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Abstract

In the era of the Internet of Things (IoT), objects con-
nect through a dynamic network, empowered by technolo-
gies like 5G, enabling real-time data sharing. However,
smart objects, notably autonomous vehicles, face chal-
lenges in critical local computations due to limited re-
sources. Lightweight AI models offer a solution but struggle
with diverse data distributions. To address this limitation,
we propose a novel Multi-Stream Cellular Test-Time Adap-
tation (MSC-TTA) setup where models adapt on the fly to a
dynamic environment divided into cells. Then, we propose
a real-time adaptive student-teacher method that leverages
the multiple streams available in each cell to quickly adapt
to changing data distributions. We validate our methodol-
ogy in the context of autonomous vehicles navigating across
cells defined based on location and weather conditions.
To facilitate future benchmarking, we release a new multi-
stream large-scale synthetic semantic segmentation dataset,
called DADE, and show that our multi-stream approach
outperforms a single-stream baseline. We believe that our
work will open research opportunities in the IoT and 5G
eras, offering solutions for real-time model adaptation.

1. Introduction

In the contemporary digital era, inanimate objects have
gained the capability to connect and engage with each other
via the Internet. This phenomenon has given rise to a dy-
namic network of interconnected objects known as the In-
ternet of Things (IoT). This revolution is further driven
by the advent of telecommunication technologies such as
5G, offering remarkable bandwidth ranging from 100MB
to 1GB per second and a mere 10 millisecond latency [21].
This new larger bandwidth offers unprecedented opportuni-
ties for smart objects, especially those relying on computer

(*) Equal contributions. Code and data available at github.com/
ULiege-driving/MSC-TTA and github.com/ULiege-driving/DADE.
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Figure 1. Multi-Stream Cellular Test-time Adaptation (MSC-

TTA) of real-time models. We consider a set of agents (e.g., au-
tonomous vehicles) evolving in a dynamic environment divided
into cells (e.g., city center or suburb) that perform the same task
(e.g., semantic segmentation) in real time on their own unlabeled
data stream (e.g., recorded images) using an on-board model.
We propose a first method in which agents share part of their
data stream through an IoT network (e.g., a connection to a 5G
tower). Cell-based lightweight models are then trained on the fly
(in our case through an adaptive student-teacher method) and their
weights are regularly broadcasted to the agents to improve their
performance over time. When agents transitions between cells,
the agent’s model is immediately switched to the one of the new
cell, effectively adapting the predictions of the transiting agent.

vision for autonomous navigation, allowing real-time shar-
ing of recorded images or videos through the network.

However, some critical computations need to be per-

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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formed locally. For instance, autonomous vehicles should
analyze their environment and take appropriate actions de-
spite a loss of connection to the network. This forces smart
objects to include an on-board processing unit, especially
for autonomous navigation. Due to limitations on battery
capacities, these processing units are often limited in their
computation capabilities. Furthermore, the entire process-
ing power can not just be dedicated to the analysis of the
environment, but also needs to ensure all other critical func-
tions (e.g., risk assessment, navigation system, etc.).

Considering these limitations, the deployment of
lightweight artificial intelligence models analyzing the en-
vironment becomes essential. Lightweight models offer the
advantage of high inference speed, meeting the real-time
constraint, and low power consumption. However, their
representational capacity is limited [15] compared to larger
state-of-the-art model, failing in effectively handling a wide
range of data distributions or generalizing to unseen envi-
ronments at test time [6]. In the case of moving objects
such as autonomous vehicles, data distribution shifts gen-
erally occur as the vehicles transition between different ar-
eas. Even in the case of static objects such as surveillance
cameras, the encountered data distribution may be dynamic,
due, for example, to changes in weather conditions or object
density and occlusions. Fortunately, autonomous vehicles
are able to precisely position themselves through a combi-
nation of navigation systems, telecommunications, and sen-
sors (such as IMUs). It is therefore possible to get prior
knowledge on the encountered data distribution such as lo-
cation (e.g., the region of the world, the city, or the neigh-
bourhood) or local weather and traffic information. Hence,
the environment can be divided into a set of cells, repre-
senting different dynamic data distributions. Also, multiple
objects evolving in similar environments (e.g., a fleet of au-
tonomous vehicles) sense the environment and collect mul-
tiple streams, allowing to sample the changing data distri-
butions within each cell more quickly and comprehensively.

In this work, we propose a first Multi-Stream Cellular
Test-Time Adaptation (MSC-TTA) setup in which a fleet
of connected objects, called agents, adapt on the fly their
model to their data stream with distribution shifts. Then,
we propose a first real-time method on our MSC-TTA setup
based on an adaptive student-teacher online training strat-
egy that leverages the division of the environment into dif-
ferent cells. Specifically, each agent analyses its own data
stream on board using a lightweight student model and of-
floads the heavy teacher inference process and student train-
ing remotely (e.g., on the cloud). As shown in Figure 1,
data is collected by all agents and aggregated to train spe-
cialized student models for each cell. Finally, we study our
new MSC-TTA setup in the practical real-world case of au-
tonomous cars evolving in dynamic environments divided
in different cells based on location (e.g., urban, suburbs,

countryside, etc.) and weather conditions (e.g., sunny, rainy,
foggy). To support our experiments and allow future bench-
marking, we generate and publicly release a new large-
scale synthetic semantic segmentation dataset based on the
CARLA simulator [9] called DADE, and show improved
performance of our proposed multi-stream and cell-based
method over a single stream baseline. We believe that this
new multi-stream cellular test-time adaptation setup will
open research possibilities for the combined use of com-
puter vision and machine learning technologies in the IoT
and 5G eras, as provisioned in 5G roadmaps [29].
Contributions. We summarize our contributions as fol-
lows. (i) We define a new Multi-Stream Cellular Test-Time
Adaptation (MSC-TTA) setup in which models adapt on the
fly to a dynamic environment divided into cells. (ii) We
propose a novel real-time adaptive student-teacher method
to aggregate knowledge across different agents evolving in
the same cell. (iii) We generate and release a new synthetic
dataset, called DADE, for the semantic segmentation task
on board autonomous vehicles and show improved perfor-
mance of our proposed method compared to the baseline.

2. Related Work

2.1. Online learning

Online learning is a well-studied setup [4, 16, 18, 35, 40]
defined as a game between a learner and an environment
generating a stream of data. Based on past and current data
generated by the environment, the learner tries to sequen-
tially predict labels on the stream. At each step, the true
label of the data is revealed and compared to the prediction
of the learner. The learner then receives a regret score, used
to penalize its mistakes. The learner’s objective is thus to
minimize future penalties by using previously observed data
and labels. The field of online learning can count on mul-
tiple benchmarking datasets such as firehose [20] for lan-
guage modeling and CLOC [3] and CLEAR [28] for image
classification of objects whose representations evolved over
the span of 10 years. In practice, online learning is relevant
when the true label becomes available as time goes by, e.g.,
for the task of forecasting [30, 46, 50]. In this work, we as-
sess an upper bound of our MSC-TTA method by extending
the setup to multi-stream cellular online learning.

2.2. Test-time adaptation

Similarly, Test-Time Adaptation (TTA) aims to adapt a
model on a data stream. However, the environment does
not reveal the true label of previously observed data. Sev-
eral setups, characterized by the data distribution of the
stream, have been studied, such as Fully TTA [43], Contin-
ual TTA [44], Non-i.i.d TTA [14], or Practical TTA [52], in
which the data stream contains distribution changes and cor-
related samples. These setups are suited for real-world ap-
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plications, where the true labels are unavailable at test time.
However, previous works only consider a single stream of
data. In this work, we go further, by proposing a setup for
multiple streams and introducing prior knowledge on cross-
stream data distribution through the division of the environ-
ment into cells. In addition, our methodology brings a real-
time aspect, a feature often overlooked in previous setups.

To leverage the information in the data stream, multi-
ple methods have been developed [27]. Some works adapt
the model’s parameters by either fitting the batch normal-
ization layers to the target domain [26, 33, 39], training the
model with auxiliary tasks [8,42], or fine-tuning it using un-
supervised objectives [37, 43, 53]. Some other works adapt
the input data [12, 17, 22, 54] or weight the predictions of
multiple models depending on the test distribution [10, 47].
However, few works ensure that the adaptation is real time.

In fact, in real-world applications, the model needs to
adapt within limited time to leverage all samples of the data
stream, due to finite computing capabilities. Alfara et al. [1]
recently proposed an evaluation protocol to compare TTA
methods under those constraints. To satisfy the real-time
constraint, some works proposed a student-teacher architec-
ture with a lightweight student model [6, 34]. Specifically,
ARTHuS [6] proposed a first real-time method in which
a lightweight student model is adapted on an unlabeled
data stream at test time using pseudo-labels produced by
a state-of-the-art but computation-expensive teacher model.
The real-time constraint of the system is ensured by asyn-
chronously processing the student and teacher inference and
training at different frame rates. The fast lightweight stu-
dent model therefore trains online on the changing data dis-
tributions using the teacher’s slow predictions. However, in
the case of rapid domain shifts, the student needs several
batches to adapt. Houyon et al. [19] later tackled this issue
by incorporating continual learning methods in the student
online training to avoid catastrophic forgetting in the case
of cyclic domain shifts. Nevertheless, in the case of multi-
ple objects (e.g., autonomous vehicles), each data stream is
treated independently. In this work, we extend ARTHuS [6]
to multiple data streams and cell-divided environments.

2.3. Autonomous driving

Autonomous Vehicles (AVs) rely on advanced sensor
arrays, high-resolution cameras and on-board computing
power to perceive the environment and make informed de-
cisions to navigate safely. Nowadays, perception is largely
based on artificial intelligence and involves several com-
puter vision tasks such as semantic segmentation [24,48,51,
55], object detection [2, 25] or depth estimation [5, 11, 13].
However, the road to fully self-driving cars remains chal-
lenging. For instance, it is still complex to operate AVs
in diverse environments, such as varying weather condi-
tions, traffic patterns and other unforeseen scenarios, and

to process large amount of data while optimizing energy
consumption in Electric Vehicles (EVs).

To adapt to several environments, some methods use do-
main adaptation strategies [23, 36, 45] to enhance system
versatility and reliability. Also, cloud computing [38] or
multi-access edge computing (MEC) [31, 49] provide the
computational power and storage capacity for real-time data
processing, enhancing energy efficiency and improving EV
mileage. Similarly to MEC, our proposed method employs
a hybrid approach. On-board processing handles immedi-
ate, low-latency operations, while resource-intensive com-
putations are offloaded to external servers. Specifically, the
heavy offloaded computations rely on the multiple streams
of the fleet, while on-board, lightweight real-time percep-
tion is performed using models trained in the cloud, guar-
anteeing adaptability in dynamic environments.

3. Methodology

3.1. Problem statement

Given a finite set of N agents an forming a con-
nected fleet A, our proposed Multi-Stream Cellular Test-
Time Adaptation (MSC-TTA) aims to adapt over time t 2
{0, ..., T} each agent’s model f t

an
2 F, pretrained on any

source domain to perform a task ⌧ , to the agent’s data
stream Xan

2 X of online unlabeled samples Xan
=

x0
an
, x1

an
, ..., xt

an
, ..., xT

an
. As in [52], the samples are

drawn from a distribution Pan
2 P shifting over time

following P0
an
,P1

an
, ...,Pt

an
, ...,PT

an
, in which consecutive

samples xt�1
an

, xt
an
, xt+1

an
may be highly correlated. At time

t, the model f t
an

receives a batch of unlabeled samples
Bt
an

= xt
an
, xt+1

an
, ..., xt+(b�1)

an , where b is the batch size,
on which it makes predictions. Each model f t

an
may be

adapted to the current batch Bt
an

by accumulating knowl-
edge from previous samples of the multiple streams forming
the following hyperspace [xt0

an
, 8an 2 A⇥ t0 < (t+ b).

Let us note that samples xt
an

may be unavailable for some
time t for some agent an. This setup describes the gen-
eral case of multiple sensors recording data streams and per-
forming the same task, e.g., surveillance cameras placed in
one or several cities on which crowd counting or car seg-
mentation needs to be performed, with no assumptions on
where the cameras are placed.

To include cross-stream prior knowledge on data distri-
butions, we consider the general case in which the agents
evolve inside a dynamic environment split into a non-
overlapping set of C cells c 2 E. We suppose that, at time t,
each agent is located within one cell such that etan

= c 2 E,
with agents being able to transition between cells over time.
The cells c are predefined by a set of rules (e.g., based on
the location, the weather, etc.) such that the expected data
distribution of agents evolving in the same cell is similar,
i.e., Pt

an
⇡ Pt

am
if etan

= etam
. Our setup therefore allows
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Figure 2. Pipeline of our multi-stream cellular test-time adaptation of real-time models. Our method is composed of a fast route for
inference and a slow route for online training, as defined in [6,19]. In the fast route, each agent an processes a stream of data samples xt

an

and predicts labels ŷt
an = f t

an(x
t
an) in real time (i.e., at the data stream rate rX ). Agents located within a cell c send a subset of their data

samples at a slower rate rT ) to a slow route operating on a remote server (e.g., on the cloud) dedicated for each cell. In the slow route, a
teacher model T t0

c predicts pseudo labels on the received data and stores them in a replay buffer Rt0
c . The replay buffer is then used to train

on the fly a cell-specific student model St0
c at a rate rS . After each training epoch on the replay buffer, the parameters of Sc are transferred

to all agent models fan located within that cell. Finally, agents transiting between two cells have their model switched instantly.

the different data streams to share common data distribu-
tion properties at times that can be leveraged to effectively
adapt the models. Naturally, in practice, this assumption
may fail if the cells are incorrectly defined or estimated.
This setup is particularly interesting in the real-world case
of autonomous driving, in which vehicles evolve in differ-
ent locations (e.g., city centers, suburbs, highway, etc.) that
they analyze through various sensors. Also, vehicles driving
in the same environment may leverage the multiple streams
of the fleet to better assess and adapt to the environment.

Let us note that considering the special case of N = 1
and C = 1 falls back to the original PTTA setup of Yuan et
al. [52] in which a single model is adapted to its data stream.
The case of N � 1 and C = 1 represents a Multi-Stream
Test-Time Adaptation (MS-TTA) setup without division of
the environment. Finally, the case of C = 1 and f t

an
= f t,

i.e., in which a single model is adapted for all streams with-
out prior knowledge on the environments, corresponds to
a TTA setup in which samples from multiple streams are
combined in the batch. In the following, we describe our
adaptive method for the general case N � 1 and C � 1. To
stay close to a real-world scenario, we add an extra real-time
constraint on the method, i.e., no delay accumulation or
sample skipping when processing the multiple data streams.

3.2. Multi-stream cellular test-time adaptation

Our method, illustrated in Figure 2, produces a stream of
predictions for every agent following ŷtan

= f t
an
(xt

an
), with

the model f t
an

operating in real time (i.e., at the rate rX ) on
the data stream Xan

. To do so, we extend the adaptive real-
time student-teacher method, ARTHuS, of Cioppa et al. [6],
in which a lightweight student model S is adapted on-the-
fly using pseudo labels produced by a state-of-the-art but
computation-expensive teacher model T . Particularly, we
leverage the multiple streams and the division of the envi-
ronment into cells. We allow agents evolving within the
same cell to share their own data stream to produce a cell-
specific data stream X t0

c = [xt0
an
, 8an | et0an

= c at a frame
rate rT , producing samples xt0

c .
Our method is composed of a fast route and a slow route.

In the fast route (inference), student models for each agent
produce predictions ŷtan

= St
an
(xt

an
) = f t

an
(xt

an
) at the

rate rX . In parallel in the slow route (training), a slow but
high-performance teacher model T t0

c for each cell produces
pseudo-ground truths ỹt

0

c = T t0
c (xt0

c ) at the rate rT on the
cell data streams. The pair of data (xt0

c , ỹ
t0
c ) are then stored

in a replay buffer Rt0
c of size R using a First-In-First-Out

(FIFO) strategy. One student network per cell St0
c is trained

on the updated replay buffer Rt0
c using a loss function

L =
RX

i=1

L(St0

c (x
i
c), ỹ

i
c), (1)

where L is a dissimilarity measure suited for task ⌧ . Af-
ter training for one epoch on the replay buffer, the weights
of students in the fast route are updated with the weight of
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Table 1. Mean IoU performance on DADE-static weather. The MSC-OL setup leverages the CARLA segmentation masks as pseudo
labels while the MSC-TTA setup leverages pseudo labels from the teacher model. We compare several pretraining, scenarios, and adaptive
(X) versus frozen (^) models. For each pretraining, the best score is shown in bold and the second is underlined.

Multi-stream cellular online learning Multi-stream cellular test-time adaptation

mIoU imminent mIoU future mIoU imminent mIoU future

Pretraining Scenario Adapt 3 hours Last hour 3 hours Last hour 3 hours Last hour 3 hours Last hour

Cityscapes [7] Student ^ .214 .218 .214 .218 .214 .218 .214 .218
Teacher ^ .668 .671 .668 .671 .668 .671 .668 .671

Scratch

Baseline [6] X .223 .249 .208 .231 .274 .309 .244 .285
Baseline+MIR [19] X .173 .194 .164 .188 .181 .201 .171 .195

Common X .338 .483 .316 .461 .340 .363 .327 .373
Spatial X .353 .513 .328 .485 .368 .440 .351 .413

General

Baseline [6] X .435 .442 .415 .446 .422 .442 .397 .425
Baseline+MIR [19] X .650 .656 .614 .626 .417 .432 .401 .423

Common X .702 .696 .673 .692 .474 .517 .461 .501
Spatial X .700 .701 .660 .701 .470 .517 .462 .505

Common ^ .650 .658 .650 .658 .454 .450 .454 .450

Cell Spatial X .658 .681 .597 .682 .552 .567 .522 .556
Spatial ^ .634 .660 .634 .660 .544 .572 .544 .572

Figure 3. Images of the different locations in our dataset. We define 7 different locations that are defined based on the GNSS data. From
left to right: forest, countryside, rural farmland, highway, low density residential, community buildings, and high density residential.

the environment students in the slow route such that St
an

=
St
c , 8an|etan

= c, at a slower rate rS . Since the slow route
gathers information from several agents, the heavy teacher
inference and student training processes can be offloaded to
a dedicated server (e.g., on the cloud). Hence, agents only
perform the real-time inference with a lightweight model,
greatly reducing computation requirements and saving pre-
cious battery power in the case of autonomous vehicles. Fi-
nally, considering the special case C = N with each agent
defining its own cell is equivalent to the original ARTHuS
method [6], serving as baseline in our experiments.

4. Experiments

4.1. Dataset

To support our experiments, we generate and release
the Driving Agents in Dynamic Environments (DADE)
dataset, based on the CARLA simulator. DADE is tai-
lored for the online training and evaluation of semantic
segmentation methods in the context of autonomous driv-
ing agents navigating dynamic environments The first part
of DADE contains 100 video sequences of agents evolving
in 7 connected locations illustrated in Figure 3, with static
weather conditions (clear day). The second part contains
300 video sequences in the same locations with dynamic

weather conditions (clear, rainy, and foggy), during day and
night. We provide video sequences, semantic segmentation
masks, Global Navigation Satellite System (GNSS) data,
and weather information. Each sequence is acquired by an
agent within a 5-hours time frame. The first two hours are
used for pretraining and the remaining three for adaptation.

To the best of our knowledge, our dataset, large of 150
GBytes, is the first to provide long videos of multiple agents
evolving in diverse driving locations and weather conditions
with ground truth labels for the task of semantic segmenta-
tion. Our video sequences contain between 188 and 7,200
frames acquired at 1 frame per second (fps), with an av-
erage sequence length of 40 minutes. Existing datasets,
such as [7,32,41], feature short video sequences, lack multi-
agent perspectives, do not include ground truth data, or lack
a diverse range of weather conditions. More information
about our DADE dataset may be found in the appendix.

4.2. Experimental settings

4.2.1 Environment division

We consider six scenarios based on the division of the
environment into cells. (1) The Baseline scenarios cor-
respond to multiple independent streams on which inde-
pendent agents adapt (C = N ), i.e., ARTHuS [6] and
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Table 2. Mean IoU performance on DADE-dynamic weather. The MSC-OL setup leverages the CARLA segmentation masks as pseudo
labels while the MSC-TTA setup leverages pseudo labels from the teacher model. We compare several pretraining, scenarios, and adaptive
(X) versus frozen (^) models. For each pretraining, the best score is shown in bold and the second is underlined.

Multi-stream cellular online learning Multi-stream cellular test-time adaptation

mIoU imminent mIoU future mIoU imminent mIoU future

Pretraining Scenario Adapt 3 hours Last hour 3 hours Last hour 3 hours Last hour 3 hours Last hour

Cityscapes [7] Student ^ .159 .130 .159 .130 .159 .130 .159 .130
Teacher ^ .611 .542 .611 .542 .611 .542 .611 .542

Scratch

Baseline [6] X .204 .197 .167 .167 .212 .190 .173 .173
Baseline+MIR [19] X .144 .137 .125 .118 .147 .133 .129 .110

Common X .278 .352 .249 .323 .278 .257 .253 .243
Spatial X .307 .397 .269 .358 .312 .300 .278 .276

Weather X .226 .295 .199 .279 .227 .216 .202 .197
Daylight X .245 .279 .176 .259 .182 .198 .150 .184
Specific X .22 .204 .203 .187 .233 .186 .218 .166

General

Baseline [6] X .581 .546 .502 .502 .471 .406 .409 .409
Baseline+MIR [19] X .567 .531 .527 .480 .455 .386 .427 .347

Common X .644 .595 .613 .565 .506 .427 .483 .405
Spatial X .654 .622 .606 .589 .516 .442 .473 .405
Weather X .641 .586 .611 .562 .507 .429 .484 .408
Daylight X .636 .603 .572 .585 .498 .430 .477 .413

Specific X .632 .602 .596 .559 .500 .437 .471 .393
Common ^ .618 .581 .618 .581 .476 .403 .476 .403

Cell

Spatial X .662 .642 .609 .590 .527 .461 .484 .423

Weather X .634 .580 .607 .551 .509 .427 .483 .409
Daylight X .645 .592 .620 .577 .507 .432 .488 .415
Specific X .612 .582 .589 .554 .500 .438 .485 .412
Spatial ^ .642 .606 .642 .606 .488 .409 .488 .409
Weather ^ .565 .528 .565 .528 .443 .384 .443 .384
Daylight ^ .563 .485 .563 .485 .421 .362 .421 .362
Specific ^ .447 .400 .447 .400 .349 .298 .349 .298

Houyon et al. [19]. (2) The Common scenario aggregates
the multiple data streams into a single stream, on which
one common model adapts (C = 1). (3) The Spatial sce-
nario leverages the different locations of our dataset to split
the environment into cells (C = 7). (4) The Weather and
(5) Daylight scenarios temporally divide the environment
based on the weather (C = 3: clear, rainy, foggy) and the
time period (C = 2: day, night). (6) The Specific scenario
considers each combination of location, weather condition,
and time period (C = 42).

4.2.2 Pretraining

We choose the same model architecture for all agent mod-
els fan

and cell-specific student models Sc . Following the
work of Cioppa et al. [6], we select TinyNet: a lightweight
semantic segmentation model operating in real time. The
pretraining set is divided into a training set and a validation
set using a 90-10% split. For each scenario, we evaluate 3
pretraining techniques. The General pretraining consists in
training the student model on all samples of the training set,

irrespective of the division into cells. The Cell pretraining
considers a separate model for each cell c, trained on cell-
specific samples. Finally, Scratch assigns random weights
(i.e., no pretraining). The models are pretrained with a
learning rate of 10�4 using the Adam optimizer and the best
performing model over the validation set is selected. The
number of epochs is set to 3 for the General pretraining and
scaled for each cell for the Cell pretraining to match the
number of backward passes and ensure a fair comparison.

4.2.3 Testing

For a given scenario and pretraining procedure, we compare
the online performance (i.e., our adaptive method) with the
offline performance (i.e., a frozen pretrained model). We
choose the teacher model as a frozen state-of-the-art Seg-
Former [48] model trained on Cityscapes [7] that produces
pseudo labels at a rate of rT = 1/3 [Hz]. The replay buffers
are chosen as FIFO buffers with a size R = 100, updated at
the same rate rT . Finally, the cell-specific student models
are trained online at a rate rS = 1/30 [Hz], with a learn-
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Figure 4. Evolution of the fleet performance over time on DADE-static weather (top) and DADE-dynamic weather (bottom).

Comparison of the performance in the MSC-OL setup (left) and the MSC-TTA (right) setup of the best adaptive settings along with the
baseline for each pretraining (Scratch, General, and Cell).

ing rate of 10�4, batch size of 25 with the Adam optimizer,
and the cross-entropy loss. The model is only trained if the
buffer contains new samples to prevent overfitting.

For the online evaluation, we aggregate the confusion
matrices over a sliding window of 30 [s] (imminent perfor-
mance) for every agent in every cell and compute the mean-
Intersection-over-Union (mIoU) as defined in Houyon et
al. [19]. Additionally, we propose to evaluate the current
model 5 minutes in the future (future performance) to as-
sess the capacity of the model to generalize to future sam-
ples. Finally, we also compute the overall mIoU for the
entire test set (3 hours) and for the last hour to assess the
long-term performance. As an upper bound, we also evalu-
ate our method in a Multi-Stream Cellular Online Learning
(MSC-OL) setup by replacing the teacher pseudo labels by
the true ground-truth labels. We also compare our approach
to the best method proposed in Houyon et al. [19], which is
equivalent to our Baseline with a Maximal Interfered Re-
trieval (MIR) buffer, and report the offline performances
of the frozen teacher and student models both trained on
Cityscapes [7]. More information on the evaluation, such as
details about the object classes, is provided in the appendix.

4.3. Results

4.3.1 Quantitative performances

Table 1 shows the mean performance of the fleet in the dif-
ferent settings on DADE-static. We observe that the base-

line setups [6,19] are outperformed by our method for every
scenario and pretraining, highlighting the benefits of using
multiple streams when adapting the models. For no pre-
training (Scratch), the Spatial division of the environment
leads to the best results, indicating that leveraging cellu-
lar information improves the models. For General pretrain-
ing, the adapted Common and Spatial scenarios show better
performance than the frozen pretrained model, highlighting
the benefits of adapting the model online. In the MSC-
TTA setup, the Cell pretraining outperforms the General
one while it is the opposite in the MSC-OL setup, indicating
that clean generic labels compensate for cell-specific ones.

We also provide the mean performance on DADE-
dynamic in Table 2. As can be seen, our method still out-
performs the baselines. Again, from Scratch, the Spatial
scenario brings the best results, followed by the Common
scenario. However, temporal divisions such as Weather,
Daylight, and Specific lead to lower performances. While
DADE includes at least one vehicle in almost every location
over time, the same weather and daylight are applied to all
locations simultaneously, leading to discontinuities in the
availability of samples for time-based cells. This temporar-
ily stops the adaptation and slows down model convergence.
Longer sequences, would allow the models to better explore
those cells. Finally, the Cell pretraining shows the best over-
all performance for the MSC-OL/TTA setups, showing the
advantage of dividing the environment into cells.
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Figure 5. Qualitative results. Comparison of different segmentation masks. From left to right: RGB image, ground truth, Baseline,
Common scenario with General pretraining, and Spatial scenario with Cell pretraining. Black areas correspond to non-evaluated classes.

4.3.2 Evolution of the fleet performances

The evolution of the fleet performance over time is shown in
Figure 4. For visualization purposes, we aggregate the con-
fusion matrices in sliding windows of 8 minutes to compute
the mIoU. Regarding the static weather (top row), the Base-
line is outperformed by all settings of our method. Inter-
estingly, even if the baseline starts from pretrained weights
and our method from scratch, we outperform the baseline
in the MSC-OL setup and reach similar performances in the
MSC-TTA setup. Additionally, Cell pretraining with the
Spatial scenario reaches the best performance in the MSC-
TTA setup for the whole duration, keeping steady perfor-
mance. This is crucial for autonomous vehicles that need to
operate similarly in all conditions.

We also show the performance for DADE-dynamic in
Figure 4 (bottom row). For both the MSC-OL and MSC-
TTA setups, the Daylight scenario with Cell pretraining pro-
duces the best performance before nightfall, after which it
drops while other scenarios, such as Spatial with Cell pre-
training, become better options. This is due to the fact that
the night models are not updated before nightfall while the
location-based models are constantly updated, during day,
dusk, and night. Nevertheless, it can be seen that the perfor-
mance drops regardless of the scenario or pretraining during
nightfall, leaving room for improvement in future works.

4.3.3 Qualitative results

We qualitatively show the improvement of our multi-stream
cellular method over the ARTHuS [6] baseline. To do so,
we display in Figure 5 the segmentation masks predicted by
our method in two scenarios: the Common scenario with
General pretraining and the Spatial scenario with Cell pre-
training, and compare them to the masks predicted by the
Baseline and the ground truth labels. On the top row, we
show a vehicle driving in the countryside under static (clear)
weather at the end of the online training. We can see that
the baseline confuses some building with poles and a car is
misclassified as being part of the road, while our method is
able to correctly segment it. The Spatial model produces

the most accurate segmentation masks as it is able to pre-
cisely segment the city and vegetation in the background
and the cars on the left. On the bottom row, we show a ve-
hicle driving in the low density residential location under
static (clear) weather also at the end of the online training.
As can be seen, the Common model fails in this cell because
it needs to learn a broader data distribution and looses ac-
curacy due to its limited learning capacity. Contrarily, the
Spatial model is able to better learn that particular cell data
distribution and therefore produces the best results.

5. Conclusion

Our novel Multi-Stream Cellular Test-Time Adaptation
(MSC-TTA) setup addresses multi-stream model adapta-
tion in dynamic environments. We focus on environments
where data distribution shifts pose significant challenges.
To do so, we divide the environments into cells, charac-
terized by similar conditions such as location and weather.
Then, we propose a real-time method based on an adaptive
student-teacher approach, leveraging the multiple streams
and cellular information. Experimental validation on au-
tonomous vehicles illustrates the benefits of our MSC-TTA
setup, showcasing better performance compared to a single-
stream baseline. Our novel DADE dataset supports our ex-
periments and provides a comprehensive benchmark for fu-
ture studies in test-time adaptation of semantic segmenta-
tion models for autonomous vehicles. This work represents
a significant step forward in the field of test-time adapta-
tion, holding promise for substantial contributions to IoT
and autonomous driving.
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