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Abstract

Object detection in Bird’s Eye View (BEV) has emerged
as a prevalent approach in automotive radar percep-
tion systems. Recent methods use Feature Pyramid Net-
works(FPNs) with large yet limited receptive fields to en-
code object properties. In contrast, Detection Transformers
(DETRs), known for their application in image-based ob-
ject detection, use a global receptive field and object queries
with set losses. However, applying DETRs to sparse radar
inputs is challenging due to limited object definition, result-
ing in inferior set matching. This paper addresses such lim-
itations by introducing a novel approach that uses trans-
formers to extract global context information and encode it
into the object’s center point. This approach aims to pro-
vide each object with individualized global context aware-
ness to extract richer feature representations. Our experi-
ments, conducted on the public NuScenes dataset, show a
significant increase in mAP for the car category by 23.6%
over the best radar-only submission, alongside notable im-
provements for object detectors on the Aptiv dataset. Our
modular architecture allows for easy integration of addi-
tional tasks, providing benefits as evidenced by a reduction
in the mean L2 error in velocity prediction across different
classes.

1. Introduction
Vehicles equipped with perception systems are often en-
gineered to accommodate applications such as automatic
emergency braking (AEB) and automatic valet parking
(AVP), using a sensor suite comprising camera, radar, and
lidar. These complex applications could be derived from
a multi-task neural network with object detection, velocity
prediction, and segmentation tasks as outputs. Compared

Figure 1. Typical point reflections (white squares) from radar over-
laying image from camera: Limited object definition in radar cre-
ates poor conditions for driving set matching in DETRs

to camera and lidar, radar provides accurate Doppler mea-
surements with extended range and an all-weather percep-
tion capability. Radar wave reflections from targets are pro-
cessed by a signal processing chain that estimates parame-
ters such as arrival angle to produce range-azimuth-Doppler
(RAD) feature maps for the scene in the radar’s field of view
(FOV). Although these generated maps are of low resolu-
tion compared to the camera images, they provide novel ob-
ject detection capabilities based on unique target signatures
in the radar measurement space. In this work, we develop
a model to utilize such maps for object detection and later
extend it to additionally support the velocity prediction task.

Radar-based object detection methods extract features
from radar measurements to regress bounding boxes and
determine class categories for each object. To tackle the
inherent challenges associated with the sensor [36][38], re-
cent works use deep learning models based on radar point
cloud [23] or Birds Eye View (BEV) maps [20, 35]. Point
cloud based methods process the radar measurement on a
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per-point basis or by introducing specific locality while the
BEV grid input allows for a natural extraction of local pat-
terns. Furthermore, clustering the reflections to generate
a region of interest (ROI) and classifying the clusters with
deep learning models have also shown encouraging results
[22]. While the ROI-based models are simpler to imple-
ment, processing the full BEV scene map provides a richer
representation.

In the camera vision domain, recent BEV grid based
works use key-point based models to process the data for
encoding object’s properties in the specific keypoints like
corners [15] or center [37]. Such methodology of fea-
ture extraction is advantageous as it allows to start search
and differentiate objects with respect to their characteris-
tic points. Center point based architectures [37] [25] use
heat-map regression to identify the points along with spe-
cially designed receptive fields like Feature Pyramid Net-
works (FPNs) [17] for detecting the object and have pro-
vided state-of-the-art results [25] for image input modality.

In radar measurement space, where objects are perceived
by capturing point reflections of radar waves, the resulting
input tensor for the model has a very low resolution with
very high dynamic noise [36]. The features of this input
tensor are limited to position and Doppler velocity, offering
significantly less information compared to the rich color de-
tails found in camera images (see Figure 1). Consequently,
objects have poor apparency due to the sparse nature of the
tensor and the lack of distinct edges or boundaries. How-
ever, recent studies [10, 19] on camera images have demon-
strated that vision transformer architectures [9] have low re-
liance on high frequency information, such as textures, for
object classification, while preserving spatial information
through the network layers. These findings suggest the po-
tential applicability of such architectures to radar data.

The challenges associated with radar input tensor make
the transition from Convolutional Neural Networks (CNNs)
to transformers not straightforward. As detailed in later
sections, simply replacing existing models with an off-the-
shelf transformer does not directly improve performance.
To this end, in this paper we propose a tailored transformer
model for the widely used Range-Azimuth-Doppler (RAD)
radar input format. This model features a novel decoder
layer that provides a meaningful performance improvement
for the object detection task. Such a decoder layer aims to
provide each object with an individualized global context by
using learnable queries. Specifically for limited object ap-
parency in radar, we bridge the use of a centerpoint-based
detection approach and query learning while avoiding extra
set matching computations that require well-defined objects
such as those available in a camera input. We further extend
the model by adding an additional velocity prediction task
in parallel with detection to take advantage of the learned
richer feature representation.

We evaluate the proposed model on the public NuScenes
dataset [3] and a larger and more complex Aptiv dataset [2]
for the task of object detection. The contributions of this
paper are as follows:
• A transformer model for radar based BEV object detec-

tion using Range-Azimuth-Doppler tensor inputs to ex-
ploit a global receptive field

• An efficient decoder layer for incorporating individual-
ized global context for each object, eliminating the need
for manually defined regions of interest

• An integration of center-point architectures with detec-
tion transformers, addressing a significant gap in the ex-
isting literature, needed particularly for radar data.

2. Related Work
Recent works on radar based object detection use end-to-
end deep learning on either BEV radar image, point clouds,
or a combination in a multi-modal input architecture. De-
pending on the input, different neural architectures and
feature extractors are used, e.g. Graph Neural Networks
(GNNs) for point clouds or CNNs for input BEV maps.

Point cloud-based methods [23] [21] typically employ
pointwise processing using shared MLPs with global pool-
ing operations, or relational feature processing introducing
edges between points using a graph data structure. Such ap-
proaches exhibit permutation in-variance and can process
either the point cloud of the whole scene or a specific ROI.
However, these works are inspired by their success on li-
dar input data. For radar, the low point density and high
noise pose a significant challenge in extracting meaningful
features with point cloud input processing approaches. Fur-
thermore, such architectures require significant additional
processing to create a graph input by computing nearest
neighbors for each point.

Methods operating on BEV radar image have been pro-
posed for object detection [20, 35] or object type classifica-
tion [29]. These works typically use FPN-based [16] archi-
tectures with CNNs to implicitly incorporate global context
with growing receptive field, albeit limited and slow grow-
ing throughout the architecture [18]. Meanwhile, in camera
domain, for efficient target detection, these FPNs have been
combined with center point based object property extrac-
tion [25] to use the techniques of key point estimation for
object detection. Such designs have achieved encouraging
performances.

Recent research has explored the use of transformers
for radar data in classification [6] and segmentation tasks
[7, 34], demonstrating their potential to address specific
challenges associated with radar data. Furthermore, stud-
ies on camera images such as by Ghiasi et al. [10], have
shown that the attention-guided global receptive field of
transformers differ substantially in tackling object classifi-
cation task than their CNN counterparts. In particular, trans-
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Figure 2. Overall architecture with replaceable shared feature extractor

formers do not rely on rich image features like texture for
class differentiation. The dynamic attention weights allow
for integrating adaptability to the architecture with respect
to a dynamic component of the input such as noise. These
findings underscore the suitability of transformers for radar
based object detection. Pioneering works in vision, such as
DETR [4] and Deformable DETR [40], have provided the
methodology of performing object query based detection
with set matching approaches. Such approaches presume
a clear appearance of the object in the input data, which
is valid for camera images, but less so for the sparse radar
input. This discrepancy highlights the need for the adapta-
tions presented in this paper.

There have been recent works in the literature using
transformers for object detection with radar input, but these
are based on unconventional data formats such as the raw
analog-to-digital converter (ADC) signal [11] or a time-
varying range-Doppler diagram [12]. For our work, we use
the conventional RAD format, also present in the NuScenes
dataset, which has been shown to provide coherent informa-
tion of the radar data [8] and to improve the performance of
deep learning models compared to other formats [20, 35].

3. Proposed Method
3.1. Overview

Our work proposes a transformer-based model for radar
BEV object detection that operates on RAD feature map
of the scene in the radar’s FOV. We start designing our ar-
chitecture by using popular FCOS [25] CNN based archi-
tecture for camera images as a baseline design template for
our radar input. We adapt the original FCOS architecture
such that it uses an input of pre-processed received radar
reflections with (i) an initial grid processing backbone, (ii)
a shared feature extractor neck, and (iii) a center point ob-
ject detection head. Similar to FCOS, we initially adopt
a Feature Pyramid Network (FPN) as the feature extractor
neck. The use of FPNs on radar inputs has been previously
explored in [20, 27, 35], where the authors have used pyra-
mids for detection with BEV radar image input.

In the next step, to take advantage of the radar-input
transformers, we keep the backbone and head fixed and

replace the FPN in the neck with a standard off-the-shelf
transformer encoder to analyze the performance change.
Such a stepwise design philosophy allows us to directly
compare the effectiveness of the transformers in the ablation
section and provides more insight into how we arrived at
our final design. We then motivate the need for our adapta-
tions and update the network by introducing a novel decoder
layer (placed after the off-the-shelf encoder), that provides
global context from the encoder to each object individually
by using object queries. The overall architecture with such
a decoder is shown in Figure 2 with the backbone, neck, and
head sections. Initially, it is designed to perform enhanced
BEV object detection with radar, but we later extend it to
additionally support velocity prediction task.

3.1.1 Radar Signal Pre-Processing

Figure 3 shows the standard radar signal processing chain
for the received reflections at each point. The radar signal
is first processed by a 2D Fast Fourier Transform (FFT).
Then, the range-Doppler spectrum resulting from the pre-
vious processing step is applied to a CFAR detector, which
extracts radar targets. These detections are used to estimate
the arrival directions (angles) of the targets. This process
is applied to all input radar point clouds to obtain common
point features. Finally, the processed point cloud is pro-
jected onto a 2D BEV grid, effectively creating an image-
like input. For this projection, we use the Pillar Feature Net
from the popular PointPillars [14], which divides the cloud
space in the form of pillars, which are similar to bins in ver-
tical direction. Similar techniques have been used in most
of the literature like [13, 24, 27, 31], hence such block is
used here ”as is” and further details can be accessed form
the original work.

3.1.2 Backbone and Task Head

In the backbone stage, the input BEV grid is processed by
convolution layers to introduce spatial awareness of the grid
input in the network (cf. Figure 2). Temporal fusion is then
performed to accumulate historical information and reduce
noise. However, due to the sparse nature of the NuScenes
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Figure 3. Per point pre-processing chain for input radar reflection

data (sampling at 2Hz), such temporal fusion is skipped for
this dataset and used only for the Aptiv dataset. In the detec-
tion head, the target processor with non-maximum suppres-
sion (NMS) from the Fully Convolutional One-Stage Ob-
ject Detection (FCOS) network [25] is employed. This uses
a centerness score for keypoint estimation with heat map re-
gression to identify and collect the top-K center candidates.
As shown in their work, FCOS outperforms all anchor-
based methods because it can use as many foreground sam-
ples as possible to train the regressor. The identified center
candidates are finally regressed to obtain object properties
after training using a focal loss based approach [17] as de-
fined in FCOS.

3.1.3 Feature Extractor

An integral part of the architecture shown in Figure 2 is the
common feature extractor which is responsible for extract-
ing generalized feature representations to be used by mul-
tiple task heads. As explained above, we first integrate a
CNN-based FPN to extract features at different resolutions
of the input along with max-pooling and upsampling layers.
This design facilitates the establishment of a receptive field
that adeptly captures global object features of varying sizes.
FPNs represent a reliable representative for CNN based de-
signs, given their demonstrated efficacy with radar [27] [20]
[35], hence we use this feature extractor later for our abla-
tion study.

Next, we select an encoder from the domain of image-
based detection transformers to replace the FPN in the neck.
Our choice is the deformable attention encoder from [30]
due to two benefits: a linear computational complexity (un-
like the quadratic complexity observed in other transform-
ers) and a deformed global receptiveness. Because of the
absence of complex color features such as textures and
sharpness in radar, we use only single-stage patching from
the original work with kernel and stride of size 4. For
this single-stage process, we replace the standard convolu-
tion with a dynamic convolution [5] featuring three paral-
lel kernels (for K=4) as shown in Table 1, and incorporate
learnable positional embeddings for patch generation. This
dynamic kernel increases the representational capacity for
low-resolution objects with radar inputs. The further op-

eration of the deformable attention is not explained, as the
encoder is directly adopted from the cited research without
modifications.

Kernel Stride Pooling
(K,K) (K,K) −

(K/2,K/2) (K/2,K/2) (2, 2)
(K/4,K/4) (K/4,K/4) (4, 4)

Table 1. Dynamic convolution parameters for creating patches
with kernel size K

3.1.4 Need for Adaptation

The difference between an FPN and a transformer can the-
oretically be traced back to the nature of the receptive field.
By design, transformers with access to all pixels can cap-
ture global information in early layers compared to CNNs,
as shown in [10] for the object type classification (OTC)
task. However, a key requirement for transformers seems to
be the need for global summarization of the objects exposed
by the encoder. This is shown by the role of the [CLS] to-
ken for OTC in [9] and also by the localization of an object
by a decoder for its detection in DETR [4]. For the archi-
tecture in Figure 2 with an off-the-shelf transformer with
the same backbone and centerpoint target processor, such a
component is missing. With the above reasoning, we find an
obvious need to complement the transformer encoder with
a decoder.

For images, an object query based decoder with cross
attention to the encoder output is proposed in DETR and
similar models [4, 40]. Given the well-defined visibility of
objects in an image, matching losses complemented with
auxiliary losses for each decoder layer are used to drive the
learning of the object queries without any initial guesses.
As discussed in the literature [36], objects in radar are not
well defined (Figure 1), resulting in set matching failure.
Therefore, intuitively such data may require more complex
and accurate matching criterion for e.g. Mahalanobis dis-
tance based matching box loss rather than Euclidean L1
loss, which is currently proposed in DETRs to deal with the
data limitations. Instead, in this paper, by combining the
advantages of both transformers and center-based networks
and avoiding the complexity of set matching computations,
we propose an alternative design of decoders for radar use
cases.

3.2. Centerpoint Decoder

Figure 4 shows our proposed decoder block which consists
of a binary cross-attention (Bi-Attn.) and a context injection
(CI) module. As shown in the figure, the three inputs of the
Nth decoder block are the output of the encoder, M learnable
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Figure 5. Visualization of the working principle of the (N=1) decoder block

query vectors (parameters), and the output of the previous
N-1th decoder block. For the first (N=1) decoder block, the
input ”N-1th decoder” is set as the output of the encoder.
One of the main goals of the decoder is to encode the global
context information (from the encoder) to the center of each
object, so that the center point target processor can be used
for decoding with radar data. Furthermore, the global con-
text is made available to all points for each object to im-
prove and enable multiple tasks such as velocity prediction,
segmentation, etc. In previous works [22, 26], achieving
such a task required creating imprecise regions of interest
for each object, followed by applying pooling operations on
a global scale. In our approach, however, we achieved these
goals by using learnable query parameters that bypass the
need for explicit ROI construction.

In order to clarify the details of the decoder block design,
we describe its working principle in the following. Figure 5
shows the basic principle for M=2 for the first (N=1) de-
coder block. Essentially, M different learnable queries (like
a template) are used to learn an object-level representation
for ideally M different objects. First, the binary cross at-
tention module allows each query to examine the entire en-
coded input (keys) by broadcasting, while using dot product
similarity measurement to identify objects for learning. To

relax the matching requirement, the softmax is annealed at
temperature T to increase the entropy of the distribution of
matching locations in the input. Furthermore, a threshold-
ing is performed that maps the distribution to binary values
0 and 1 based on a selected adaptive threshold level (median
or mean of the resulting non-uniform distribution) and cre-
ates a binary mask (attention maps) corresponding to each
query, highlighting the ”associated” locations to that object,
similar to an ROI (assuming a triangular mask for the star
query in Figure 5). The binary attention module designed
here differs from conventional cross attention [28], where
after the dot product, the obtained attention map is multi-
plied by ”values” to output updated queries. Here, we don’t
use ”values” (Figure 4), but we discretize the map to output
a binary mask.

These steps result in M discrete masks corresponding to
M queries. Since each query is learnable, it acquires spe-
cific information about an object (or part of it) in the scene,
which is indicated by a corresponding mask. Therefore,
when the brodcasted query is multiplied by its respective
discrete mask, as shown by query fill in Figure 4 and 5, it
effectively populates the locations where the mask value is
1 with features from the corresponding queries. This oper-
ation is performed on all queries before culminating in the
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context injection module to generate a ”mean query”. This
query averages all relevant queries for each location.

Next, the ”mean query” is added to the output of the last
layer (the encoder output for the intial decoder layer) to pro-
vide global context to each location within the encoded rep-
resentation, as shown by the ”context addition” operation in
Figure 4 and correspondingly in Figure 5. Since the cen-
ter of the object is one such location, it becomes aware of
its global context. In the centerpoint object detection head,
when a specific object center is identified via heatmap re-
gression [37] and regressed to its desired attributes, the gra-
dient can be propagated to its associated query for learning.
This eliminates the need for initial bipartite query-object
matching, as required by DETR’s set-matching approach.
In addition, the availability of global context for all ”asso-
ciated” locations enriches the feature representations that
could be used subsequently by additional task heads.

With the above procedure, all queries should ideally
learn about every object present in the scene. However, this
is a strong assumption, since not all queries may capture
all relevant objects. In addition, individual queries may not
correspond to an entire object (as shown by the full triangle
with star query in Figure 5), but rather to specific facets of
the same object, leading to limited ROI creation. To over-
come this limitation, a ”mean mask” is created by combin-
ing only the masks produced by each query, highlighting
only the locations attended by all M queries. Consequently,
multiplying this binary ”mean mask” by the aggregated out-
put (unattended object removal in Figure 4 and 5) effec-
tively eliminates information about unattended locations by
queries from the aggregated feature map to produce ”inter-
mediate output”. This reasoning also justifies the need to
use more than a single decoder block (N) to ensure suffi-
cient flexibility to capture both complete objects (multiple
ROIs for the same object) and all objects present in the en-
coded input.

Finally, to explicitly incorporate global context, the ”in-
termediate output” is fed into a deformable convolution op-
erator, such as the one introduced in [39]. Here, this op-
erator regresses deformable offsets for each location, and
then performs convolution based on these offset-defined lo-
cations. This method is inspired by the work of Yang et
al. [33], which notes that the regressed offsets for the center
point can be correlated with the bounding boxes for each ob-
ject. Since each location in the output of the decoder layer
has some awareness of either the whole or a specific facet
of the object to which it is linked, the regressed offsets here
can be assumed to embody object bounding properties. The
goal of providing each object with unique global context
awareness is achieved by encoding these boundary proper-
ties into the features of each ”associated” location through
convolution operations with offset locations.

Figure 6 depicts the decoder layer arrangement for N de-

coder blocks. Multiple decoder blocks are used to ensure
that all objects are fully captured from the encoder output.
The outputs of each decoder block are interpolated and ag-
gregated to create the final generalized feature representa-
tion. Such connections are designed so that the gradient can
flow directly to each of the N query vectors of N decoder
blocks. Since no auxiliary losses are used, this is an im-
portant step to ensure that the gradient is not diminished for
all learnable queries, as it would be in a feed-forward style.
In addition, cross-connections between blocks are used to
facilitate indirect communication between queries, and the
first query is set to 0 to output an identity mask.

Encoder Output

B-Att.-1 B-Att.-2

CI-1

Interpolate Interpolate Interpolate

Q-1 Q-2 Q-N000 0 0000

B-Att.-N

CI-2 CI-N
Decoder Block-1 Decoder Block-2 Decoder Block-N

Figure 6. An exemplary CenterPoint Decoder layer illustrating the
use of the proposed decoder blocks with binary cross attention (B-
Att.) and context injection (CI) modules

4. Experiments

4.1. Dataset

Given the large domain gap in terms of different sensor
characteristics between different radar sensors and radar
data levels, we tested our model on two different datasets.
The NuScenes dataset [3] restricts the number of submis-
sions for its test dataset, leading us to conduct our ex-
haustive comparison with all relevant works reimplemented
from the literature on its official validation dataset, follow-
ing the test approach in [27]. Furthermore, although our
network is capable of detecting object types such as buses
and trucks, it’s noteworthy that the current state-of-the-art
on radar-only detectors for the NuScenes dataset primarily
evaluates models based on their performance in detecting
the ”car” class, as seen in the works [23, 27, 31, 32]. Con-
sequently, in line with these works, our quantitative evalu-
ation on the dataset focuses on the ”car” class. This class
represents the majority of bounding boxes in the dataset.

The Aptiv dataset [2] features an egocentric setup where
a grid of 280 × 160 cells is projected around the vehicle.
The recorded observations on the x-y plane are used as in-
put to our model and are grouped into the classes listed
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Object detector Type AP4.0 (%) ↑ mAP(%) ↑ rel. mAP ↑
GNN [23] point-based 24.7 13.7 −47.7%
PointPillars [14] grid-based 37.0 22.0 −16.0%
RPFA-Net [31] grid-based 38.3 23.1 −11.8%
KPConvPillars [27] hybrid 42.2 26.2 baseline
Centerpoint Tf. (ours) grid-based 43.4 32.4 +23.6 %

Table 2. Quantitative benchmark for class car on the NuScenes dataset

in Table 3. ”Large vehicles include types such as trucks,
buses, tankers, trailers, and vans, while small vehicles in-
clude cars, auto-rickshaws, mini-trucks, etc. The dataset in-
cludes detections of objects within 40 meters of the radar’s
field of view (FOV), including complex real-world scenar-
ios involving Large Stationary Vehicles (LVS) and Vehicle
Stationary (VS). These classes cover cases such as fully
occluded objects that are invisible to both lidar and cam-
era, but detectable in radar data via multipath propagation.
However, challenges such as angular resolution limitations
make it difficult to separate objects at longer distances, mak-
ing this dataset very challenging. In our work, a total of
21776 scenes are used for training and 9294 scenes are used
for the test set with ground truth semantics derived from an-
notated lidar point clouds.

Vehicle Moving (VM)
Vehicle Stationary (VS)

Large Vehicle Moving (LVM)
Large Vehicle Stationary (LVS)

Table 3. Class Categories for Aptiv Dataset

4.2. Implementation Details

We trained all the networks presented here using the Adam
optimizer with a learning rate of 1 × 10-4 for twenty-nine
epochs and a rate of 1× 10-5 for the last 30th epoch, with a
batch size of 1 on an Nvidia 2080 GPU. The models are
fitted using the sigmoid focal-based loss [17] to account
for class imbalance in the training dataset. For bounding
box regression, the smooth L1 loss is used. For the FPN
design, the best performance was found with a three-level
pyramid designed with max-pooling and upsampling layers.
For the off-the-shelf transformer encoder-only network, a
single-stage patching using the form of the work [30] with
a dynamic kernel size K=4 is used. For the single stage,
two layers of encoders are used with each using K=8 off-
sets along-with a query grouping factor of 4 inspired by
the default settings in [30]. For the proposed center-point
transformer network, only an additional center-point de-
coder layer is introduced after the transformer encoder (the
same encoder retained from the off-the-shelf network im-

plementation) just before the head, as shown in Figure 2.
For each decoder block, the query vector size is set to 64
with a total of M=32 queries, and a temperature of 2.0 with
median thresholding is used for the binary cross attention
module. In total, including zero query initialization, 1+3
decoder blocks are used in the decoder layer.
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Figure 7. Precision-Recall curves illustrating the detailed perfor-
mance of the proposed CenterPoint Transformer (TF.) against the
FPNs and encoder only network at all operating conditions

4.3. Results

In our comparison of the proposed model with other de-
tectors, we use the quantitative analysis presented in [27],
which reimplements and evaluates models from the litera-
ture on the NuScenes dataset with radar data as exclusive
input. Note that we don’t compare our model to the leading
model of the NuScenes 2024 (radar modality only) detec-
tion leaderboard, RadarDistill [1], because it uses lidar data
in addition to radar data to distill knowledge and therefore
cannot be used for a fair comparison. Instead, we choose the
next best approach from leaderboard, KPConvPillars [27]
as our baseline. Also, as described in Section 2, we don’t
compare our model to radar transformers [11, 12] because
they can’t be applied to the RAD radar data format of the
NuScenes dataset.

Table 2 presents the results of our experiments on
NuScenes. When comparing the AP4.0 and the mean aver-
age precision (average of AP4.0, AP2.0, AP1.0 and AP0.5

4457



for a car class), they show a 23.3% improvement over the
current the state-of-the-art grid based detectors. Further-
more, significant improvement is observed in mAP as com-
pared to AP 4.0% (for a matching threshold of 4m), indicat-
ing the model performs significantly better even for smaller
matching distances.

4.4. Ablation

For the ablation of our model, we use the Aptiv dataset
which has higher number of data samples and complex real
world cases, allowing us to provide deeper insights of our
work by analyzing detailed precision-recall curves. These
curves highlight the efficacy of models at different precison
and recall metrics trade-offs. As detailed in Section 3.1, we
decompose our overall architecture shown in Figure 2 by re-
placing its neck with three different variants: (i) CNN-based
FPN as feature extractor, (ii) replacing the FPN with an off-
the-shelf transformer encoder, and (iii) keeping the encoder
but adding the additional centerpoint decoder block (Figure
2).

Figure 7 compares the performance of the proposed
model (enhanced with an additional decoder) against the
CNN-based FPN and its substitution with a transformer en-
coder alone across all precision and recall metrics for four
vehicular classes. It can be observed that the substitution
does not yield any performance improvement, indicating
that solely having a global receptive field is not sufficient
and needs to be summarized. Furthermore, this substitu-
tion results in a performance decline for the LVS (the most
challenging) class. These findings are consistent with the
arguments presented in Section 3.1.4, which highlight the
necessity of incorporating a decoder in transformer-based
models.

The curves demonstrate that adding our centerpoint de-
coder to the existing transformer encoder significantly en-
hances performance across all classes and operating condi-
tions, as shown by a larger area under the curve (AUC).
This enhancement means that any operating point cho-
sen will deliver superior performance compared to CNNs
without necessitating trade-offs between precision and re-
call metrics. Hence, by introducing a modest number
of N*M(3*64) learnable query vectors, the centerpoint
decoder achieves significant performance improvements
across all classes when combined with the transformer en-
coder for radar data.

Since our model is based on center-point target process-
ing, it has limited capabilities when applied to classes where
a center point is not easily definable, such as in the semantic
segmentation of background classes. However, unlike DE-
TRs, which primarily output a list of updated object queries
(Bi-attn. in Section 3.2), our network generates a feature
map encoded with global context. This rich representation
allows for the addition of parallel task heads to the detec-
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Figure 8. L2 mean error performance comparison curves for the
velocity prediction task.

tion, enhancing the multitasking capabilities of the model.
We illustrate this by extending it to support velocity pre-
diction task. Essentially, we train our network with Ap-
tiv dataset to regress velocity prediction in addition to de-
tection properties. Figure 8 illustrates the performance of
our model for velocity prediction compared to the FPN fea-
ture extractor baseline. The curves, which represent the L2
mean average error of velocity prediction across different
operating conditions (recall), show a significant reduction
in velocity prediction error across all classes when replac-
ing CNNs with centerpoint transformers. Most notably, a
reduction of about 20% in velocity prediction error is ob-
served for the large moving vehicle category.

5. Summary

In this work, we introduced a new transformer architecture
for detecting objects in Bird’s Eye View (BEV) using radar
data by exploiting centerpoint based target processing. This
architecture aims to incorporate an individualized global
context for each object in the scene without the need to
explicitly define regions of interest. Our approach, exten-
sively evaluated on two different datasets, demonstrates
significant performance improvements over existing radar-
only object detection models. Furthermore, our architecture
replaces the inefficient set-matching traditionally required
for object detection with transformers by using an effective
centerpoint representation of objects. This approach not
only generates a rich feature representation instead of mere
object queries as output, but also facilitates the perfor-
mance of additional tasks besides object detection. As our
evaluation shows, this includes a reduction in the L2 mean
error for velocity prediction compared to the baseline FPN
feature extractor. Future work will further enhance the mul-
titasking capabilities of the architecture by adding complex
tasks such as semantic segmentation and improving the
use of centerpoint representations for background classes.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 2,
6

[38] Yi Zhou, Lulu Liu, Haocheng Zhao, Miguel López-Benı́tez,
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