Work
2.1. Birds Eye View Perception

3D perception is a core problem in mobile robotics and
computer vision more broadly. The long term trend of 3D
perception has been to leverage large, expressive backbones
[8, 9, 18, 26-28, 41] trained on very large image datasets
[5, 22, 40, 42, 47], to feed high quality image representa-
tions into various heads for specific tasks, such as image
classification [13], object detection [6, 10, 24, 39], semantic
segmentation [2, 48], keypoint estimation [10], and more.
This trend has only strengthened with the rise of very large
models pretrained on largely unsupervised objectives with
internet scale data both within computer vision [32] and out-
side of it [4].

One direction that has advanced considerably in the last
few years is the representation space used for 3D percep-
tion. Early 3D object detection approaches focused on a
couple key approaches: one being detecting and tracking in
2D image space and reprojecting model outputs to 3D space
using geometric information [33], and the other being early
fusion through methods like [46]. With the rise of the use
of LiDAR in mobile robotics perception tasks, efforts were
made to develop better data representations and encoders
for 3D object detection with LiDAR [16, 37, 38, 51]. Be-
cause of the natural 3D geometry of LiDAR data and the ap-
proximately 2.5D worlds that mobile ground robots gener-
ally perceive (i.e., generally much fewer detections coincid-
ing along the z direction than in the x and y directions), the
aforementioned publications cumulatively proposed laying
out LiDAR information as features in a voxel grid repre-
sented as a top down feature image. This topdown repre-
sentation, known as the Birds Eye View (BEV) representa-
tion, has attracted a large amount of attention in perception
for mobile robotics over the past few years. In particular, a
huge number of contributions have sought to develop BEV
representations of other sensors as well so that they can be
simply merged into a single unified feature representation.
For example, much of this research focus has been on de-
veloping expressive BEV feature backbones utilizing both
camera and LiDAR data [18, 28, 36, 50], which then can be
consumed by downstream tasks through a relatively simple,
single BEV image interface.

2.2. Online HD Map Construction

One specific downstream task which has been explored on
top of these BEV models for the task of autonomous driving
is online mapping. Early efforts in online mapping primar-
ily focused on doing semantic segmentation from the per-
spective view of a camera [49], or as a semantic segmen-
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tation problem utilizing a BEV representation [17]. How-
ever, these methods struggle with two key problems: real
world roads often have complex topologies and instance-
level traits which are difficult to represent accurately with
semantic segmentation, and many downstream behavior
planning models (e.g. [31], [11]) consume vectorized map
representations. Indeed, part of the reason why HD maps
are generally labeled as vectorized features is that this re-
moves much of the ambiguity regarding topology and over-
lapping elements and affordances of roads. Thus, it would
be ideal to directly predict vectorized features. Earlier work
identified this requirement, and reframed the polyline pre-
diction problem in a few different ways, i.e. autoregres-
sive transformer approaches [25] or classical, heuristic post
processing of semantic segmentation [17]. A recent line of
work [19, 20] similarly reframed the problem again by mak-
ing the connection that vectorized online mapping can be
represented as an unordered set detection problem, with a
similar problem structure as the one-to-one bijective object
detection transformer described in [6], and reported com-
pelling empirical performance with this approach. This has
sparked a flurry of renewed interest in the online mapping
problem [20, 21, 29]. The work most related to ours is the
concurrent work of MapEX [43] which proposes to add low
quality HD map priors as inputs to MapTR [19] to improve
detection performance despite occlusion or changes in the
underlying map, attempting to solve the well known map
change problem. This provides an alternative avenue for
solving the change detection problem: rather than main-
taining an up to date map, one can instead train a model
to leverage both sensor data and out of date HD map data
to reconstruct an accurate, live representation of the world
around it, enabling lifelong deployment of mobile robots
with significantly lower HD map maintenance expense.

3. Methodology
3.1. Map Detection Head

To predict vectorized map features, we follow in the foot-
steps of MapTR [19, 20] with a Deformable DETR [52]
based polyline detection model, with one query per control
point where this query is the sum of a per polyline embed-
ding and a per point embedding as in [19]. In the follow-
ing sections, we will primarily describe places where our
methodology diverges from existing literature to aid in re-
producibility of our results.

3.2. Single Stage Bipartite Matching Loss

We forgo the two-stage hierarchical matching loss from
MapTR [19] and instead utilize a simpler one stage bi-
partite loss by computing a pairwise loss matrix before
computing the bipartite matching itself. To do this, we
first compute a set of loss tensors to model the positional

error and the permutation symmetries introduced in [19].
We will use an indexed matrix notation to define the con-
structed tensors used to compute the losses, where & €
R™pred XTpoints XPdim ig the prediction from the decoder
transformer, where my,;.cq is the maximum number of pre-
dictions, 7points is the number of control points in every
polyline, and pg;.,, is the dimensionality of each control
point. Similarly, z € R™gtX"points XPdim g the ground
truth polyline tensor padded with no-object classes to al-
ways have mg; objects to match to, where mg; is the max
number of ground truth labels for a given frame. Since
Mpred 18 fixed, we set Myreq = Mmge. Following this, we
construct our loss matrices in the general form

Lpap, :[Ic(j) Anin > NP &g — w0 ] y (1)
a ¢ "l i,

where

QC — {Pa|Pa c MmpTed mered)

P, € valid permutations for class c} (2)

is the set of valid permutation matrices for a given invari-
ance class ¢ € {polygon, undirected polyline, directed
polyline} and

3)

) 1 Invariance Class(j) = ¢
I.(j) = . G)
0 otherwise

is a masking function which sets the jth ground truth la-
bel loss row to all O if the ground truth loss is not of
that invariance class. As in [19], the valid permutations
of polygons represent the set of all shift permutation maps
with the polyline indexed in both directions (clockwise and
counter-clockwise). Similarly, the valid set of permuta-
tions for undirected polylines is only swapping directions
of the polyline and is simply the identity permutation for
directed polylines. Using an actual permutation matrix
would be computationally expensive, but these can be im-
plemented inexpensively using t£.roll, tf.reverse,
and t£.tile operations in Tensorflow [1] or similar op-
erations available in most any comparable differentiable ar-
ray computation library [3, 34]. Note that we optionally
also add a scaled pairwise cosine similarity loss from [19]
to this as well, though our experience suggests that weight-
ing cosine similarity much lower than the pointwise posi-
tional loss helps with convergence when using this single
step training objective.

With these 3 loss matrices, we can construct a single
stage point2point matrix loss as:

Epr(i"a T) = Lp2p, (2, x)+£p2m (2, $)+£p2pp (&,2) (4)

where Ly, , Lpap,, and Ly, refers to the resulting pair-
wise loss matricies for each invariance class, those being
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Figure 2. Overall architecture of our model, heavily influenced by [19, 43]. See these references for more details on implementation.

undirected polylines, directed polylines, and polygons re-
spectively. Note that the resulting per batch polyline local-
ization error matrix includes the pairwise positional error
between every ground truth and predicted polyline, where
each pairwise positional error is computed with the loss
minimizing prediction permutation which is valid for a
given pair’s label. This matrix is identically O for any no-
object ground truth class row, and correctly masks invalid
permutations from matching with any given label as defined
by the label’s invariance class. We can then utilize a pair-
wise focal classification loss [23] matrix £ f,¢q; of a similar
construction and sum them into a single loss matrix

‘Cpai'rwise (-%7 1’) = W Efocal ({)A’," l’) +wp . AC;Dointhm’nt ({)A’," l’)

(&)
where w.,w, € R are weighting terms to each respective
loss type. With this full pairwise loss matrix, we can solve
for the minimum loss label/prediction assignment using the
Hungarian Algorithm [14] and directly sum up the resulting
optimally matched losses rather than doing a hierarchical
matching as in [19]. This should result in a similar final
cost function, but performing Hungarian matching directly
on the final losses ensures there is no divergence of ob-
jectives between point-wise and polyline-wise convergence
and simplifies training code.

3.3. Map Tokenizer and Prior Integration

To incorporate an HD map prior, we use a map tokenizer
similar to [43]. The map tokenizer is a lightweight learned
module that converts an unordered set of polylines into to-
kens, the language of transformers (see Fig. 2). We want

these tokens to encode as much useful information from the
prior as possible, including both point-level and polyline-
level information. We take inspiration from the idea of hi-
erarchical queries in MapTR [19], and we set the tokens
equal to the sum of a point token and an aggregated poly-
line token derived from the point tokens. The point tokens
are generated using a Multi-Layer Perceptron (MLP) over
the point coordinates, where this MLP is shared across all
points. The polyline tokens are generated by max pooling
over point tokens, concatenating this with a one-hot class
vector, and passing through another MLP which is shared
across all polylines. This weight-sharing scheme preserves
permutation invariance among polylines, and the max pool-
ing is a lightweight way to aggregate information.

One important case to handle is when mprior < Mpred,
where Mo, is the number of prior polylines, which is al-
most always the case. If we just naively add padding to the
end of the prior up to my,¢q, then some of the positional
encodings in the transformer decoder will always be associ-
ated with a prior while some will almost never be associated
with a prior, which could cause undesirable biases. To mit-
igate this, we shuffle the prior tokens after adding padding
so that padding is effectively inserted randomly.

Once we have converted the prior into tokens, we still
need a way to consume these tokens. One approach is to
add an extra cross-attention step to the decoder layer that at-
tends to these tokens. In this formulation, the prior is simply
another modality to attend to, in addition to the BEV em-
bedding. However, we found that this approach failed ba-
sic overfitting experiments. We suspect that cross-attention
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does not provide enough bandwidth for the model to incor-
porate the prior as strongly as it should, especially with a
limited number of decoder layers.

Another approach is to directly replace the fixed hierar-
chical queries in MapTR [19] with these prior tokens. This
formulation has a nice intuitive interpretation—the prior to-
kens provide the initial estimates, which are then refined
through several decoder layers by attending to the BEV em-
bedding to come up with a posterior. We found that, when
tested against synthetic map perturbations, this approach
works better and has more stable training, which is con-
sistent with the approach in [43], and thus is the approach
used in all of our results.

3.4. Types of Perturbations

We implement a number of synthetic map prior perturbation
types, expanding on the experiments from [43]. These can
be roughly classified as discrete mutations which change the
number or types of polyline features, or continuous, warp-
ing mutations which change the position or shape of the fea-
tures (see Fig. 3). Ultimately the goal of all these mutations
is to prevent the trained model from simply passing through
the vectorized polyline prior features while completely ig-
noring sensor observations.

3.4.1 Discrete Mutations

The primary goal of discrete mutations is to capture map

changes to a scene which cannot be fully characterized sim-

ply by warping the geometries of the underlying features,
and are more similar to a discete Bernoulli distribution of
something about a map feature that has or hasn’t changed,

such as the class of a feature or the number of features in a

scene.

e Feature dropout (Fig. 3b) — We use a full feature dropout
mutation to model large scene changes or incomplete
labels. We drop out each feature in the scene with a
Bernoulli distribution with equal probability across each
feature.

» Feature duplication (Fig. 3c) — We use a feature dupli-
cation mutation to model accidental label duplication, as
well as to model large scene changes when mixed with
warping perturbations which will warp each duplicated
feature in a different way. This mutation works by again
using a Bernoulli trial for each existing polyline feature,
and truncating the newly added features to a maximum of
Mpreq features.

* Wrong class (Fig. 3d) — We use a wrong class muta-
tion which, again by Bernoulli trial, mutates each poly-
line’s class with some probability to a random other class.
This has similar goals as previous mutations of decreas-
ing model reliance on the prior, but is the only mutation
which corrupts class information, modeling mislabeled

features as well as map change events such as repainting
of lines or the addition of new lanes.

3.4.2 Continuous, Warping Mutations

To complement our discrete mutations of category and car-

dinality, we also introduce a number of continuous, geome-

try warping mutations. Note that each of these are parame-
terized by a standard deviation which scales the variance of
the resulting noise.

* Control point perturbation (Fig. 3e) — This is a simple
per-control-point zero-mean Gaussian shift to help ensure
the model cannot simply pass through the prior as an iden-
tity function.

» Feature location perturbation (Fig. 3f) — We hypothe-
size that the model may relatively easily overcome con-
trol point perturbation by simply smoothing out the prior
rather than attending to sensor data, so we also use a zero-
mean Gaussian per-feature location perturbation.

* Global rotation and shift (Fig. 3g) — We apply Gaus-
sian perturbations to global yaw and position to simulate
robot localization errors. We also hypothesize that even
per-feature location perturbation may be relatively easily
overcome by the model through self-attention without at-
tending to sensor data, but this localization mutation can
only be inverted by leveraging sensor data.

* Perlin warp (Fig. 3h) — We generate two 2D Perlin noise
[35] images utilizing fractional Brownian motion [12],
one each corresponding to warping x and y coordinates,
and then renormalize the resulting noise distribution to be
zero mean. We then sample from this image at the coor-
dinates of the control points of the polylines to get struc-
tured noise. We hypothesize that such correlated warp-
ing will make it harder for the model to learn to sim-
ply denoise the zero-mean noise added to individual fea-
tures, better simulating how curbs, lanes, and lane bound-
aries may all be moved together during a major, real map
change event.

4. Experiments
4.1. Real-World Change Examples

To generate a large set of real world map change examples,
we leverage an internal map database to generate a region
change diff between a 2020 version of our internal HD map,
and that same map from 2023. We only include changes to
the map significant enough that they required a recollect of
data in the area and subsequent changes to the HD semantic
map. We then mine for 30 second scenes collected in the
second half of 2023 which intersect these regions of change
and occur after all computed map changes. To dump data
for these scenes, we obtain the prior from the 2020 map ver-
sion and the ground truth labels from the map version at data
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(e) Control point perturbation. (f) Feature location perturbation.
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Figure 3. Types of perturbations. Note that Fig. 3¢ looks the same as Fig. 3a since features are exactly duplicated.

collection time in 2023, something not available from pub-
lic change detection datasets [15] to the best of our knowl-
edge. With this approach, every scene mined contains some
change in the HD map of varying severity.

4.2. Experiment Setup

We perform all experiments with a BEV backbone similar
to [28] with pre-trained LiDAR and camera BEV feature
extractors which are trained for general perception tasks.
We train each model for 75K steps on 32x Nvidia A100s
on a large internal dataset collected from Houston, TX and
Mountain View, CA (>13.7K scenes, >822K unique train-
ing frames), with a 90m square field of view centered on the
vehicle and four different feature types: lane centers, lane
dividers, road boundaries, and driveways. For evaluation,
we utilize two major types of datasets, a synthetic evalua-
tion set and a real world change dataset. First, for the syn-
thetic evaluation set, we use a geographically split holdout
test dataset (>3.3K scenes, 198K unique test frames) with
low levels of synthetic prior noise utilizing all presented
mutations (0.1m Std. Dev. for continuous warping muta-
tions, and 0.1 probability for discrete mutations). Then, for
real world change data, we mine a holdout test set (1240
scenes, 74k unique test frames) of scenes which have under-
gone real world HD map change, and provide an outdated
map prior from multiple years of aggregated map changes
in the geospatial map database as described in Sec. 4.1.
The value of utilizing our internal dataset is multifold.

For one, it significantly reduces the risk of geospatial over-
fitting of map detection transformers [21] by holding out
large geospatial regions for eval exclusively during the
training and evaluation split. In addition, our dataset is
significantly larger than the majority of open datasets (e.g.
[15]), and is thus able to leverage the scaling behavior of
map prediction models identified in [21] to further mitigate
the noise caused by overfitting. Finally, we provide real
world pairs of outdated and up to date maps, something not
available in [15] as pointed out in [43]. As for metrics, we
compute mean Average Precision (mAP) of predicted poly-
lines using the same Chamfer distance based metrics and
thresholds used in [19].

4.3. Experimental Design

Due to the combinatorial hyperparameter space induced by
so many different parameters, we first train a baseline model
with a small amount of noise for each prior mutation, then
tune each mutation parameter independently. Qualitative
results for the baseline low noise model are shown in Fig. 4.
For the parameter search (Tab. 1, Tab. 2), we start with all
mutations except Perlin warp enabled with a low noise level
(“Low All Noise” in the table), where this low noise level
is identical to the synthetic perturbation distribution (0.1m
Std. Dev for continuous mutations, 0.1 probability of dis-
crete mutations). We then test a number of increased levels
of noise for their performance against the synthetic evalua-
tion dataset as well as the real world evaluation dataset.
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(a) New Driveway Geometry Scene

(e) New Curb Geometry Scene

(i) New Median Intersection Scene

(m) New Road Construction Scene
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Figure 4. Qualitative results handling real world changes. For minor real-world changes, e.g. driveway geometry (a—d) and curb geometry
(e-h), a model trained with prior perturbations correctly predicts changes to many of the real-world features. However, for substantial
changes in road layout, e.g. additional medians (i-1) and new road construction (m—p), the model fails to meaningfully deviate from the
prior to account for the new intersection geometry. Note that the topdown map is centered on the vehicle in all figures.
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. - mAP

Mutation Probability Sim Real
Baseline (No Noise) 0.0 0.8980 0.8239
Low All Noise 0.1 0.9934 0.8571
0.2 0.9917 0.8564
0.4 0.9834  0.8435
Drop Features 0.6 0.9677 0.8313
0.8 0.6012  0.6074
1.0 0.6580  0.6952
0.2 0.9920 0.8535
Duplicate Features 0.3 0.9892  0.8570
0.5 0.9917  0.8604
0.2 0.9929  0.8564
Wrong Class 0.3 0.9932 0.8555
0.5 0.9901 0.8542

Table 1. Discrete Mutation Parameter Search.

. mAP

Mutation Std. Dev Sim Real
Baseline (No Noise) 0.0 m 0.8980 0.8239
Low All Noise 0.1 m 0.9934 0.8571
05m 0.9929 0.8640
Perturb Control Points 1.0 m 0.9843 0.8512
2.0m 0.9531 0.8476
0.5m 0.9794 0.8612
Shift Features 1.0 m 0.9373 0.8461
2.0m 0.8781 0.8108
0.5m, 0.5° 0.9936 0.8648
Localization Noise 1.0m, 1.0° 0.9913 0.8588
2.0m, 2.0° 0.9911 0.8604
0.5m 0.9854 0.8606
Perlin Warp 1.0 m 0.9711 0.8623
20m 0.9357 0.8407

Table 2. Continuous Warp Mutation Parameter Search.

5. Discussion

We note a number of interesting observations from our ex-
perimental results. First, consistent with [43], we note that
training with no prior noise at all results in a “pass-through”
model which learns to replicate the prior map without mod-
ifications. Since changed map features usually comprise a
small percentage of the features in any given frame of data,
we see that this pass-through model which is ignoring the
sensor BEV information is capable of achieving a 0.824
mAP on the real world map changes regardless.

More substantially, we note a consistent sim2real gap be-

tween the simulated, low noise evaluation prior and the real
world map change dataset, where the model has learned
to effectively denoise the evaluation prior but is not suffi-
ciently general to smoothly transfer to real change detec-
tion. Error is correlated between the simulated and real
prior corruption, but our simulated evaluation is insufficient
to model the complexities of real world changes. The quali-
tative results in Fig. 4 reinforce this observation, where only
the simplest real-world changes are accurately predicted by
the model, which reverts to the prior when the changes be-
come too complex.

Somewhat surprising is that increasing prior dropout
noise primarily serves to degrade model performance on
real world map changes as its noise is increased, rather
than cleanly trading off between real world sensor and prior
contributions. Instead, we see that performance slowly de-
grades, until a bifurcation in response behavior when hav-
ing too degraded of a prior causes the model to perform
even worse than it does when trained with no prior and then
tested with prior (Drop Features, p=1.0), which is com-
pletely out of distribution. Similarly interesting is that in-
creased likelihood of feature duplication is somewhat more
helpful than any other discrete mutation, with performance
increasing with increased mutation likelihood for the values
we tested on.

We see a slightly different story with continuous warp-
ing mutations, which all improve on real world performance
with an increased level of noise from the baseline low noise
level. Past that, however, they also see degradation behav-
ior as perturbations get more exaggerated at higher noise
levels, similar to that of the discrete features. This is likely
due to the true distribution of map changes having a similar
level of average displacement, where higher noise levels are
unreasonable in nominal real world change scenarios (e.g.
redoing a curb or driveway).

6. Conclusions

Robustness to real-world changes is critical for any map-
based autonomous vehicle system. We confirm the conclu-
sions of [43] in that prior maps are much better than no prior
and that we need some noise in the prior to learn something
more useful than a pass-through function.

However, we are able to expand on those results by
observing that too corrupted or weak of a prior can actually
harm performance of the model more than omitting the
prior entirely. Most importantly, we show that there exists
a considerable sim2real gap between real world change
detection performance and performance on simulated
prior noise. We observe through large-scale experiments
that prior mutations are sufficient to capture only the
simplest of real-world changes. We hope the results
presented in this paper motivate future work in this area to
address the sim2real gap for HD map prediction with prior.
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