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Abstract

LiDAR semantic segmentation plays a crucial role in en-
abling autonomous driving and robots to understand their
surroundings accurately and robustly. A multitude of meth-
ods exist within this domain, including point-based, range-
image-based, polar-coordinate-based, and hybrid strate-
gies. Among these, range-image-based techniques have
gained widespread adoption in practical applications due
to their efficiency. However, they face a significant chal-
lenge known as the “many-to-one” problem caused by the
range image’s limited horizontal and vertical angular res-
olution. As a result, around 20% of the 3D points can be
occluded. In this paper, we present TFNet, a range-image-
based LiDAR semantic segmentation method that utilizes
temporal information to address this issue. Specifically, we
incorporate a temporal fusion layer to extract useful infor-
mation from previous scans and integrate it with the current
scan. We then design a max-voting-based post-processing
technique to correct false predictions, particularly those
caused by the “many-to-one” issue. We evaluated the ap-
proach on two benchmarks and demonstrated that the plug-
in post-processing technique is generic and can be applied
to various networks.

1. INTRODUCTION
LiDAR (light detection and ranging) semantic segmenta-

tion enables a precise and fine-grained understanding of

the environment for robotics and autonomous driving ap-

plications [2, 6, 56]. There are four categories of meth-

ods: point-based [19, 27, 28, 34, 35, 37, 40], range-image-

based [13, 15, 16, 32, 46, 54], polar-based [53] and hy-

brid methods [24, 36]. Despite point-based methods achiev-

ing remarkable scores in metrics such as mean Intersection

over Union (mIoU) and Accuracy, they tend to underper-
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Figure 1. Range-image-based methods suffer from the “many-to-

one” problem where multiple 3D points with the same angle are

mapped to a single range pixel. Marked by the red circles of frame

t0, this can cause distant terrain points (purple) to receive erro-

neous predictions from nearby billboard points (blue) when the

range image is re-projected to 3D. Furthermore, occluded points

in frame t0 become visible in t1, offering an opportunity to refine

the predictions.

form in terms of computational efficiency. In contrast, the

range-image-based methods are orders of magnitude more

efficient than the other methods as substantiated by stud-

ies [21, 41]. This efficiency is further enhanced by the direct

applicability of well-optimized Convolutional Neural Net-

work (CNN) models, which strike a balance between speed

and accuracy. Given the requirement of real-time perfor-

mance and computational efficiency for ensuring safety in

practical applications, the distinctive advantages of range-

image-based methods make them a suitable choice for Li-

DAR semantic segmentation in real-world scenarios.

However, the range view representation suffers from

a boundary-blurring effect [32, 54]. This problem exists

mainly because of the limited horizontal and vertical angu-

lar resolution: more than one point will be projected to the

same range image pixel when these points share the same
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vertical and horizontal angle. When multiple points share

identical vertical and horizontal angles, they are projected

onto the same pixel in the range image, giving rise to what

is also referred to as the “many-to-one” problem [54]. Con-

sidering that the projection computes distant points first and

near points later [32], the distant points will be occluded

by the near points. Hence, when converting the range im-

age back into 3D coordinates, which is essential for range-

image-based methods, the farther points receive the same

label as the overlapping points that are closer. This leads to

inaccuracies in the semantic understanding of the scene.

Fig. 1 offers an illustration of this problem. Imagine

that the LiDAR sensor is situated at the bottom-left of each

range image. Close to the sensor, there is a billboard col-

ored blue, and farther away is the terrain, displayed in pur-

ple. At time t0, as marked by the red circle, even though the

terrain and billboard are physically separate objects, some

points on the terrain are incorrectly labeled as part of the

billboard. This happens because these points, due to their

similar angles relative to the LiDAR sensor, get projected

onto the same pixel in the range image. Upon the movement

of the car and the consequent change in the sensor’s field of

view, we see a different scenario at time t1: the previously

mislabeled terrain points are now accurately classified. This

improvement is attributed to the fact that their angular po-

sitions relative to the LiDAR sensor have changed, allow-

ing them to avoid being hidden or masked by the billboard.

This example illustrates how the dynamic movement affects

LiDAR-based semantic segmentation and underscores the

possibility of developing reliable and adaptable methods to

tackle the “many-to-one” issue in this context.

We quantitatively assess the effects of this phenomenon

on the SemanticKITTI dataset [2, 3]. Under standard con-

ditions, where the range image dimensions are set to 64 and

2048 for height and width, respectively, it is observed that

more than 20% of the 3D points are occluded within the

range image, i.e., more than one point is projected to the

same pixel. As detailed in Tab. 3, this results in a sub-

stantial degradation of the accuracy if it is not addressed

by an additional post-processing step. Therefore, various

post-processing approaches like k-NN [32], CRF [46], or

NLA [54] have been proposed. As an example, NLA [54]

resorts to assigning the label of the closest non-occluded

point to occluded points. Nonetheless, this process necessi-

tates checking each individual point for occlusion, which

undermines the inherent efficiency of range-image-based

methods. A detailed discussion about these methodologies

can be found in Section 2.

In this work, we propose to incorporate temporal in-

formation to address the “many-to-one” challenge for Li-

DAR semantic segmentation. This is inspired by human

visual perception, where temporal information is crucial

for understanding object motion and identifying occlusions.

This is also observed in LiDAR semantic segmentation,

where heavily occluded points can be captured from ad-

jacent range image scans, as shown in Fig. 1. Based on

this intuition, we exploit the temporal relations of features

in the range map via cross-attention [17, 22, 42]. As for

the inference stage, we propose a max-voting-based post-

processing scheme that effectively reuses the predictions of

past frames. To this end, we transform the previous scans

with predicted semantic class labels into the current ego car

coordinate frame and then obtain the final segmentation by

aggregating the predictions within the same voxel by max-

voting. In summary, we make the following three contribu-

tions:

• We quantitatively and qualitatively analyze and explain

the “many-to-one” issues existing in range-image-based

methods.

• We propose TFNet, a range-based LiDAR semantic seg-

mentation method. It utilizes a temporary cross-attention

layer, which extracts informative features from previous

LiDAR scans and combines them with current range fea-

tures, to compensate for occluded objects.

• We design a temporal-based post-processing method to

solve the “many-to-one” mapping issue in range im-

ages. Compared with previous post-processing steps, our

method achieves better performance, which is verified for

various networks.

• We evaluate the proposed method on two public

benchmarks, namely SemanticKITTI [2] and Semantic-

POSS [33], where our method achieves a good trade-off

between accuracy and inference time.

2. RELATED WORK
LiDAR semantic segmentation. The LiDAR sensor cap-

tures high-fidelity 3D structural information, which can be

represented by various formats, i.e., points [34, 35, 40],

range view [13, 21, 32, 46, 54], voxels [14, 27, 55], bird’s

eye view (BEV) [8], hybrid [24, 36] and multi-modal repre-

sentations [7, 51, 56]. There are also some works [51, 56]

that fuse multi-sensor information. The point and voxel

methods are prevailing, but their complexity is O(N · d)
where N is in the order of 105 [41]. Thus, most approaches

are not suitable for robotics or autonomous driving applica-

tions. The BEV method [8] offers a more efficient choice

with O(H·W
r2 ·d) complexity, but the accuracy is subpar [21].

The multi-modal methods require additional resources to

process the additional modalities. Among all representa-

tions, the range view reflects the LiDAR sampling process

and it is much more efficient than other representations with

O(H·W
r2 · d) complexity. We thus focus on the range-view

as representation.

Multi-frame LiDAR data processing. Multi-frame infor-

mation plays a crucial role in LiDAR data processing. For

example, MOS [12] and MotionSeg3D [39] generate resid-
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ual images from multiple LiDAR frames to explore the

sequential information and use it for segmenting moving

and static objects. Motivated by these approaches, Meta-

RangeSeg [45] also uses residual range images for the task

of semantic segmentation of LiDAR sequences. It employs

a meta-kernel to extract the meta features from the residual

images. SeqOT [29] exploits sequential LiDAR frames us-

ing yaw-rotation-invariant OverlapNets [10, 11] and trans-

former networks [30, 42] to generate a global descriptor for

fast place recognition in an end-to-end manner. In addition,

SCPNet [48] designs a knowledge distillation strategy be-

tween multi-frame LiDAR scans and a single-frame LiDAR

scan for semantic scene completion. Recently, Mars3D [25]

designed a plug-and-play motion-aware module for multi-

scan 3D point clouds to classify semantic categories and

motion states. Seal [26] proposes a temporal consistency

loss to constrain the semantic prediction of super-points

from multiple scans. Although the benefit of using multi-

ple scans has been studied, these works address other tasks.

Post processing. Although range-view-based LiDAR seg-

mentation methods are computationally efficient, they suf-

fer from boundary blurriness or the “many-to-one” is-

sue [32, 46] as discussed in Sec. 1. To alleviate this issue,

most works use a conditional random field (CRF) [46] or

k-NN [32] to smooth the predicted labels. [46] implements

the CRF as an end-to-end trainable recurrent neural network

to refine the predictions according to the predictions of the

neighbors within three iterations. It does not address oc-

cluded points explicitly. k-NN [32] infers the semantics of

ambiguous points by jointly considering its k closest neigh-

bours in terms of the absolute range distance. However,

finding a balance between under and over-smoothing can be

challenging, and it may not be able to handle severe occlu-

sions. Recently, NLA [54] assigns the nearest point’s pre-

diction in a local patch to the occluded point. However, it is

required to iterate over each point to verify occlusions. In

addition, RangeFormer [21] addresses this issue by creating

sub-clouds from the entire point cloud and inferring labels

for each subset. However, partitioning the cloud into sub-

clouds ignores the global information. It can also not easily

be applied to existing networks. Some methods [1, 20, 39]

propose additional refinement modules for the networks to

refine the initial estimate, which increases the runtime. In

this work, we propose to tackle this issue by combining past

predictions in an efficient max-voting manner. Our method

complements existing approaches and can be applied to var-

ious networks.

3. PROPOSED METHOD

3.1. Network Overview

The overview of our proposed network is illustrated

in Fig. 2. Our proposed network takes as input a point

cloud P comprising N points represented by 3D coordi-

nates x, y, z, and intensity i. The point cloud is projected

onto a range image I of size H ×W × 5 using a spherical

projection technique employed in previous works [32, 46].

Here, H and W represent the height and width of the image,

and the last dimension includes coordinates (x, y, z), range

r =
√

x2 + y2 + z2, and intensity i. Next, we feed the

range image into our backbone model to obtain multi-scale

features F with resolutions {1, 1/2, 1/4, 1/8}. We employ

a Temporal Cross-Attention (TCA) layer to integrate spa-

tial features from the history frame. The aggregated fea-

tures are then fed to the segmentation head, which predicts

the range-image-based semantic segmentation logits O. For

inference, we re-project the 2D semantic segmentation pre-

diction to a 3D point-wise prediction S. Subsequently, we

propose a Max-Voting-based Post-processing (MVP) strat-

egy to refine the current prediction St by aggregating pre-

vious predictions. We describe the key components of our

network in the following sections.

3.2. Temporal cross attention

Although the range image suffers from the “many-to-one”

issue, the occluded points can be captured from adjacent

scans. This observation motivates us to incorporate sequen-

tial scans into both the training and inference stages. First,

we discuss how sequential data can be exploited during the

training stage.

Inspired by the notable information extraction ability

of the attention mechanism [42] verified by various other

works [22, 31, 44, 49], we use the cross-attention mech-

anism to model the temporal connection between the pre-

vious range feature Ft−1 and the current range feature Ft.

The attended value is computed by:

xin = Attention(Q,K, V ) = Softmax

(
Q ·KT√

df

)
V.

(1)

where Q,K, V are obtained by Q = Linearq(Ft), K =
Lineark(Ft−1), V = Linearv(Ft−1), and df is the di-

mension of the range features. We integrate a 3 × 3 con-

volution into the feed-forward module to encode positional

information as in [49] as well as a residual connection [18].

The feed-forward module is defined as follows:

xout = MLP(GELU(Conv3×3(MLP(xin)))) + xin. (2)

The TCA module effectively exploits temporal depen-

dencies in two ways. First, instead of using multiple stacked

range features [12], our method extracts temporal informa-

tion from the previous range features. This not only re-

duces computational costs but also minimizes the influence

of moving objects, which can introduce noise into the data.

Secondly, we only utilize the fusion module on the last fea-

ture level, which significantly decreases computation com-
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Figure 2. Architecture of TFNet. For a point cloud Pt, TFNet projects it onto range images It. It then uses a segmentation backbone

to extract multi-scale features {Ft}1:l, a Temporal Cross-Attention (TCA) layer to integrate past features {Ft−1}1:l, and a segmentation

head to predict range-image-based logits Ot. In inference, it refines the re-projected prediction St by aggregating the current and past

temporal predictions {S}1:t by a Max-Voting-based Post-processing (MVP) strategy.

plexity. Previous works [17, 22] have shown that the atten-

tion at shallower layers is not effective.

3.3. Max-voting-based post-processing

Prediction Prediction 

Step 2) Max votingStep 1) Temporal aggregation

…

Prediction 

al aggregation Step 2) M
Aggregated Voted result Voted result 

Figure 3. Illustration of the max voting post-processing strategy.

While temporal cross attention exploits temporal informa-

tion at the feature level, it does not resolve the “many-

to-one” issue during the re-projection process of a range-

image-based method, which causes occluded far points to

inherit the predictions of near points. We thus propose a

max-voting-based post-processing (MVP) strategy, which

is motivated by the observation that occluded points will be

visible in the adjacent scans as shown in Fig. 1. As veri-

fied in Tab. 5, MVP is generic and can be added to various

networks.

Temporal scan alignment. To initiate post-processing, it is

essential to align a series of past LiDAR scans (P1, ..., Pt)

to the viewpoint (i.e., coordinate frame) of Pt. The align-

ment is accomplished by utilizing the estimated relative

pose transformations T j
j−1 between the scans Pj−1 and

Pj . These transformation matrices can be acquired from an

odometry estimation approach such as SuMa++ [9]. The

relative transformations between the scans (T 2
1 , ..., T

t
t−1)

are represented by transformation matrices of T j
j−1 ∈

R
4×4. Further, we denote the jth scan transformed to the

viewpoint of Pt by

P j→t = {T t
j pi}pi∈Pj

with T t
j =

t∏
k=j+1

T k
k−1. (3)

Sparse grid max voting. After applying the transforma-

tions, we aggregate the aligned scans. We quantize the ag-

gregated scans into a voxel grid with a fixed resolution δ.

In each grid, we use the max-voting strategy to use the most

frequently predicted class label to represent the semantics of

all points in the grid. We illustrate this process in Fig. 3 and

evaluate the impact of the grid size in Fig. 4. To save com-

putation and memory, we store only the non-empty vox-

els. This sparse representation allows our method to handle

large scenes.

Sliding window update. We initialize a sliding window

Wt−L+1:t with the length of L to store the scans and use a

FIFO (First In First Out) strategy to update the points falling

in each grid. When the LiDAR sensor obtains a new point

cloud scan, we add it to this sliding window and remove the

oldest scan. We do not use different weights across frames

due to the uncertain occlusion problem.

4. EXPERIMENTS
Datasets and evaluation metrics. We evaluate our

proposed method on SemanticKITTI [2] and Semantic-

POSS [33]. SemanticKITTI [2] is a popular benchmark for

LiDAR-based semantic segmentation in driving scenes. It

contains 19,130 training frames, 4,071 validation frames,

and 20,351 test frames. Each point in the dataset is pro-

vided with a semantic label of 19 classes for semantic

segmentation. We also evaluate our dataset on the Se-

manticPOSS [33] dataset, which contains 2988 scenes for

training and testing. For evaluation, we follow previous
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Table 1. Comparison with other range-image-based LiDAR segmentation methods with resolution (64, 2048) on SemanticKITTI test set.
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MINet [23] 55.2 90.1 41.8 34.0 29.9 23.6 51.4 52.4 25.0 90.5 59.0 72.6 25.8 85.6 52.3 81.1 58.1 66.1 49.0 59.9

FIDNet [54] 59.5 93.9 54.7 48.9 27.6 23.9 62.3 59.8 23.7 90.6 59.1 75.8 26.7 88.9 60.5 84.5 64.4 69.0 53.3 62.8

Meta-RangeSeg [45] 61.0 93.9 50.1 43.8 43.9 43.2 63.7 53.1 18.7 90.6 64.3 74.6 29.2 91.1 64.7 82.6 65.5 65.5 56.3 64.2

KPRNet [20] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

Lite-HDSeg [38] 63.8 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7

CENet [13] 64.7 91.9 58.6 50.3 40.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6

RangeViT [1] 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7

LENet [16] 64.5 93.9 57.0 51.3 44.3 44.4 66.6 64.9 36.0 91.8 68.3 76.9 30.5 91.2 66.0 83.7 68.3 67.8 58.6 63.2

TFNet (Ours) 66.1 94.3 60.7 58.5 38.4 48.4 74.3 72.2 35.5 90.6 68.5 75.3 29.0 91.6 67.3 83.8 71.1 67.0 60.8 68.7

works [13, 21, 46, 54], utilizing the class-wise Intersection

over Union (IoU) and mean IoU (mIoU) metrics to evaluate

and compare with others.

Implementation details. While we use CENet [13] as

the main baseline method, our method demonstrates robust

generalization across various backbones as shown in the fol-

lowing experiments. We train the proposed method using

the Stochastic Gradient Descent (SGD) optimizer and set

the batch size to 8 and 4 for SemanticKITTI and Semantic-

POSS, respectively. We follow the baseline method [13]

to supervise the training with a weighted combination

of cross-entropy, Lovász softmax loss [4], and boundary

loss [5]. The weights for the loss terms are set to β1 = 1.0,

β2 = 1.5, β3 = 1.0, respectively. All the models are trained

on GeForce RTX 3090 GPUs. The inference latency is mea-

sured using a single GeForce RTX 3090 GPU. The back-

bone is trained from scratch on all the datasets.

4.1. Comparison with state of the art

Quantitative results on SemanticKITTI. Tab. 1 re-

ports comparisons with representative models on the Se-

manticKITTI test set. Our method outperforms all range-

image-based methods, including CNN-based architec-

tures [13, 23, 54] and Transformer-based architectures [1]

in terms of mean IoU. CENet [13] uses test time augmenta-

tion to improve the performance. We do not use test time

augmentation for a fair comparison with previous meth-

ods [23, 32].

Tab. 1 presents a comprehensive comparison of the pro-

posed TFNet method against several range-image-based Li-

DAR segmentation models on the SemanticKITTI test set.

Specifically, TFNet excels in segmenting cars, bicycles,

motorcycles, and pedestrians, showing significant improve-

ments in IoU values over other methods. It registers par-

ticularly high IoU scores for bicycles (60.7%), motorcycles

(58.5%), and persons (74.3%). Despite not always secur-

Table 2. Evaluation results on the SemanticPOSS test set.
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person 6.8 43.9 57.3 62.4 72.2 75.5 72.4

rider 0.6 7.1 4.6 12.1 23.1 22.0 20.5

car 6.7 47.9 35.0 63.8 72.7 77.6 77.7

truck 4.0 18.4 14.1 22.3 23.0 25.3 24.8

plants 2.5 40.9 58.3 68.6 68.0 72.2 71.6

traffic-sign 9.1 4.8 3.9 16.7 22.2 18.2 29.1

pole 1.3 2.8 6.9 30.1 28.6 31.5 37.8

trashcan 0.4 7.4 24.1 28.9 16.3 48.1 46.3

building 37.1 57.5 66.1 75.1 73.1 76.3 79.9

cone/stone 0.2 0.6 6.6 58.6 34.0 27.7 34.5

fence 8.4 12.0 23.4 32.2 40.9 47.7 47.3

bike 18.5 35.3 28.6 44.9 50.3 51.4 53.9

ground 72.1 71.3 73.5 76.3 79.1 80.3 78.4

mean-IoU 12.9 26.9 30.9 43.2 46.4 50.3 51.9

ing the top position in every class, TFNet consistently de-

livers strong results, especially in small and medium-sized

object classes. TFNet falls slightly behind in the pole and

traffic-sign categories, where it records IoU scores lower

than some methods like CENet [13] and KPRNet [20]. Nev-

ertheless, its ability to maintain balanced and above-average

performance across most classes contributes to its overall

leadership in mean-IoU.

Quantitative results on SemanticPOSS. We present a
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Table 3. Comparison with different post-processing methods. Our MVP method is significantly better.
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w/o MVP 60.4 85.8 44.0 61.5 80.3 53.0 68.7 70.2 0.91 94.8 42.1 80.9 0.95 81.8 52.4 83.2 60.3 70.6 51.9 47.9

CRF [46] 58.2 (-2.2) 87.0 40.0 57.3 67.7 52.2 66.1 62.5 0.38 94.5 46.4 81.1 0.66 81.7 53.6 81.4 60.9 66.3 49.0 47.6

PointRefine [39] 59.2 (-1.2) 84.5 43.7 53.7 76.3 48.6 68.3 70.6 7.5 94.6 39.8 80.5 11.8 81.4 50.7 83.8 59.4 72.2 51.1 46.1

NLA [54] 64.4 (+4.0) 92.0 47.5 66.8 79.0 55.9 76.2 85.7 12.4 94.5 42.7 80.8 10.6 87.3 54.6 85.9 66.0 72.2 63.4 49.8

k-NN [32] 64.5 (+4.1) 91.4 50.7 66.9 81.2 54.9 76.8 85.1 0.96 94.5 41.6 80.9 0.95 88.5 55.6 86.2 66.8 71.5 64.5 50.2

MVP (Ours) 66.5 (+6.1) 93.4 54.1 70.2 85.9 59.8 79.8 88.0 0.58 94.7 44.8 81.1 0.46 90.3 66.6 86.8 69.5 72.7 65.1 50.3

quantitative evaluation of our TFNet method against sev-

eral range-image-based LiDAR segmentation models on

the SemanticPOSS test set [33] in Tab. 2. Our method

achieves the highest mean Intersection-over-Union (mIoU)

among all listed methods, indicating overall better segmen-

tation accuracy. Notably, TFNet excels in detecting smaller

objects. It significantly surpasses CENet in segmenting

traffic signs and poles, improving the IoU score by 6.9

percentage points and 6.3 percentage points, respectively.

Furthermore, TFNet performs competitively in identifying

cone/stone, achieving the second-best IoU score, closely

following MINet’s performance. Moreover, TFNet ranks

second in multiple categories such as rider, plants, fence,

and bike, demonstrating its strong generalizability across

diverse object classes.

4.2. Ablation Analysis

Effect of the temporal post-processing. Tab. 3 com-

pares the proposed post-processing method with other post-

processing approaches on the SemanticKITTI validation

set. Using a CRF for post-processing has been used by Se-

queezeSegv2 [47]. We train the network with CRF from

scratch using the same training pipeline as our method.

The k-Nearest Neighbor (k-NN) method [32] is the most

popular post-processing method. It is widely used in

Lite-HDseg [38], SequeezeSegv3 [50], CENet [13], Sal-

saNext [15], and MiNet [23]. The Nearest Label Assign-

ment (NLA) post-processing is used by FIDNet [54]. It

iterates over each point to check if a point is occluded

or not. We use the source code from the corresponding

methods. For the Point Refine module proposed in Mo-

tionSeg3D [39], we follow its implementation. We use

SPVCNN [27] as the Point Refine module and use the fea-

tures before the classification layer as the input to the Point

Refine module. We then fine-tune the network with the

Point Refine module in a second stage with a 0.001 learning

rate for ten epochs. The results show the “many-to-one” is-

Table 4. Comparison with other temporal fusion methods.

Fusion Strategies mIoU

w/o TCA 66.9

TMA module [43] 67.8 (+0.9)

Residual images [45] 61.4 (-5.5)

Element-wise addition [25] 67.6 (+0.7)

Channel concatenation [52] 68.0 (+1.1)

TCA module (ours) 68.1 (+1.2)

sue harms the performance heavily. Without our proposed

post-processing (‘w/o MVP’), the mean IoU is 6.1 lower.

That CRF can actually decrease the mean IoU has also been

shown in [32]. While NLA and k-NN improve the results,

the best mean IoU is achieved by our approach.

Effect of different fusion strategy. In Tab. 4, we replace

the proposed temporal fusion layer with other strategies.

Mars3D [25] adopts element-wise summation to aggregate

temporal multi-scan point cloud embeddings and produce

enhanced features. The temporal memory attention (TMA)

module [43] validates its effectiveness on the video seman-

tic segmentation task. BEVFormer v2 [52] uses a feature

warp and concatenation strategy to incorporate temporal in-

formation and shows its effectiveness on the LiDAR detec-

tion task. We follow its implementation, which concate-

nates previous BEV features with the current BEV feature

along the channel dimension and employs residual blocks

for dimensionality reduction. We transform the scans to the

same ego-car coordinates to implement the accurate align-

ment between temporal scans. For the LiDAR semantic seg-

mentation task, Meta-RangeSeg [45] proposes to use three

previous residual images as input and a meta-kernel module

to incorporate temporal information. We follow its imple-

mentation and add to the five-channel input (x,y,z,r,i) three
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Table 5. Performance on other range-image-based methods.

Backbone
Post-processing

- k-NN [32] MVP (Ours)

FIDNet [54] 55.4 58.6 (+3.2) 61.5 (+6.1)

Meta-RangeSeg [45] 56.6 60.3 (+3.7) 63.1 (+6.5)

CENet [13] 58.8 62.6 (+3.8) 64.7 (+5.9)

channels for the three residual images and a channel for the

mask, which indicates whether the pixel is a projected 3D

point or not. The residual images are calculated by first

transforming the point clouds of previous frames into the

coordinates of the current frame and then calculating the

absolute differences between the range values of the current

scan and the transformed one with normalization. A meta-

kernel is followed to capture the spatial and temporal infor-

mation. For a fair comparison, we keep the encoder and

decoder of our architecture. We report the projection-based

mIoU here because the loss function is applied directly to

the range image. All strategies are trained with the same

setting and pipeline. The results in Tab. 4 show that our

temporal fusion approach performs best.

4.3. Generalization Ability

Tab. 5 presents the effectiveness of the proposed max-

voting-based post-processing (MVP) technique when in-

tegrated with three different range-image-based semantic

segmentation methods, specifically FIDNet [54], Meta-

RangeSeg [45], and CENet [13]. Unlike results reported

in Tab. 1, which reflect performances on the test set, this

table displays the outcomes obtained on the validation set

using publicly available pre-trained models with and with-

out post-processing. For each backbone model, the ta-

ble compares three post-processing scenarios: no post-

processing (denoted as ‘-’), application of the k-NN method

from [32], and our proposed MVP. Each row shows the

mean Intersection-over-Union (IoU) scores resulting from

these treatments.

It is evident from the table that employing the MVP con-

sistently leads to notable improvements over the baseline

scores (without any post-processing) and often surpasses

the performance of k-NN post-processing. For instance,

MVP increases the IoU score of FIDNet by 6.1 points com-

pared to its base result, demonstrating superior refinement

capabilities. Similarly, the IoU scores of Meta-RangeSeg

and CENet also witness considerable boosts with the use of

MVP, affirming its broad applicability and positive impact

on various range-image-based semantic segmentation mod-

els.
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Figure 4. Effect of window size and grid size resolution.

4.4. Further Analysis

Effect of frame numbers. In Fig. 4 (a), we delve into the

effect of frame numbers, investigating the optimal length

L of the sliding window used for temporal updates. This

parameter determines the number of consecutive LiDAR

frames that are combined to exploit temporal coherence in

the scene as described in Sec. 3.3. Our analysis reveals that

setting L to 10 frames achieves a desirable balance between

capturing sufficient temporal context and avoiding exces-

sive computational load or memory requirements. This op-

timal choice also enables the model to effectively leverage

temporal dependencies while maintaining real-time perfor-

mance and reducing potential noise introduced by distant

past or future frames.

Effect of grid size resolution. As mentioned in Sec. 3.3,

we convert the accumulated LiDAR scans into a voxel grid

format with a fixed resolution. It is crucial to select an ap-

propriate resolution because the fundamental assumption is

that all points enclosed within a voxel belong to the same

semantic category. Overestimating the voxel size can un-

dermine this assumption, whereas selecting a resolution that

is too fine can introduce noise into the estimates due to the

inclusion of small-scale variations. To investigate the con-

sequences of different voxel sizes, we perform an evaluation

showcased in Fig. 4(b). The results clearly demonstrate that

a voxel resolution of 0.10 meters yields the best semantic

segmentation outcome. This finding underscores the signif-

icance of carefully tuning the grid size resolution to ensure

that it neither oversimplifies nor overcomplicates the rep-

resentation of the point cloud data, thereby preserving the

integrity and accuracy of the semantic segmentation task.

Inference time comparison. We visualize popular meth-

ods’ inference time and mIoU in Fig. 6. The results show

that range-image-based methods are faster than point, po-

lar, or hybrid methods. We measured the inference time of

all the methods on the same hardware with a GeForce RTX

3090 GPU for a fair comparison.

Qualitative evaluation. The “many-to-one” issue be-

comes apparent in the absence of any post-processing tech-

nique, as depicted in Fig. 5(a). Here, we observe that points

belonging to the tree trunk inadvertently adopt the predic-
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Figure 5. Qualitative analysis of the post-processing scheme. (a) The “many-to-one” issue is evident without post-processing, e.g., the

trunk is partially segmented as traffic sign and vegetation as they project onto the same range pixel (row 2). (b) k-NN [32] smooths the

semantic labels locally, but it cannot resolve ambiguities by objects that are close or prediction errors. (c) Our method exploits temporal

information to resolve false predictions (row 1) or ambiguities due to occlusions (row 2). Best viewed in color.
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Figure 6. mIoU vs. runtime on SemanticKITTI. Our method bal-

ances mIoU and inference time better than other state-of-the-art

methods. Best viewed in color.

tions intended for nearby points from the traffic sign and

vegetation classes. This occurs because these points, de-

spite being distinct physical entities, are projected onto the

same range pixel in the LiDAR data. In Fig. 5(b), we il-

lustrate the performance of the commonly-employed k-NN

method [32]. While it does refine the initial predictions

to some extent, it struggles to rectify false classifications

when larger regions are occluded. This limitation high-

lights the inability of certain post-processing methods to

handle complex scenarios where multiple points project to

the same pixel. On the contrary, our proposed method ef-

fectively tackles this problem, as shown in Fig. 5(c). By

incorporating temporal information across multiple scans,

our approach consistently maintains the correct predictions

for the tree trunk, even when the current scan is affected

by the “many-to-one” issue. This capability showcases the

merit of introducing temporal context in the post-processing

phase, as it allows our method to discern and rectify errors

caused by occlusions and projection ambiguities in LiDAR

data. Thus, our solution demonstrates improved robustness

in handling the “many-to-one” problem, illustrating the po-

tential gains achieved by leveraging temporal coherence in

LiDAR semantic segmentation.

5. CONCLUSION
In this paper, we quantitatively and qualitatively analyzed

the boundary blurriness, which is also called “many-to-one”

problem, for range-image-based LiDAR segmentation, and

introduced a novel solution named TFNet to tackle it. Our

approach involves leveraging temporal information through

the introduction of temporal fusion layers during the train-

ing process and a sequential max voting strategy during in-

ference. The experiments on two benchmarks demonstrate

the advantages of the proposed strategy. In particular, the

incorporation of temporal data allows TFNet to maintain

robust performance in environments with substantial occlu-

sions, while still maintaining real-time performance. Ad-

ditionally, we conducted comprehensive ablation studies to

validate the design, as well as the broader adaptability of

the proposed post-processing to other neural network archi-

tectures.
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