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Abstract

Recent cutting-edge methods for 3D object detection on
point clouds are based on supervised learning methods. As
these methods demand an extreme volume of data with the
highest quality to train on, cost-effective annotation plays a
crucial role in developing such perception algorithms, e.g.,
for autonomous vehicles or robots. Every inconsistency or
error between the data captured by sensors and the subse-
quently generated labels might degrade the potential detec-
tion performance. Nevertheless, resources for annotation
are usually very limited in terms of budget and time. We pro-
pose a straightforward yet highly effective technique called
Click, Crop, and Detect (CCD) to address this issue. The
core concept of CCD involves leveraging human input first
to generate a prior rough localization of each object and
employing 3D object detectors on a simplified cropped re-
gion of interest. We evaluate CCD across popular detectors
such as PointPillars, CenterPoint, and TED on nuScenes
and KITTI. Here, we show that only marginal changes to
existing off-the-shelf detectors are required to make them
compatible. Our method consistently outperforms state-of-
the-art one-click detectors by 7.89% and 10.45% for cars
and pedestrians, respectively, while being much more ro-
bust and precise on challenging, sparse inputs. This heav-
ily increases label quality and efficiency when applied for
semi-automated ground truth annotation.

1. Introduction

In recent years, the annotation of 3D objects in point clouds
and its automation has received significant attention. High-
quality 3D datasets are among the most essential sources
for the ongoing development of environmental perception
algorithms, e.g., in Autonomous Driving, as most of these
methods are based on deep neural networks [26]. In other
words, a vast amount of labeled data samples are needed to
train and optimize such methods. Nonetheless, those sam-

Figure 1. CCD Overview: The annotator clicks in the 3D point
cloud on the center of an object he wishes to annotate. The point
cloud is now cropped around the annotator’s click and processed
by the 3D object detector. This is repeated for each object in the
scene, resulting in accurate 3D bounding boxes for the whole point
cloud.

ples must also be labeled accurately to avoid inconsistencies
affecting the resulting model performance. In addition, the
entire annotation process is very limited in terms of time
and cost, while, in contrast, the latest dataset generations
are on a completely different scale in terms of size [1, 45].
A handful of approaches are trying to reach full automa-
tion with only little or no supervision. Still, they are usually
prone to errors in their labels, suffering from inaccuracies
of the underlying algorithms [57]. Therefore, the majority
of existing labels in this domain are partially or even com-
pletely manually generated by skilled human annotators. A
lot of research has been done on making the job of the anno-
tator easier, including automatic annotation, single click ap-
proaches, or research on UI aspects of the tool [20, 50, 51].
On the one hand, if the tool is completely manual annota-
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tion, with no automation, time is lost in the process of cre-
ating the labels. On the other hand, reliability is always an
issue if the tool annotates automatically without any human
in the loop. Therefore, a human annotator would have to
check the annotations individually anyway and make nec-
essary corrections. Moreover, [19] shows that the multiple
tasks of the annotators slow them down and, at the same
time, make them more prone to errors. Experiments done
by [75] show that it took their best annotator 2 hours 30
minutes, 4418 clicks, and 1488 keystrokes to annotate 395
cars from a sequence in the nuScenes dataset [4]. Thus, we
find an ideal trade-off would be a quick annotation tool that
smartly interacts with a human in the loop.

To this end, we propose Click, Crop, and Detect (CCD),
a semi-automated labeling pipeline aiming to alleviate the
difficulty of ground truth annotation using both a human an-
notator and machine learning algorithms to provide accurate
3D ground truth boxes quickly and easily (see Figure 1). By
initially transferring the task of localizing objects across a
whole scene to a skilled human annotator, we significantly
simplify the remaining task for the algorithm, reducing the
overall manual effort in the best case to only one single click
to annotate a full 3D object. At the same time, we show this
design allows the reuse of existing 3D detectors with min-
imal effort while boosting their performance by 7.32% for
cars and 38.4% for pedestrians. We focus on optimizing the
performance of one-click detection throughout this paper,
but our proposed method can easily be plugged into tools
with even more sophisticated annotation features.

In summary, our main contributions are the following:
• We propose to customize 3D object detectors for one-

click detection that are used for semi-automated annota-
tion. We set a new state-of-the-art, showing the effective-
ness of our design.

• We introduce a mathematical model to simulate human
click behavior using existing annotations and practically
compare them with actual clicks. It can be used to adapt
3D object detectors and remove the need to gather human
clicks for existing datasets.

• We conduct a comprehensive analysis and demonstrate
that individual difficulties in the 3D detection task are
successfully transferred to humans, leading to signifi-
cantly higher performance than baseline 3D detectors and
existing one-click methods.

• We provide rich insights with additional experiments to
study the effects of the number of points per object and
further click simulation models.

2. Related Work

2.1. 3D Object Detection on Point Clouds

Current 3D object detectors are usually categorized accord-
ing to the structure of how they process the point clouds,

namely point-based and grid-based. In many cases, point-
based methods [35, 40, 42, 43, 60, 61] originate from Point-
Net [33, 34] for feature extraction. In contrast, grid-based
approaches first transform the point clouds into 3D voxels
[6, 9, 27, 54, 56, 63, 65, 70–72], pillars [18, 52], bird’s-eye
view representations [44, 58], or range-images [7, 28, 46],
heavily inspired by related architectures from vision. Hy-
brid approaches [3, 15, 41, 60, 73] are also utilized trying
to leverage both advantages. More recently, transformer-
based architectures also show great potential featuring the
attention mechanism [8, 14, 25, 30, 39, 47, 64]. In addition,
multi-frame detectors [5, 16, 62, 65, 74] can achieve a sig-
nificantly increased performance by concatenating multiple
point cloud inputs.

2.2. Ground Truth Annotation on Point Clouds

Research in ground truth annotation on point clouds aims to
mitigate the expenses and can be broadly classified based on
the level of human interaction. First, approaches with little
or no human supervision, sometimes called off-board detec-
tion [10, 24, 36, 55, 57, 59], utilizing the temporal context
with trajectory level refinement, offline tracking, and multi-
frame detectors. Then, there are works which concentrate
on easing the task of manual annotation by user-friendly
interfaces [2, 20, 50, 75] and numerous assistance tech-
niques exploring self-, weak-supervision or active learning
[11, 19, 31, 32, 66–69].

Semi-automated methods automate certain parts of the
annotation process but often require complete human atten-
tion. Here, the majority of work concentrates on single-
click annotation employing different techniques. LATTE
[50] uses a clustering-based method for one-click annota-
tion by fitting a rectangle with the points around the click
and predicting a 2D box in bird’s-eye view space. SAnE
[2] improves LATTE by using a denoising pointwise seg-
mentation method to eliminate the need for sensitive ground
plane removal. SUSTechPOINTS [20] places box proto-
types around the recorded human click, followed by an Eu-
clidean distance-based growing algorithm to cover all the
points of the object and an auto-fitting algorithm to shrink
the box to its actual size. Similarly, [19] proposes a three-
stage processing based on handcrafted box templates using
elements from PointNet [33]. Furthermore, [29] leverages
YOLOv3 [37] for detection in bird’s-eye view space.

Inspired by the abovementioned one-click methods, we
propose replacing all handcrafted and multi-stage process-
ing steps with just a single 3D detector sequentially applied
to the region of interests defined by single clicks. In this
way, a simple processing chain with fewer restrictions or
assumptions is ensured while utilizing all the advantages of
modern detectors. Plus, simplifying the inputs also leads to
remarkable improvements in performance and is therefore
better suited to automate labeling.
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3. Click, Crop, and Detect (CCD)
The core idea of CCD is to significantly reduce the com-
plexity of the input point clouds from scene level to object
level through interaction with a human annotator. By having
the human annotator click on the 3D point cloud, the model
gets prior information on where to look for the object. Our
method consists of three sequential steps: getting the prior
of an object center by a human click or sampled from a ran-
dom distribution (see subsection 3.1), cropping the region
of interest centered to this prior (see subsection 3.2), and,
finally, detecting the underlying object (see subsection 3.3).
To this end, we aim for minimal modification to easily adapt
existing detectors. An overview of the entire pipeline is
shown in Figure 2.

3.1. Click

Given the height of the origin of the point cloud rela-
tive to the ground zpcl, we aim to obtain pivot points
p = (xp, yp,−zpcl), p ∈ R3 close to the object centers. Ob-
taining the needed prior coordinates (xp, yp) can be divided
into two paths: human-in-the-loop and simulation.

Human-in-the-loop. A human annotator is tasked to
click on the perceived center of a target object in a bird’s-
eye view rendered on a screen. The resulting (u, v) co-
ordinates are then back-projected into 3D using the ortho-
graphic projection matrix M by p = M−1[u, v,−zpcl, 1]

T ,
omitting the homogeneous dimension. To support this, an-
notation tools usually provide further features like image
views or other automation features (see subsection 2.2).
However, it is not necessary to click very precisely on the
center as the following processing can handle some offsets.
Note that errors from quantisation are also ignored.

Simulation. Obtaining clicks for every object across a
whole dataset is a very tedious and costly job. However, for
training and validation of the object detectors such clicks
are necessary in a large variety to get the best results. Yet,
inspired by [17] existing ground truth objects can be reused
as an approximate value instead. This allows a simulation
of human clicks. Given a ground truth box with center
(cx, cy, cz) and yaw rotation Ψ, we consider two variations
to simulate a pivot point p close to that from human clicks.
For the first variation, we draw

(xp, yp) ∼ N
(
[cx, cy]

T , R(Ψ)ΣR(Ψ)T
)

(1)

from the normal distribution N , where R describes a
two-dimensional rotation, and

Σ =

[
(a3 )

2 0
0 ( b3 )

2

]
with a and b referring to the maximum offsets to the box
center in the two main axes respectively. To prevent too far

away outliers, we omit p if

((xp − cx) cos(Ψ) + (yp − cy) sin(Ψ))2

a2
+

((xp − cx) sin(Ψ)− (yp − cy) cos(Ψ))2

b2
> 1 ,

(2)

so if it is outside the 3σ confidence interval ellipse. Thus,
the simulated points are oriented along the heading of the
ground truth box Ψ.

As an alternative, we consider a rotation R(α) instead
of R(Ψ) with α = arctan2(cy, cx). Thereby, the simulated
points are oriented along the line of sight between the origin
of the point cloud and the object center.

3.2. Crop

Based on a pivot point p, the region of interest Ω can be
selected. All points from the input point cloud P ∈ R3

within the volume around (xp, yp) are cropped, while all
other points are discarded:

PΩ ={[x, y, z, i]T ∈ P |

x ∈ [xp −
w

2
, xp +

w

2
], y ∈ [yp −

h

2
, yp +

h

2
]} ,

(3)
where w is the width and h the height of the cropped

region. Both can be defined per object class taking vari-
ous aspects into account. For instance, they can be aligned
with the architecture and configuration of the subsequent
detector, i.e. the number of downsampling operations or the
detection range, as well as potential augmentations during
training to ensure full coverage of the target object (see sub-
section 4.1 for more details).

3.3. Detect

Finally, the cropped set of points PΩ is sent to a 3D object
detector to estimate the bounding box accurately. We utilize
the well-established detectors PointPillars [18], CenterPoint
[65], and TED [54] as baselines. Here, only minor changes
in the configuration are needed to allow their usage even for
the two-stage approach TED while all architectural details
remain.

Preliminary. PointPillars (PP) [18] divides the point
clouds into pillars, i.e. vertical columns along the z-axis.
An encoder learns the features from the stacked vectors of
these pillars. Lastly, the detection head [23] utilizes the ex-
tracted features to predict 3D bounding boxes.

CenterPoint (CP) [65] proposes representing 3D objects
as points, i.e., first detect the object center and then esti-
mate the size, orientation, and velocity through regression.
Subsequently, these estimations are refined using additional
point features associated with the object.
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Figure 2. Overall architecture of CCD. First, (xp, yp) coordinates referencing an object center are generated either manually by an annotator
or sampled from a distribution based on ground truth. Second, this point is used to crop the input point cloud. Finally, a 3D detector [18, 54]
outputs a 3D bounding box, which is then transformed back into point cloud coordinates. The workflow is repeated for all objects.

TED [54] first applies a shared feature encoding on mul-
tiple transformed point clouds. Cross-grid attention is uti-
lized to align and aggregate those features into a lightweight
representation followed by a detection head.

Modifications to the one-click setting. Compared to the
originals, the input voxel resolution is reduced due to the
smaller detection range defined by w and h. At the same
time, this allows to maintain smaller cell sizes dropping
fewer points for more descriptive features. Furthermore,
all multi-heads are removed except the one for the partic-
ular class. This is perfectly aligned with the annotation use
case, as different models or even sets of weights can be used
without any issues. Finally, we filter the predictions using
only the one with the highest confidence. Only these small
adjustments are necessary to significantly impact detection
performance. This also ensures that emerging models can
easily be integrated into our method.

4. Experiments

Numerous experiments are conducted to assess the perfor-
mance of our models across various datasets and metrics.
We also compare our performance quantitatively and qual-
itatively with existing one-click annotation methods. Ad-
ditionally, ablation studies are conducted to gain further
insights and investigate the performance changes with the
number of points per object and different distributions and
shapes utilized in the click simulation.

4.1. Experimental Setup

Dataset and Metrics. We use the two popular large-scale
autonomous driving datasets nuScenes [4] and KITTI [13]
with more than 1.4M and 80k 3D bounding boxes, respec-
tively. All experiments are carried out on the official train
and valid splits for nuScenes, and for KITTI, we follow re-
cent work [54].

Following the datasets and competing one-click methods
[2, 19, 50], two criteria are used to consider predictions as
positive: the Intersection over Union (IOU) with varying
thresholds of 0.25, 0.5, 0.7, and using the centroid distance
with a threshold of 0.5 meters. We do not use any other
benchmark-specific conditions unless otherwise mentioned.
The Average Precision (AP) is utilized to evaluate the mod-
els for both criteria.

While the nuScenes Detection Score (NDS) [4] has
demonstrated a strong correlation with driving performance
in evaluating 3D object detection models [38], it is not fully
applicable here. Among its six components, velocity error
and attribute error are not relevant, as they rely on temporal
information regarding objects and the ego vehicle.

Implementation details. Our baselines and models are
re-implemented from the OpenPCDet [48] and the TED
[53] code bases. We evaluate for two classes: cars and
pedestrians. In the one-click setting, only one sweep of the
nuScenes LiDAR point cloud is utilized, whereas baseline
detectors leverage multiple sweeps. Separate models are
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Model Dataset

Car Pedestrian
IOU >0.7 IOU >0.5

mIOU↑
IOU >0.5 IOU >0.25

mIOU↑AP↑
(%) Recall↑ AP↑

(%) Recall↑ AP↑
(%) Recall↑ AP↑

(%) Recall↑

PP [18] Full 62.60 0.71 86.40 0.91 0.76 25.20 0.51 52.30 0.79 0.46
CP [65] Full 68.30 0.76 88.90 0.94 0.75 38.20 0.59 70.80 0.93 0.39

TED [54] Full 74.80 0.80 88.80 0.94 0.78 54.00 0.75 67.90 0.91 0.52

One-click setting

LATTE [50]∗ Partial - - (78.80) (0.85) (0.83) - - - - -
SAnE [2]∗ Partial - - - (0.81) (0.74) - - - - -

Leveraging [19]∗ Full - - 88.33 - 0.70 - - 88.73 - 0.47
CCD PP Full 54.00 0.62 94.60 0.96 0.72 53.10 0.70 97.70 0.99 0.56
CCD CP Full 48.60 0.62 89.00 0.92 0.71 50.80 0.68 98.00 0.99 0.53

CCD TED Full 78.10 0.80 95.30 0.95 0.79 70.50 0.78 90.80 0.92 0.62

Table 1. Performance of the baseline 3D detectors, one-click models, and CCD on the KITTI valid dataset based on different IOU metrics.
Results marked with ∗ are from the respective papers. Values in parentheses denote results for BEV IOU metric, while others are 3D IOU.

adopted for each class, as the annotator can quickly recog-
nize and select which object they will annotate. The model
was also evaluated for the simultaneous handling of both
classes. However, the results are less satisfactory than when
the classes are trained separately. Also, employing differ-
ent models offers flexibility in optimizing voxel sizes, point
cloud ranges, and detectors tailored to achieve optimal per-
formance for each object class. Further, object samples are
randomly rotated across 360◦ for augmentation. An aver-
age car in the nuScenes dataset has a length and width of
4.65 and 1.95 meters, respectively. To have a realistic di-
mension of the ellipse centered at the car, we chose a = 1
and b = 0.5 meters. For pedestrians, we used a circle of
radius a = b = 0.3 meters. For the nuScenes dataset, the
detection range is constrained to ±50 meters for cars and
±40 meters for pedestrians, consistent with the evaluation
parameters in nuScenes [4], while no such limits are used
for KITTI.

4.2. Comparison with State-of-the-art One-Click
Detectors

As explained in subsection 2.2, one-click annotation has
been previously attempted using traditional clustering algo-
rithms. Table 1 compares the performance of the baseline
3D object detectors and the one-click methods with CCD
on the KITTI dataset. While LATTE and SAnE have only
used selected portions of KITTI to validate their model,
Leveraging and our CCD models use the entire valid sub-
set of the KITTI dataset. Our models not only clearly out-
perform the traditional one-click methods but also exhibit
notable performance improvements compared to when used
as global detectors. This improvement can be attributed to
the model’s enhanced localization, facilitated by the prior
information provided by the human click.

The challenge with using a traditional clustering algo-
rithm arises when the points fail to provide sufficient infor-
mation about the object’s shape. This issue is particularly
pronounced in LiDAR point clouds, characterized by spar-
sity and frequent occlusion, making clustering methods less
effective. Our experience with these algorithms does not re-
flect the results claimed in their work or as shown in their
examples. This can be well seen in Figure 3. All models
were run on the same data samples, and their respective one-
click methods were evaluated. It’s evident that predictions
from clustering-based algorithms are heavily influenced by
the visible points, resulting in shapes much smaller than the
ground truth. In contrast, CCD attempts to estimate the ob-
ject even in case of partial occlusion, leveraging the knowl-
edge it has gained from training data.

Another peculiarity with LiDAR point clouds is the
prevalence of ground points. These points must be removed
for the clustering algorithm to work as expected. While
SAnE utilizes a denoising pointwise segmentation strategy
and SUSTechPoints filters out points below 0.2 meters in
the z-axis, the ground plane removal of LATTE is not pub-
licly available. Nevertheless, after trying various methods,
we found that a RANSAC-based algorithm [12] yields the
best results for removing ground points before applying
the clustering algorithm provided by LATTE. In contrast,
our deep learning-based approach does not vary regarding
ground point removal.

Practical difficulties with other methods. Three no-
table aspects are worth mentioning: firstly, LATTE provides
only 2D bounding boxes, whereas other models provide a
3D bounding box. Secondly, our model’s results are ob-
tained using a simulated click with added noise. In contrast,
the other models are simulated to be clicked precisely at the
center of the ground truth box. Lastly, for the SUSTech-
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Figure 3. Qualitative comparison of the predictions on samples from nuScenes valid using LATTE [49, 50], SAnE [2, 22], SUSTech-
POINTS [20, 21], and CCD. Note that LATTE only outputs a 2D box in bird’s-eye view space. The last row shows predictions (green)
from CCD and ground truth (red) of different samples from pedestrians.

POINTS model, the point cloud requires rotation to ensure
the target object faces either upward or downward, as spec-
ified in their instructions [21]. Although they rely on a ma-
chine learning model to predict the yaw, their model’s per-
formance suffers significantly without this axis alignment.
Our approach avoids this additional effort for the human an-
notator, as only a single click is required, albeit close to but
not necessarily at the center.

4.3. Ablation Studies

Number of points per object. The performance of the de-
tection model is significantly influenced by the number of
points as shown in Figure 4. It can be observed that the
average precision of the models improves at different IOU
thresholds with a higher number of points per object.

Table 2 compares the average precision (AP), average
translation error (ATE), average scale error (ASE), and av-
erage orientation error (AOE) of global detector models
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Model Car Pedestrian
AP↑ (%) ATE↓ ASE↓ AOE↓ AP↑ (%) ATE↓ ASE↓ AOE↓

PP [18] 72.18 0.186 0.159 0.102 73.57 0.157 0.282 0.393
CCD PP 97.10 0.181 0.170 0.066 100.00 0.121 0.346 0.615

CCD PP 15 98.80 0.154 0.157 0.042 100.00 0.121 0.304 0.565
CCD PP 30 99.50 0.138 0.150 0.035 100.00 0.121 0.294 0.547

Improvement +27.32 +0.048 +0.009 +0.067 +26.43 +0.036 -0.012 -0.154
CP [65] 71.87 0.189 0.154 0.222 78.40 0.173 0.277 0.441
CCD CP 95.90 0.180 0.169 0.088 100.00 0.087 0.294 0.675

CCD CP 15 98.20 0.148 0.154 0.062 99.90 0.081 0.280 0.840
CCD CP 30 99.40 0.132 0.149 0.051 99.80 0.081 0.272 0.813

Improvement +27.53 +0.057 +0.005 +0.171 +21.50 +0.092 +0.005 -0.372

Table 2. Performance of baseline 3D detectors against our one-click models on the nuScenes valid dataset using the 0.5 meters centroid
distance metric. CCD is tested on objects with a minimum number of 5, 15, and 30 points with the assumption of always having even more
points when annotating a sequence of point clouds. Note that there is no publicly accessible model for TED on nuScenes.

Figure 4. Average precision for different minimum number of
points per object in the car class at various IOU thresholds.

with the same models used in CCD on the nuScenes valid
dataset. It can be seen how the predicted bounding box
tends to align more closely with the ground truth box as the
various errors get closer to 0 when more points are present
in the object. CCD demonstrates high AP due to two main
factors: first, annotator clicks tend to be close to the cen-
ter of objects, significantly enhancing localization accuracy.
Second, false positives are minimized since only the most
confident prediction is considered.

Simulated Click Variations. As explained in subsec-
tion 3.1, we simulate human clicks by drawing from a nor-
mal distribution around a ground truth object center. In ad-
dition to the angle variations already mentioned, other dis-
tributions and shapes for filtering are considered. Thus, we
also experiment with a uniform distribution, a rectangle to
filter outliers, and a clipping mechanism for the pivot point

selection. We hypothesized that annotators are more in-
clined to click towards the part of the object closer to the
ego than farther from it. Therefore, as another variation,
we introduce a clipping parameter that prevents points from
being generated beyond one standard deviation on the far-
ther side of the object from the ego vehicle. To find the
variation best matching human behavior, we collected 2000
clicks of cars and pedestrians from 10 different skilled an-
notators while annotating proprietary in-house data. Only
objects with more than 30 points were considered follow-
ing the previously shown findings.

Figure 5 shows the distributions of the actual human
clicks for cars and the mathematical models used for sim-
ulation. Looking at the results of the human clicks, a uni-
form distribution and a rectangle shape for filtering can be
quickly discarded. There is low correlation between human
clicks and generated points for objects for a fixed α angle,
and clipping does not improve point distribution alignment
with human clicks. The model generating random points
(using a Normal distribution) within an ellipse (major di-
ameter: 2 meters, minor diameter: 1 meter) rotated along
the yaw axis closely matches the distribution of the one
from humans. Acknowledging the inherent approximation
involved, we also present all the results of the experiments
with different simulations in Table 3. The consistency in
performance across different click simulation models, each
with varying levels of randomness, highlights the robust-
ness of the model in handling the diverse offsets encoun-
tered when different humans click on their perceived object
centers. Conversely, the performance improvement when an
annotator hypothetically clicks precisely at the object center
for every object is also minimal.

Limitations. Although our method performs far better
than other one-click methods, there are some limitations.
First, experiments with cross-dataset validation are seen to
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Figure 5. Comparison of collected human clicks (a, b) to various models of randomly generated points (c-f) for cars. The dotted rectangle
depicts the average car dimensions in the dataset. Only objects with more than 30 points are considered for the human clicks. The human
click distribution a) matches the best with e) a normal distribution rotated by Ψ and limited with the corresponding 3σ ellipse.

Train

Valid
α Ellipse, N α Ellipse,

Clipped N
Ψ Ellipse,
Clipped N GT centerΨ Ellipse, N

Recall↑ AP↑ Recall↑ AP↑ Recall↑ AP↑ Recall↑ AP↑ Recall↑ AP↑
α Ellipse, N 97.0 96.4 96.5 95.7 97.0 96.4 96.7 96.0 97.7 97.0
α Ellipse, Clipped N 97.3 96.7 97.2 96.6 97.4 96.8 97.3 96.6 98.1 97.5
Ψ Ellipse, N 97.8 97.3 97.4 96.8 97.8 97.4 97.6 97.0 98.2 97.7
Ψ Ellipse, Clipped N 97.3 96.7 97.1 96.4 97.4 96.9 97.4 96.8 98.1 97.6
Ψ Ellipse, U 97.6 97.1 97.4 96.9 97.7 97.3 97.7 97.2 98.1 97.7
Ψ Box, U 97.3 96.8 97.1 96.5 97.4 96.8 97.2 96.5 97.5 96.8
Ψ Box, N 97.5 97.0 97.1 96.4 97.5 97.0 97.3 96.7 97.6 96.9
Ground Truth center 89.3 86.5 86.2 83.1 91.0 88.6 90.0 87.5 97.7 97.2

Table 3. Comparative performance matrix across different shapes and distributions used to simulate the click on nuScenes. Note that the
IOU@0.5 metric is used to evaluate objects with at least 15 points. The AP and Recall values are expressed as percentages.

be poor. Even though we significantly simplify the inputs
and detection range, the model does not seem to generalize
well, e.g., when training completely on KITTI and validat-
ing the performance on the nuScenes dataset, or vice versa.
Further efforts are needed to increase the domain adaptation
capabilities.

While still more accurate than other one-click ap-
proaches, our method performs relatively poorly when
fewer points exist. This can be attributed to the learned dis-
tribution of objects in CCD but missing information at the
input level. Higher IOUs can be achieved when more points
are available. Multiple sweeps can be used to mitigate this
problem, and the time dimension can be exploited to gener-
ate objects with denser point clouds. However, this would
also have to tackle the issue of dynamic objects, leaving a
trail of points when multiple sweeps are stacked in time.

5. Conclusion
In this paper, we proposed CCD, a one-click annotation
method with human-in-the-loop, to balance automation and
the quality of the labeling results. With a single click to-
wards an object center, a region of interest is cropped,
and the object is detected leveraging state-of-the-art deep
learning approaches. In extensive experiments, we outper-
formed all existing methods quantitatively and qualitatively
and showed strengths, such as superior generalizability over
hand-crafted methods and easy expandability with new de-
tectors. Additionally, for training and validation, we in-
troduced a mathematical model to simulate human clicks
backed up by a study of human click behavior, which is
valuable for future research. We see great potential for fu-
ture work, e.g., by adopting the common practice of multi-
frame detection to enhance the density of the point clouds.
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