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Abstract

Combining complementary sensor modalities is crucial
to providing robust perception for safety-critical robotics
applications such as autonomous driving (AD). Recent
state-of-the-art camera-lidar fusion methods for AD rely
on monocular depth estimation which is a notoriously dif-
ficult task compared to using depth information from the
lidar directly. Here, we find that this approach does not
leverage depth as expected and show that naively improv-
ing depth estimation does not lead to improvements in ob-
ject detection performance. Strikingly, we also find that re-
moving depth estimation altogether does not degrade object
detection performance substantially, suggesting that relying
on monocular depth could be an unnecessary architectural
bottleneck during camera-lidar fusion. In this work, we
introduce a novel fusion method that bypasses monocular
depth estimation altogether and instead selects and fuses
camera and lidar features in a bird’s-eye-view grid using a
simple attention mechanism. We show that our model can
modulate its use of camera features based on the availabil-
ity of lidar features and that it yields better 3D object de-
tection on the nuScenes dataset than baselines relying on
monocular depth estimation.

1. Introduction

Integrating information from different modalities efficiently
and effectively is especially important in safety-critical ap-
plications such as autonomous driving, where different sen-
sor modalities are complementary and combining them ade-
quately is crucial to guarantee safety. For example, cameras
capture rich semantic information of objects up to far away
distances, while lidars provide extremely accurate depth in-
formation but are sparse at large distances. For this reason,
many modern self-driving platforms have a large number
of different sensors which must be combined in order to
provide accurate and reliable perception of the surrounding
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scene and allow safe deployment of these vehicles in the
real world.

Multimodal sensor fusion — learning a unified represen-
tation of a scene derived from multiple sensors — offers a
plausible solution to this problem. However, training such
multimodal models can be challenging, especially when
modalities are as different as cameras (RGB images) and li-
dars (3D point clouds). For instance, it is known that differ-
ent modalities overfit and generalise at different rates [57]
and that training all modalities jointly can lead to underutil-
isation of the weaker modalities and even to inferior results
compared to unimodal models in some situations [40].

In the context of autonomous driving, many of the recent
state-of-the-art methods for camera-lidar fusion [16, 31, 36]
are based on the Lift-Splat (LS) paradigm [41]1. In this ap-
proach, the camera features are projected in bird’s-eye-view
(BEV) — or top-down space — using monocular depth be-
fore being fused with the lidar features. As a result, the
location of the camera features in BEV is highly dependent
on the quality of the monocular depth prediction and it has
been argued that its accuracy is critical [16, 31]. In this
work, we reconsider these claims and show that the monoc-
ular depth prediction inside these models is of poor qual-
ity and cannot account for their success. In particular, we
present results showing that methods based on Lift-Splat
perform equally well when the monocular depth prediction
is replaced by direct depth estimation from the lidar point
cloud or removed completely. This leads us to suggest that
relying on monocular depth when fusing camera and lidar
features is an unnecessary architectural bottleneck and that
Lift-Splat could be replaced by a more effective projection.

We introduce a novel approach for camera-lidar fusion
called “Lift-Attend-Splat” that bypasses monocular depth
estimation altogether and instead selects and fuses cam-
era and lidar features in BEV using a simple transformer.
We present evidence that our method shows better camera
utilisation compared to the methods based on monocular
depth estimation and that it improves object detection per-

1The “shoot” component of “Lift, Splat, Shoot” [41] relates to trajec-
tory prediction and is not considered here.
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formance. Our contributions are as follows:
• We show that camera-lidar fusion methods based on the

Lift-Splat paradigm are not leveraging depth as expected.
In particular, we show that they perform equivalently or
better if monocular depth prediction is removed com-
pletely.

• We introduce a novel camera-lidar fusion method that
fuses camera and lidar features in BEV using a simple at-
tention mechanism. We show that it leads to better camera
utilisation and improves 3D object detection compared to
models based on the Lift-Splat paradigm.

2. Related work

3D object detection for autonomous driving Most 3D
object detection benchmarks are dominated by methods us-
ing lidar point clouds due to their highly accurate range
measurement allowing for better placement of objects in
3D compared to methods using cameras or radars only.
Deep learning methods for classification on point clouds
were pioneered in the seminal works of [43, 44] and early
works have been applying similar ideas to 3D object detec-
tion [45, 48]. A more recent family of methods is based on
direct voxelisation of the 3D space [64, 70] or compression
of the lidar representation along the z-direction into “pil-
lars” [25, 65]. These approaches have been very successful
and are the basis of many follow-up works [17, 22, 67].

The task of 3D object detection has also been tackled
from multiple cameras alone. Early works have mostly been
based on various two-stage approaches [4, 23, 45, 58], while
recent methods have been leveraging monocular depth esti-
mation directly [3, 24, 46]. This task is difficult when lidar
is absent because 3D information must be estimated using
images only, which is a challenging problem. However, re-
cent works have shown impressive performance by borrow-
ing ideas from lidar detection pipelines [8, 12, 18], by im-
proving position embeddings [34] and 3D queries [20], as
well as by leveraging temporal aggregation [13, 28, 33, 35,
56, 72] or 2D semantic segmentation [69].

Camera-lidar fusion Perception quality can be improved
by jointly leveraging cameras and lidars when available.
Recent fusion methods can be broadly classified into three
categories: point decoration methods, methods that leverage
task-specific object queries and architectures, and projec-
tion based methods. Point decoration methods augment the
lidar point cloud using semantic segmentation data [52, 61],
camera features [54], or even create new 3D points using
object detections in the image plane [68]. Such methods
are relatively easy to implement but suffer from the fact that
they require lidar points to fuse camera features. TransFu-
sion [1] is a recent example of a method that leverages task-
specific object queries generated using the lidar point cloud.

Final detections are made directly without explicit projec-
tion of camera features into BEV space. Similar methods
utilising two-way modality interactions perform even bet-
ter [62, 66]. Fusion can also be performed earlier in the
model, for example at the level of the 3D voxels [6, 7]
or lidar features [26], or by sharing information between
the camera and lidar backbones [19, 29, 42]. MSMDFu-
sion [21] fuses camera and lidar features at multiple scales
using lidar points to estimate the 3D position of camera fea-
tures, while UniTR [55] pre-assigns depth to each camera
feature. FUTR3D [5] fuses features by selecting modality-
agnostic 3D reference points. Finally, projection-based
methods project camera features into 3D before fusing them
with the lidar (see below).

Projection based methods Of most interest to us are
camera-lidar fusion methods based on projecting camera
features into 3D. Many recent state-of-the-art camera-lidar
fusion methods [16, 31, 36] project camera features in 3D
using monocular depth estimation even though depth infor-
mation is available from the lidar. It has also been shown
that the projection method is less important than other as-
pects of training in the camera-only setting [14]. An alter-
native approach is to project camera features directly into
BEV space using the known correspondence between lidar
points and camera features [9, 26, 59]. However, the spar-
sity of the lidar point cloud can limit which camera fea-
tures are projected, as described in [36]. Finally, learning
to project camera features in BEV without explicit depth
can be achieved when lidar is absent using a transformer, as
shown in [28, 47]. Here, we extend this line of work to the
case of camera-lidar fusion and leverage cross-attention to
generate a dense BEV grid of fused lidar features.

3. Monocular depth prediction in Lift-Splat

Recent camera-lidar fusion methods based on the Lift-Splat
paradigm [31, 36] learn a unified representation in the form
of a BEV grid by projecting camera features in BEV space
using an estimated depth distribution as

ProjLift-Splat = Splat
�
F ′cam ⊗D

�
, (1)

where F ′cam ∈ RC′
c×H×W is a context vector obtained

from the camera features F cam ∈ RCc×H×W , D ∈
RND×H×W is a normalised distribution over predetermined
depth bins and Splat denotes the operation of projecting
each point downwards into the z = 0 plane, see [31, 36, 41]
for details. The resulting feature map is then merged with
the lidar features using concatenation [36] or gated atten-
tion [31]. In this paradigm, the monocular depth distribu-
tion prediction is learned indirectly from the downstream
task without explicit depth supervision.
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Camera Lidar

BEVFusion [36] BEVFusion [36] w/ λ = 1

Abs. Rel. ↓ RMSE ↓ mAP ↑
BEVFusion [36] 2.75 17.40 68.5
BEVFusion [36] w/ Eq. (2):

λ = 0 2.83 18.54 68.4
λ = 0.01 0.76 8.09 68.0
λ = 1 0.22 4.77 68.1
λ = 100 0.16 4.55 64.6

Lidar 0.04 0.29 68.4
Pretrained 0.64 7.87 67.4
Uniform depth – – 68.5

Figure 1. Impact of the quality of the monocular depth prediction on the object detection performance of BEVFusion [36] on the nuScenes
validation set. We compare BEVFusion and four different variants: adding depth supervision using Eq. (2) with various weights λ,
using lidar depth maps instead of monocular depth estimation (lidar), using a pretrained and frozen depth classifier (pretrained), and
finally removing depth estimation altogether by projecting camera features at all depths uniformly using Eq. (3) (uniform depth). In our
experiments, more accurate depth does not translate to better detection performance and the original model is on-par with using the lidar
points directly as a source of depth. Equivalent detection performance was achieved using the uniform depth model, clearly indicating that
accurate monocular depth is not necessary for BEVFusion [36] to achieve its performance, see main text and Sec. A.4 for details.

Lift-Splat depth prediction is generally poor We anal-
yse the quality of the depth distribution predicted by BEV-
Fusion [36] by comparing its mean value to lidar depth
maps, both qualitatively and quantitatively using the ab-
solute relative (Abs. Rel.) and root mean squared errors
(RMSE) [10, 27]. As shown on Fig. 1, the mean depth pre-
diction does not accurately reflect the structure of the scene
and is markedly different from the lidar depth map which
suggests that monocular depth is not leveraged as expected
in [36]. See Secs. A.2 and A.4 for details.

Improving depth prediction does not improve detection
performance We next investigate whether improving the
depth prediction quality can boost object detection perfor-
mance. To do so, we retrain the model from [36] with the
following loss:

Ltotal = Lsup + λLdepth, (2)

where Lsup is the original 3D object detection loss and Ldepth
is a simple cross-entropy loss for the depth estimation that
uses one-hot encoded lidar depth as a target, see Sec. A.3
for more details. By changing the hyper-parameter λ, we
can control the quality of the depth prediction and explore
how it impacts detection performance. In Fig. 1, we see
that while depth supervision indeed leads to much more ac-
curate depth maps both visually and quantitatively, detec-
tion performance — measured using mean average preci-
sion (mAP) — degrades from the baseline as the weight of
the depth supervision is increased. This suggests that the
method is unable to take advantage of more accurate depth
prediction. Since training on the multi-task loss Eq. (7) is
likely to degrade object detection performance at high val-
ues of λ, we also experiment with two more variants: (i)

pretraining the depth supervision module separately and (ii)
using the lidar point cloud directly to bypass the depth su-
pervision module altogether. Pretraining leads to more ac-
curate depth prediction but degrades detection performance
relative to the baseline, while using the lidar directly does
not change the detection performance compared to the base-
line, even though all depth metrics are close to zero2.

Removing depth prediction altogether does not affect
object detection performance The results above lead us
to hypothesise that accurate monocular depth is not lever-
aged in camera-lidar fusion methods based on the Lift-Splat
projection. To test this, we remove the monocular depth
prediction completely and replace the projection (1) by

Projno-depth = Splat
�
F ′cam ⊗ 1

�
, (3)

where we denote by 1 the tensor of the same shape as D
with all entries equal to 1. This projects the camera features
to all depths uniformly. Strikingly, we see in Fig. 1 (right)
that removing monocular depth estimation does not lead to
a degradation in object detection performance, suggesting
that accurate depth estimation is not a key component of this
method. We hypothesise that the importance of monocular
depth is greatly diminished when lidar features are available
since lidar is a much more precise source of depth informa-
tion and that the model is able to easily suppress camera
features projected at the wrong location. This suggests that
relying on monocular depth estimation could be an unnec-
essary architectural bottleneck and lead to underutilisation
of the camera.

2They are not exactly zero because of the depth quantisation introduced
by the one-hot encoding of the lidar depth, see Sec. A.1.
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4. Camera-lidar fusion without monocular
depth estimation

In this section, we present a camera-lidar fusion method that
bypasses monocular depth estimation altogether and instead
fuses camera and lidar features in bird’s-eye-view using a
simple transformer [51]. A naive application of the trans-
former architecture to the problem of camera-lidar fusion is
difficult, however, due to the large number of camera and li-
dar features and the quadratic nature of attention. As shown
in [47], it is possible to use the geometry of the problem to
drastically restrict the scope of the attention when project-
ing camera features in BEV, since camera features should
only contribute to locations along their corresponding rays.
We adapt this idea to the case of camera-lidar fusion and in-
troduce a simple method that uses cross-attention between
columns in the camera plane and polar rays in the lidar BEV
grid. Instead of predicting monocular depth, cross-attention
learns which camera features are the most salient given con-
text provided by the lidar features along its ray.

Except for the projection of the camera features in BEV,
our model shares a similar overall architecture to methods
based on the Lift-Splat paradigm [16, 31, 36] and is de-
picted on Fig. 2 left. It consists of the following modules:
the camera and lidar backbones which produce features for
each modality independently, a projection and fusion mod-
ule that embeds the camera features into BEV and fuses
them with the lidar, and finally a detection head. When con-
sidering object detection, the final output of the model is the
property of objects in the scene represented as 3D bounding
boxes with position, dimension, orientation, velocity and
classification information. In what follows we explain in
detail the architecture of our projection and fusion modules.

Projected horizon For each camera, we consider the hor-
izontal line passing through the centre of the image and the
plane corresponding to its projection in 3D. We call this
plane the projected horizon of the camera. It can easily
be described using homogeneous coordinates as the set of
points x ∈ R4 for which there exists a u ∈ R such that

Cx ∼ (u, h/2, 1), (4)

where C is the 3×4 camera projection matrix (intrinsic and
extrinsic), and h is the height of the image. Note that this
plane is not in general parallel to the BEV grid, its relative
orientation being defined by the camera’s extrinsic param-
eters. We define a regular grid on each camera’s projected
horizon that is aligned with the 2D grid of features in its
image plane by tracing out rays from the intersection of the
horizontal line with the edges of the feature columns in the
image plane, and then separating these rays into a set of pre-
determined depth bins (similarly to [31]). Features on this
grid can be represented by a matrix G ∈ RND×W , where

each row corresponds to a specific column in the camera
feature map F cam ∈ RH×W×C . The geometry of a pro-
jected horizon can be seen in Fig. 2 (left, inset). The pro-
jected horizon allows for a consistent definition of depth
between differently pitched cameras.

Correspondence between projected horizons and BEV
grid We can easily define a correspondence between
points on a projected horizon and points on the BEV plane
by projecting them along the z-direction in 3D space. As
cameras are in general tilted with respect to the ground, this
correspondence depends on each camera’s extrinsic param-
eters. We transfer lidar features from the BEV grid to a
camera’s projected horizon through bi-linear sampling of
the BEV grid at the locations of the down-projected cell-
centers of the projected horizon. We call this process “lift-
ing” and denote it as Lifti for the projected horizon of cam-
era i. Similarly, camera features can be transferred in the
opposite direction, from a projected horizon to the BEV
grid, by bi-linearly sampling the projected horizon at the
locations of the projected cell-centers of the BEV grid. We
denote this operation as Splati, similarly to [31, 36, 41].
Fusion of lidar features with splatted camera features takes
place in BEV space, as is common [31, 36].

Lift-Attend-Splat Our projection module is depicted in
Fig. 2 (right) and can be broken down into three simple
steps: (i) we first lift the BEV lidar features Blid onto the
projected horizon of camera i, producing “lifted” lidar fea-
tures B̃lid

i , (ii) we then let the “lifted” lidar features attend
to the camera features in the corresponding column using a
simple transformer encoder-decoder, producing fused fea-
tures B̃fus

i on the ith projected horizon, and finally (iii) we
splat these features back onto the BEV grid to produce Bfus

i .
During the attend step, the camera features in each column
are encoded by a transformer encoder E and passed as keys
and values to a transformer decoder D which uses the frus-
tum lidar features as queries. The result of these three steps
can be written as

Bfus
i = Splati

�
D

�
Lifti

�
Blid� , E (F cam

i )
��

, (5)

where Lifti and Splati project the BEV features onto the
projected horizon of camera i (and vice versa) as described
above. Finally, we apply a simple fusion module where we
sum the projected features from different cameras together,
concatenate them with the lidar features and apply a con-
volutional block to obtain the final features in BEV. This
simple architecture allows the camera features to be pro-
jected from the image plane onto the BEV grid without re-
quiring monocular depth estimation. We share a single set
of transformer weights across all column-frustum pairs and
cameras. For simplicity, we use here a single transformer
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Figure 2. Lift-Attend-Splat camera-lidar fusion architecture. (left) Overall architecture: features from the camera and lidar backbones
are fused together and merged before being passed to a detection head. (inset) Geometry of our 3D projection: the “Lift” step embeds
the lidar BEV features into the projected horizon by lifting the lidar features along the z-direction using bilinear sampling. The “Splat”
step corresponds to the inverse transformation in that it projects features from the projected horizon back onto the BEV grid using bilinear
sampling, again along the z-direction. (right) Details of the projection module: the “Attend” step in our method lets the lifted lidar features
B̃lid

i attend to the camera features F cam
i in the corresponding column using a simple encoder-decoder transformer architecture to produce

fused features D(B̃lid
i , E(F cam

i )) in frustum space.

encoder and decoder but show in Sec. 5.4 that adding more
can be beneficial. All camera features participate in our at-
tention, not just a small number of reference points as is the
case in [28]. This learnt set of salient features initialises
our object detection queries, rather than the fixed maxpool
of [1].

Attention vs depth prediction It is worth discussing how
our approach differs from predicting monocular depth di-
rectly. When using monocular depth, each feature in the
camera feature map is projected into BEV at multiple loca-
tions weighted by a normalised depth distribution. This nor-
malisation limits each feature to be projected either into a
single location or smeared with lower intensity across mul-
tiple depths. However, in our approach, the attention be-
tween camera and lidar is such that the same camera feature
can contribute fully to multiple locations in the BEV grid.
This is possible because attention is normalised over keys,
which correspond to different heights in the camera feature
map, rather than queries, which correspond to different dis-
tances along the ray. Furthermore, our model has access
to lidar features in BEV when choosing where to project
camera features, which gives it greater flexibility. Finally,
our projection requires fewer parameters than competing
methods: 0.9M for our attention-based module compared
to 1.6M in the equivalent component of [36].

5. Experiments

We measure the effectiveness of our approach against re-
cent camera-lidar fusion methods that use the Lift-Splat
paradigm [31, 36]. In all of our experiments, we concen-
trate on 3D object detection using the nuScenes dataset [2],
which is a large-scale dataset for autonomous driving. We
use the nuScenes detection score (NDS) and mean average
precision (mAP) as evaluation metrics. We do not consider
the extension of [31, 36] presented in [16] as it introduces
two supplementary dense depth supervision losses on the
camera path to significantly boost the performance of the
underlying methods. In this work, we use solely the 3D
object detection losses present in [1, 31, 36] and leave ap-
plying the framework of [16] to our method for future work.

Overall architecture We use Dual-Swin-Tiny [30] with
a feature pyramid network [32] and VoxelNet [70] as our
camera and lidar encoders respectively. Our object detec-
tion head is the transformer-decoder-based module from
TransFusion-L [1]. We use our Lift-Attend-Splat method,
described in Sec. 4, to project camera features into BEV
space. We then fuse camera and lidar features using sim-
ple concatenation and convolution. Following [36] the RPN
part of VoxelNet is applied to the merged feature. We ablate
alternative choices for the fusion architecture in Sec. 5.4.
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Implementation details Inputs to the camera encoder
have resolution 800x448, which it downsamples by 8x into
per-camera feature maps of shape 100x56. For VoxelNet,
we follow the settings of [31]. We set a maximum of 90k
non-empty voxels during training, increased to 180k for in-
ference. We use an ego-centric BEV grid with dimensions
108m × 108m and 0.075m cell size. This is downsampled
8x by the lidar encoder to the 180× 180 grid into which the
camera features are projected. We construct the intermedi-
ate projected horizon with 143 uniformly spaced depth bins
ranging from 1m to 72m. For the projection of camera fea-
tures into BEV, we use the original transformer [51] as our
encoder-decoder architecture, with one encoder layer, one
decoder layer, dmodel = 256 and dff = 512. We replace the
ReLU [39] activation function with GeLU [15], use learn-
able position embeddings [11] in place of sinusoidal encod-
ings and normalise features before each sublayer [60]. We
tie the parameters in each of the 8 heads of our attention
blocks. For the object detection head, we use 200 and 300
queries during training and inference respectively.

Training details Our lidar backbone is pretrained on 8
GPUs with batch-size of 1/GPU following the schedule pre-
sented in [1], with CBGS [71] and copy-paste augmenta-
tion [63]. We initialise the camera backbone with weights
pretrained on nuImages [2] by [31]. We freeze the lidar
backbone and train the camera backbone, projection, fu-
sion and detection head for 20 epochs using 8 GPUs with
a batch size of 4/GPU. We use the AdamW optimiser [37]
with a maximum learning rate of 5 × 10−5 for the camera
backbone and 1× 10−3 for all other components. We apply
the following augmentations: mirroring in the Y dimension,
global rotation and scale, and camera-lidar copy-paste [53].

5.1. 3D object detection

We present results for the task of 3D object detection on
Tab. 1. Compared to baselines based on the Lift-Splat pro-
jection [31, 36], our method shows improvements on the
validation and test splits of the nuScenes dataset. In par-
ticular, we show substantial improvements in both mAP
(+1.1) and NDS (+0.4) on the test split. The lidar back-
bone is frozen and similar in those approaches, showing
that our model is better able to leverage camera features.
Our method outperforms the more recent fusion algorithms
TransFusion, DeepInteraction, and FUTR3D by a substan-
tial margin, performs similarly to UniTR and MSMDFu-
sion, and slightly underperforms CMT. These results show
that our simple modification of BEVFusion is successful in
raising its performance on par with recent SOTA methods.
We leave extending our method with multi-scale feature fu-
sion (used by MSMDFusion) and query denoising (used by
CMT) to future work. Per-class object detection results and
comparisons can be found in Tab. S2 and Sec. B.1.

val. test
mAP NDS mAP NDS

BEVFusion [36] 68.5 71.4 70.2 72.9
BEVFusion [31] 69.6 72.1 71.3 73.3
FUTR3D [5] 64.2 68.0 69.4 72.1
TransFusion [1] 67.5 71.3 68.9 71.6
DeepInteraction [66] 69.9 72.6 70.8 73.4
MSMDFusion [21] - - 71.5 74.0
CMT [62] 70.3 72.9 72.0 74.1
UniTR [55] 70.5 73.3 70.9 74.5
Ours 71.2 72.7 71.5 73.6
Ours w/ TFA 72.1 73.8 - -
BEVFusion‡ [36] 73.7 74.9 75.0 76.1
Ours‡ 74.6 75.1 - -
Ours w/ TFA‡ 75.7 76.0 75.5 74.9

Table 1. Object detection performance on the validation and test
splits of the nuScenes dataset. TFA: Temporal Feature Aggrega-
tion. ‡ denotes test-time augmentations and model ensembling.

We can analyse further the performance of our model
by clustering objects together depending on their distances
from the ego and on their sizes, see Fig. 3. We see that
the bulk of the improvements comes from objects located at
large distances and of small sizes. These are situations for
which monocular depth estimation is particularly difficult
which could explain why our model fares better in these
cases. Note that even though far-away and small objects
contain fewer lidar points, our model is still able to leverage
camera features effectively even though the context given
by the lidar is weaker.

We show results that use test-time-augmentations (TTA)
and model ensembling at the bottom of Tab. 1. We per-
form TTA over a combination of mirror and rotation aug-
mentations and ensemble models with cell resolutions of
0.05m, 0.075m and 0.10m. We first apply TTA at each
cell resolution and then merge the resulting boxes using
Weighted Boxes Fusion (WBF) [50]. Unsurprisingly, our
method shows excellent scaling for these techniques and
outperforms BEVFusion [36] on the nuScenes validation
set. More details can be found in Sec. B.3.

5.2. Qualitative analysis

We visualise where camera features are projected onto the
BEV grid and compare our method to BEVFusion [36].
For our method, we examine the attention map of the fi-
nal cross-attention block in the transformer, averaged over
all attention heads. For BEVFusion, we use the the monoc-
ular depth estimate to establish the strength of correspon-
dence between positions in camera and BEV space. We
consider only the pixels corresponding to ground-truth ob-
jects when calculating the total weight of projected camera
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Figure 3. Object detection performance measured using mAP for
objects at different distances from the ego and of different sizes.
Our model consistently outperforms baselines based on Lift-Splat,
especially at large distances and for small objects.

features in BEV, see Sec. B.2 for details. As can be seen in
Fig. 4a, our method places camera features predominantly
in regions where ground-truth bounding boxes are present.
This indicates that it can effectively leverage the lidar point
cloud as a context to project camera features at the relevant
location in BEV. Compared to BEVFusion shown in Fig. 4b,
the distribution of features appears more narrowly localised
and stronger around objects. This could be because our
projection mechanism does not require the weights of the
camera features to be normalised along their ray, giving our
model more flexibility to place features at the desired lo-
cation. Note that, even though our method also projects
camera features outside of ground-truth boxes in BEV, the
strength of the activation in these regions is suppressed by
the fusion module, see Fig. S4. This is consistent with our
findings in Sec. 3, where we showed that the latter part of
the model can effectively suppress camera features at the
wrong location. More examples can be found in Sec. B.2.

We further explore which pixels in the camera images
are most attended to using saliency maps [49]. These
are derived by computing the gradient of the maximum
class logit with respect to a camera image Ij , given ob-
ject query index i and probabilities z, as ∂zi,ĉ/∂I|Ij where
ĉ = argmaxc zi,c. They allow us to visualise the contribu-
tion of individual pixels to the final detection for a selected
object, see Fig. 4c. Interestingly, we observe that when
trained with both camera and lidar, our model tends to se-
lect camera features at different locations than when trained
with cameras only. In the absence of lidar, our method se-
lects camera features across the entirety of the object, while
in the presence of both lidar and cameras, the model selects
camera features mainly from the upper part of the object.
We observe that this pattern is mostly prevalent for objects
close to the ego which are well-represented by lidar point

mAP NDS
Fusion module Cat+Conv 70.43 71.9

Gated sigmoid [31] 70.12 71.9
Add 70.32 72.1

# decoder blocks∗ 1 block 70.29 71.9
2 blocks 70.40 72.0
4 blocks 70.49 71.9

# TFA frames 1 frame (no TFA) 71.2 72.8
2 frames 72.1 73.3
3 frames 72.1 73.8

Table 2. Impact of model modifications on 3D object detection
performance: (i) feature fusion module, (ii) number of transformer
decoder blocks in the “Attend” stage, (iii) number of frames in
Temporal Feature Aggregation (TFA). ∗ frozen camera backbone.

clouds but fades away for far-away objects or objects with
few lidar points such as pedestrians, see Fig. S2 for more
examples. We hypothesise that our projection architecture
enables the model to select camera features that best com-
plement the information encoded in lidar, resulting in differ-
ing attention patterns between camera-only and fusion set-
tings. This pattern is less present in BEVFusion [36], which
attends to the broader neighbourhood of pixels surrounding
the selected object in both cases.

5.3. Temporal feature aggregation

Because our method fuses camera and lidar features onto
a BEV grid, we can easily leverage past information us-
ing temporal feature aggregation (TFA). To achieve this,
we implement the simple autoregressive procedure of
VideoBEV [13] but aggregate the fused BEV features Bfus.

instead of the camera features. Our method is as follows: (i)
save the fused BEV features from the previous timestep, (ii)
apply ego motion compensation to align these features with
the current timestep, using bilinear sampling to construct
the new feature grid, (iii) concatenate these features with
the fused BEV features of the current timestep and merge
them using a simple 3× 3 convolutional block.

We train TFA models on sequences of 3 frames for 10
epochs starting from our single frame model’s object de-
tection head, lidar and camera backbones. During training,
the lidar and camera backbones are frozen. For inference,
we accumulate BEV features for the entire length of a run,
yielding detections at each time step. Table 1 shows that
temporal feature aggregation boosts object detection perfor-
mance significantly in all configurations.

5.4. Ablation experiments

We ablate some design choices for our method and show
their impact on object detection performance on Tab. 2. All
ablation experiments use a simpler training schedule with
10 epochs, batch accumulation instead of full batch training
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Figure 4. (a, b) Visualisation of where camera features of ground-truth objects are projected onto the BEV grid for our method compared
to BEVFusion [36]. We observe that our method is able to place camera features around objects more narrowly than BEVFusion, which
is based on monocular depth estimation. (c) Comparison of saliency maps, cropped to aid visualisation, given the camera image (top) for
models trained with camera-lidar (middle) and camera only (bottom). When trained with both camera and lidar, our model selects camera
features in an area that is different than when trained with camera only, while [36] behaves similarly in both settings.

and no camera augmentations. We first analyse the effect
of different fusion modules: we compare a simple skip con-
nection (add), a small concatenation and convolution layer
(Cat+Conv as in [36]) and a gated sigmoid block [31]. We
find all perform similarly, with Cat+Conv achieving the best
mAP, contrary to findings of [31]. We also ablate the num-
ber of transformer decoder blocks in the “Attend” stage of
our projection and show that increasing their number leads
to a small improvement in mAP. This suggests that our
method’s performance scales with compute. We use a sin-
gle decoder block in our main experiments to balance qual-
ity and performance. Finally, we see good improvement in
NDS with an increasing number of frames in TFA during
training.

6. Conclusion

In this work, we analysed the role of monocular depth pre-
diction in recent state-of-the-art camera-lidar fusion meth-
ods and showed that, surprisingly, improvements in depth
estimation did not lead to better object detection perfor-
mance. Strikingly, we also showed that removing depth
estimation altogether did not worsen performance signifi-
cantly. This led us to hypothesise that relying on monocu-
lar depth estimation could be an unnecessary architectural

bottleneck when fusing camera and lidar, and prompted
us to introduce a novel fusion method that directly com-
bines camera and lidar features using a simple attention
mechanism. Compared to projecting camera features us-
ing monocular depth, our method allows camera features to
contribute to multiple locations in BEV space and gives our
model greater flexibility to select complementary camera
and lidar features. Finally, we validated the effectiveness of
our method on the nuScenes dataset and showed that it im-
proves object detection performance over baselines based
on monocular depth estimation and showcased the role of
attention as a key contributor to these improvements. We
leave detailed investigation of our model in the camera-
only setting and inclusion of radar as future work. We hope
that our findings will motivate discussions around the role
of monocular depth prediction in camera-lidar fusion and
prompt further developments in multimodal perception.
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