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Abstract

This paper proposes a novel DuST: Dual Swin Trans-
former model integrating video with synchronous time-
series data in the context of driving risk assessment. The
DuST model utilizes the Swin Transformer architecture for
feature extraction from both modalities. Specifically, a
Video Swin Transformer is adopted for video and a 1D Swin
Transformer for time-series data. The hierarchical struc-
ture and window-based multi-head self-attention in Swin
Transformers effectively capture both local and global fea-
tures. A comparison of multiple fusion methods confirmed
that the tailored stagewise fusion process leads to enhanced
model performance by effectively capturing complementary
information from multimodal data. The approach was ap-
plied to the Second Strategic Highway Research Program
Naturalistic Driving Study data for classifying crashes, tire
strikes, near-crashes, and normal driving segments using
front-view videos and triaxial acceleration data. The in-
novative multi-modal method demonstrates superior clas-
sification performance highlighting its potential for video-
time-series modeling in critical applications such as ad-
vanced driver assistance systems and automated driving
systems. The code for the proposed framework is available
at https://github.com/datadrivenwheels/DUST.

1. Introduction

The combination of video data and corresponding time-
series information has emerged as a vital area of research
in multimodal learning. In the context of automated driving
systems (ADS), the combination of multiple camera videos
and driving kinematics data provides a comprehensive de-
piction of driving scenarios. Capitalizing on the comple-
mentary nature of multimodal data, video and time-series
fusion models can provide improved performance across a
diverse range of applications. However, there are challenges
in modeling video-time-series (VTS) data, including the ef-
fective extraction of representative features and the fusion
of the complementary nature of video and time-series data.
Innovative VTS modeling approaches are essential to un-

lock the full potential of multimodal data.
Previous works on VTS for traffic anomaly detection

primarily process videos frame by frame, integrating time-
series data through fusion techniques [27, 31, 34, 38]. For
instance, Simoncini et al. [31] employed object-detection
algorithms to identify objects related to unsafe conditions.
The bounding-box information from object detection was
combined with frame encodings from a pre-trained con-
volutional neural network (CNN) to generate frame fea-
tures. Meanwhile, a depthwise separable (DW) CNN [11]
was employed to extract features from time-series data.
Both sets of features were fed into a recurrent neural net-
work (RNN) for the final modeling. These approaches es-
sentially treat video frames features as a high-dimensional
time-series through an RNN. Recent Transformer-based re-
search has demonstrated that models with multi-head at-
tention mechanisms can significantly enhance video under-
standing [2, 5, 23].

This work proposes a novel framework, the Dual Swin
Transformer (DuST), that combines Video Swin Trans-
former model for video and 1D Swin Transformer model
for time series data. The Video Swin Transformer, ex-
pands the two-dimensional (2D) Swin Transformer to three-
dimensional (3D) paradigm, facilitating the comprehensive
processing of video data [24]. The Video Swin Transformer
has demonstrated outstanding performance in the domain of
video understanding [24]. In parallel, the Swin Transformer
is tailored to a 1D configuration for extracting features from
time-series data. The 1D Swin Transformer brings a set
of distinct advantages over RNN for modeling time-series
data: 1) It employs the windows concept to capture local
features, which are hierarchically combined into a compre-
hensive global feature representation; 2) it uses a ‘shift win-
dow’ mechanism to mitigates the issue of attention blind
spots, particularly at the edges of each window. A tailored
stagewise fusion approach is applied to harmoniously inte-
grate the information from the Video Swin Transformer and
the 1D Swin Transformer.

To assess the performance of the proposed model, we
devised a specific challenging task within the realm of au-
tomated driving scenarios. The task was to classify in-
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cidents into one of four categories: crashes, tire strikes,
near-crashes, and normal driving. The issue is under-
scored by the National Highway Traffic Safety Adminis-
tration (NHTSA)’s plan to reduce traffic-related fatalities,
injuries, and property damage through advanced driver as-
sistance systems (ADAS) or ADS [1]. This goal was to be
achieved by collecting comprehensive data to unravel the
intricacies surrounding crash occurrences. The challenge
in this context arises due to the close resemblance in the
signals associated with near-crashes and tire strikes when
compared to crashes. Achieving a high degree of accuracy
in distinguishing crashes from these events is crucial, as it
directly impacts the reliability of crash detection systems,
potentially minimizing false alarms.

We used the Second Strategic Highway Research Pro-
gram (SHRP 2) Naturalistic Driving Study (NDS) data for
the evaluation [12]. The SHRP 2 NDS data contains over
1,000,000 hours of continuous driving data, including front-
view videos and triaxial acceleration information.

2. Related Works

Video and Time-series Model Fusion in Driving Scenar-
ios Driving scenarios involve videos that record the driv-
ing environment, traffic, and infrastructure, as well as time-
series data indicating the vehicle dynamics, distance, and
relative speed with other road users. Peng et al. [27] em-
ployed a pretrained CNN (Vgg19) to extract features from
frames, which were then combined with kinematic signals
for driving maneuver classification. Taccari et al. [34] cal-
culated statistical metrics for optical flow and kinematic sig-
nals, aggregating them for input into a random forest clas-
sifier for crash/ near-crash classification. Simoncini et al.
[31] and Yamamoto et al. [38] employed object-detection
algorithms for the identification of traffic-related objects.
Subsequently, they integrated a CNN-LSTM framework
with attention mechanisms to merge video and kinematic
data, which was then utilized to classify unsafe maneuvers.
While these models have demonstrated their effectiveness
in specific tasks, the advent of Transformer models has in-
troduced a novel and promising approach to VTS modeling.

Swin Transformer The Swin Transformer is a deep learn-
ing architecture that has shown great promise in feature
extraction from various data types [6, 7, 15, 20, 21, 23].
Derived from the Transformer architecture [36], the Swin
Transformer introduces a hierarchical structure by parti-
tioning the input into non-overlapping windows and ap-
plying self-attention within each window. It incorporates
a shift window process in subsequent layers to capture
broader contextual information. The Swin Transformer
has been shown to outperform CNNs in many applications
[22, 23, 40].

In video understanding task, the Video Swin Trans-

former [24] inflated the 2D Swin Transformer into 3D,
which enables it to process video data directly. The pro-
posed DuST model utilizes the Video Swin Transformer to
analyze video data, complemented by a specially designed
1D Swin Transformer for time-series data. Compared to
RNNs, the Swin Transformer-based model can more effec-
tively mitigate the vanishing gradient problem. In video
processing, the Video Swin Transformer efficiently treats
each 3D patch of video as a token, offering a more compact
and effective representation than RNNs, which necessitate a
significantly larger number of input tokens to achieve simi-
lar video representation [24].

Model Fusion Popular strategies for model fusion in mul-
timodal learning include early fusion, slow fusion, and late
fusion, each varying in their approach to data integration
[33]. Early fusion merges data sources prior to model train-
ing, integrating information at the initial stage of the work-
flow. Slow fusion, in contrast, gradually integrates informa-
tion during the feature extraction process, allowing higher
layers to access global information. Late fusion combines
outcomes or features post model training, merging results
from independently processed data streams.

Karpathy et al. [18] conducted a comparative analysis on
these fusion strategies, specifically in the context of captur-
ing temporal and spatial dependencies in video understand-
ing. Their findings indicated that slow fusion, by facilitating
access to global information for higher layers, outperforms
both early and late fusion alternatives. Feichtenhofer et al.
[10] utilized pre-trained neural networks to extract features
from different data sources, followed by employing a CNN
for late fusion. Shoukat et al. [30] employed selection tech-
niques, such as linear regression, to conduct a weighted av-
erage of the scores from various models in order to execute
late fusion. Addressing multimodal settings with varying
complexities across submodels, the VLMo model [4] pro-
poses a stagewise training approach. This method involves
first training the more complex model, freezing its weights
upon completion, and then training the simpler model to
capture complementary information. In this paper, we ap-
ply and compare different sets of fusion methods in a dual
Swin Transformer setup, finding that the stagewise training
model outperforms other fusion approaches.

3. Dual Swin Transformer

Successful VTS modeling relies on effectively extracting
compensatory features from each data source, and integrat-
ing information across multiple sources. The DuST model
contains two components: the Video Swin Transformer and
the 1D Swin Transformer, for video and time-series data
processing, respectively, as shown in Figure 1. The ag-
gregation of outputs from both components using various
fusion strategies, including feature-level late fusion, score-

4538



Figure 1. Model architecture

level late fusion, slow fusion, and a novel stagewise slow
fusion approach.

3.1. 1D Swin Transformer for Time-Series Data

Denote the input time series as:

S ∈ RT×C , (1)

where T denotes the length of the time series and C denotes
the number of channels. For instance, in the case of the tri-
axial acceleration, C is equal to 3. As depicted in the right
section of Figure 1, the time series is segmented into N
non-overlapping intervals, referred to as patches. Follow-
ing the division into patches, a linear embedding is applied
to extract learnable features that capture the characteristics
of these patches. The embedding of a patch at the pth po-
sition in the time-series is denoted as z

(0)
(p) ∈ RD, where

p = 1, 2, ..., N . The patches are further divided into win-
dows based on a window size of W , and all attention oper-
ations are conducted within these windows.

The Swin Block with window size W includes two
types of attention blocks: window multi-head self-attention
(W-MSA) and shift-window multi-head self-attention (SW-
MSA). For the ath = 1, 2, . . . , A attention head and lth =
1, 2, . . . , l level, the query, key, and value vectors are de-
noted as q

(l,a)
(p) ∈ RD, k

(l,a)
(p) ∈ RD, and v

(l,a)
(p) ∈ RD,

and these vectors are obtained by transforming z
(l−1)
(p) with

learnable weight matrices. The term b
(l,a)
(p) ∈ RW denotes

the relative position bias that is utilized to capture the posi-
tion relationships between the patches within each window.
Given the query, key, and position bias vectors, the atten-
tion score for the lth level and the ath attention head within

a window, represented as α(l,a)
(p) , is computed as

α
(l,a)
(p) = SoftMax

q
(l,a)
(p)√
D

T {
k
(l,a)
(p′)

}
p′=1,...,W

+ b
(l,a)
(p)

 .

(2)
The dot product of the query and key vectors, q(l,a)

(p) ·
k
(l,a)
(p′) , represents the relationship between two patches in

the same window. The attention score α
(l,a)
(p) quantifies the

temporal relationship between different patches in the lth

level. For subsequent processes, the value vector, which
captures the content information of a patch, is used in com-
puting the self-attention output. The self-attention at the lth

level and the ath attention head, s(l,a)(p) , is computed as

s
(l,a)
(p) =

W∑
p′=1

α
(l,a)
(p)(p′)v

(l,a)
(p′) , (3)

where α
(l,a)
(p)(p′) denotes the p′

th element of vector α
(l,a)
(p) ,

and representing the significance of the p′
th patch with re-

spect to the pth patch. After processing through a ResNet
[14] block complemented by layer normalization and a
multi-layer perceptron, the output feeds into an SW-WSA
block. The architecture of SW-WSA is similar to W-SWA,
with the distinction that the window undergoes a shift of
⌊W

2 ⌋ patches. For instance, the first window encompasses

patches from the ⌊W
2 ⌋+ 1

th
to the ⌊ 3W

2 ⌋th, while the sec-

ond window covers patches from the ⌊ 3W
2 ⌋+ 1

th
to the

⌊ 5W
2 ⌋th. This pattern continues, with the final window con-

taining patches from the ⌊N − W
2 ⌋+ 1

th
to the ⌊N⌋th, as

well as the patch from 1st to the ⌊W
2 ⌋th. In this final win-

dow, attention is separately calculated for the patches from
the 1st to the ⌊W

2 ⌋th and the ⌊N − W
2 ⌋+ 1

th
to the N th.

A masking strategy is implemented to ensure that multi-
head attention is exclusively applied to the true neighboring
patches.

Throughout the Swin blocks, the window size remains
constant. Each succeeding Swin block doubles the patch
size compared to the preceding block, effectively halving
the number of windows. The dimension of features is dou-
bled in each subsequent Swin block level. This scaling re-
sults in an expansion of the receptive field, causing a tran-
sition in focus from local features to global ones. A visual
example of this process is provided in Figure 2.

The example presented in Figure 2 demonstrates the pro-
cess of a 1D Swin Transformer with a window size of 2 and
triaxial accelerations as input. Within Swin Block Level 1,
the features are D dimensions. The W-MSA component
segments the accelerations into 12 patches, forming a total
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Figure 2. Example of 1D Swin Transformer

of six windows. Attention is exclusively calculated within
each window, encompassing patch pairs such as 1 and 2,
3 and 4, through to 11 and 12. The SW-MSA component
involves shifting the window by one patch and computing
attention between patch pairs, starting from 2 and 3, 4 and
5, through to 10 and 11. Notably, the shifted windows 1 and
7 contain only a single patch, necessitating the calculation
of local attention exclusively for patches 1 and 12.

For Swin blocks in Level 2, 3, and 4, two patches from
the previous Swin block are combined into a single patch.
The dimension of features doubles compared to the previ-
ous Swin block, while the window size remains consistent.
In Swin Block Level 4, the first patch is doubled in size
compared to the original second patch. To standardize the
patch sizes, padding is applied to the second patch.

3.2. Video Swin Transformer for Video Data

Video data can be conceptualized as a high-dimensional
time series. The Video Swin Transformer is designed to
capture both spatial and temporal information in video data
effectively [24]. The methodology for processing videos is
similar to that for time series but extended across additional
dimensions. The input video is represented as:

V ∈ RF×H×L×3 (4)

where F is the number of frames, and each frame has
H×L×3 pixels, with the “3” indicating RGB channels. The
Video Swin Transformer processes the video by segmenting
it into 3D patches, each of size F ′×H ′×L′× 3. After this
segmentation, the video is divided into F/F ′ × H/H ′ ×
L/L′ such 3D patches. Subsequently, the features of these
patches are extracted using a linear embedding layer. The
3D window size is P ×M ×M . These windows are orga-
nized to divide the video without any overlaps. This means
the patches are split into

⌈
F ′

P

⌉
×

⌈
H′

M

⌉
×

⌈
L′

M

⌉
distinct 3D

windows. The multi-head self-attention calculation is con-
ducted within each 3D window.

Analogous to Swin blocks in the 1D case, the 3D Swin
blocks also incorporate two types of attention blocks: 3D
window multi-head self-attention (3D W-MSA) and 3D
shift-window multi-head self-attention (3D SW-MSA). Ini-
tially, the video is divided into

⌈
F ′

P

⌉
×

⌈
H′

M

⌉
×

⌈
L′

M

⌉
non-overlapping 3D patches and multi-head self-attention
within the windows is performed similar to the 1D case.
The output is passed through a ResNet block, a layer nor-
malization, and a multi-layer perceptron and then fed into
a 3D SW-WSA block. In this block, the window is shifted
along the time, height, and width dimension by

(
P
2 ,

M
2 , M

2

)
patches from that of the 3D W-MSA block.

The calculation of multi-head attention in the Video
Swin Block is summarized as follows.

α
(l,a)
(p) = SoftMax

q
(l,a)
(p)√
D

T {
k
(l,a)
(p′)

}
p′=1,...,PM2

+ b
(l,a)
(p)

 .

(5)

s
(l,a)
(p) =

PM2∑
p′=1

α
(l,a)
(p)(p′)v

(l,a)
(p′) , (6)

where q(l,a)
(p) ,k

(l,a)
(p) ,v

(l,a)
(p) ∈ RD and b

(l,a)
(p) ∈ RPM2

. α(l,a)
(p)

is the weight vector for ath attention head of PM2 patches
from lth level. s(l,a)(p) is the attention score for the ath atten-
tion head of pth patch from lth level.

3.3. Model Fusion for Dual Swin Transformer

Four fusion approaches were explored to integrate the
1D and Video Swin Transformer models. These approaches
are feature-level late fusion, score-level late fusion, slow fu-
sion, and the stagewise slow fusion technique.

The feature-level late fusion utilizes a CNN to process
the outputs from the final Swin blocks of both the 1D and
Video Swin Transformers. The score-level late fusion com-
bines the individual model scores through logistic regres-
sion.

Slow fusion is approached by connecting both Swin
Transformer models to a singular classification head. How-
ever, due to the inherent complexity in harmonizing
the Video Swin Transformer with the 1D Swin Trans-
former—stemming from the considerable difference in in-
put token requirements between video and time-series
data—a novel stagewise slow fusion method was intro-
duced.

Figure 3 (a) depicts the first stage, wherein the Video
Swin Transformer model is trained using labeled video data
to extract spatial and temporal features from the video in-
put. Figure 3 (b) illustrates the second stage where the 1D
Swin Transformer model is trained using time-series data.
As presented in 3 (c), parameters of the Video Swin Trans-
former model are frozen to preserve its learned features,

4540



Figure 3. Stagewise slow fusion

while a classification head is employed to integrate the fea-
ture representations from both transformers. This fusion
process, executed with the classification head, is trained
concurrently with the 1D Swin Transformer, ensuring that
the time-series model effectively complements the informa-
tion provided by the video model.

4. Application and Results
Problem Setup Utilizing the SHRP 2 NDS dataset [12],
this study aims to classify crashes, tire strikes, near-crashes,
and normal driving events, crucial for the safe operation of
ADS and ADAS. The data includes 1,063 crashes, 774 tire
strikes, 6,782 near-crashes, and 8,497 segments of normal
driving. Each event includes 30 seconds of front view video
and triaxial acceleration data. The distinction between event
types is evident in both video and time-series kinematic
data, making VTS data modeling particularly beneficial for
these applications.

4.1. SHRP2 NDS Dataset

The SHRP 2 NDS is the largest NDS up-to-date that
collected driving data from more than 3,000 participants
[8, 12]. Participant’s personal vehicles were instrumented
with a integrated data collection system that included four
cameras (front, driver’s face, over-the-shoulder, and rear
views), 3D accelerometer, GPS, gyroscope, lighting sen-
sor, and alcohol sensors. The system collected data con-
tinuously at a rate of 15 FPS for videos and 10Hz for kine-
matic data from the moment the vehicle started until it was
turned off. The data contains more than 1,000,000 hours or
70 million miles of continuous driving data.

From the continuous driving data, Safety-Critical Events
(SCEs) were identified including crashes, tire strikes, and
near-crashes. A multi-step process was conducted, involv-
ing the evaluation of kinematic characteristics for all driv-
ing data and verification of SCEs through video analysis by
trained data analysts [12]. A near-crash is a situation ne-
cessitating an evasive maneuver by any party involved to
prevent a crash [12]. A tire strike event is associated with a

road departure incident [19]. This study also included nor-
mal driving segments selected from the same trip, occurring
a few seconds before or after the SCEs.

4.2. Application

Data Pre-processing The temporal localization of each
event is pinpointed using the impact timestamp from the
SHRP 2 database and serves as the center of the event. A
temporal window encompassing 25 kinematic data points
and 38 video frames (representing 2.5 seconds) both pre-
ceding and succeeding the event was extracted, culminating
in a 5.1-second interval of triaxial acceleration. The normal
driving segment is randomly chosen from either before or
after the SCEs, spanning 51 kinematic data points and 77
corresponding video frames to align with the SCEs.

To augment the motion representation within crash, tire
strike, near-crash and normal driving scenarios, optical flow
computations were employed to quantify pixel movement
across successive frames [9, 16, 28, 32, 34]. Three distinct
video input modalities were explored: raw video frames,
optical flow frames, and frames synthesized via the MixGen
algorithm [13].

The classification performance of different video input
types was compared using a Video Swin Transformer ar-
chitecture. Empirical results indicated that the optical flow
frames yielded the highest accuracy and average area under
the curve (AUC), and was thus selected as the optical flow
video input for our incident classification pipeline. Illustra-
tions of triaxial acceleration and diverse video processing
techniques for front-view videos are presented in Figures 4
and Figure 5, respectively.

Model Implementation The dataset was randomly divided
into training, testing, and validation subsets in a proportion
of 7:2.1:0.9, corresponding to 11,985 events for training,
3,592 for testing, and 1,539 for validation. The validation
set was used to tune the hyperparameters, and the evalua-
tion performance was based on the independent testing set.
The software environment was based on Python 3.8 running
on Rocky Linux 9.3. The model was trained on a high-
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Figure 4. Data example of triaxial acceleration

Figure 5. Examples of video processing techniques

performance GPU workstation with dual Intel Xeon Gold
6338 CPUs @ 2.00 GHz, 256 GB RAM, and two Nvidia
Tesla A100 80 GB GPUs.

The 1D Swin Transformer model employs an embedding
dimension of 256 and a window size of 8 to balance the
model’s receptive field across temporal sequences. Each in-
put data point is treated as an initial patch, ensuring fine-
grained analysis capabilities. The architecture comprises
four Swin blocks, with the attention mechanism consis-
tently utilizing 16 heads across all blocks. The first, second,
and final blocks are composed of two layers, whereas the
central third block is expanded to six layers. Regulariza-
tion during training is introduced through a stochastic depth
rate of 0.1. Training leverages a batch size of 2,000, and
optimization is conducted via Adam with an initial learning
rate of 3e-4, which is decayed to 3e-5 after 100 epochs to
refine the learning as the model converges, continuing until
a minimum in validation loss is observed.

The Video Swin Transformer model is employed with an
embedding dimension of 128. The architecture comprises a
window size of (8, 7, 7) and an initial patch size of (2, 4,
4). The model is structured into four Swin blocks, with at-
tention heads set to (4, 8, 16, 32) across these blocks. The
depth of the network is organized such that the first, second,
and fourth Swin blocks consist of two layers each, while
the third block expands to six layers. A stochastic depth
rate of 0.1 is utilized. During training, a batch size of 8 is
adopted, and optimization is conducted using the AdamW
optimizer with an initial learning rate of 1e-3. Learning
rate scheduling is carried out in two stages: initially, a Lin-
earLR scheduler is employed to linearly scale the learning

rate from a factor of 0.1 during the epochs 0 to 2.5, with an
option for iteration-based scaling conversion, followed by
a CosineAnnealingLR scheduler for subsequent adjustment
of the learning rate. Validation is performed every 3 epochs,
with the epoch exhibiting the minimal validation loss being
selected for the final model representation.

Two late fusion strategies were explored: feature-level
and output-level fusion. For output-level fusion, multino-
mial logistic regression is applied to integrate the output
probabilities from the 1D and Video Swin Transformers. At
the feature level, the outputs of the Swin blocks are further
processed by a CNN. This CNN comprises a convolutional
layer with 16 channels, a kernel size of 5, and a stride of
1. This is followed by a max pooling layer with a kernel
size of 2 and a stride of 2. The processed features are then
fed into an MLP with a hidden layer of 1,000 dimensions.
The training process leverages a batch size of 128 and em-
ploys stochastic gradient descent (SGD) as the optimization
algorithm, with a learning rate set to 1e-3.

For slow fusion and stagewise slow fusion, the hyper-
parameters for the 1D and Video Swin Transformers are
maintained as previously described, with the exception of
the classification head, which is tailored to contain 3,072
units to effectively combine the outputs from the dual Swin
Transformer pathways. In the slow fusion approach, a batch
size of 8 is utilized, and SGD is selected as the optimiza-
tion algorithm, with the learning rate established at 1e-4. In
the stagewise slow fusion, given that the Video Swin Trans-
former requires no further training, a larger batch size of
2,000 is feasible, and the Adam optimizer is employed, also
with a learning rate of 1e-4.

4.3. Classification Performance

The application aims to distinguish between crashes, tire
strikes, near-crashes, and normal driving using VTS data.
Model performance was assessed using five metrics: accu-
racy, precision, recall, F1 score [35], and the average AUC
of the ROC curve for classification confidence [25].

Model Fusion Performance Table 1 presents the compar-
ative analysis of four models utilizing different fusion tech-
niques. The stagewise slow fusion, slow fusion and late
fusion in the features level models surpass the performance
of single-modality models (either time-series only or video
only) across various metrics. The stagewise slow fusion
approach, in particular, demonstrated superior performance
in most of the evaluation metrics. This demonstrates that
stagewise slow fusion is more effective at extracting com-
plementary information compared to other fusion methods.

1D Swin-Transformer Performance The 1D Swin Trans-
former demonstrates superior performance in classifying
triaxial acceleration data for crash, tire strike, near-crash,
and normal driving segments achieving higher accuracy and
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Table 1. Comparison of different model fusion strategy

Fusion method Accuracy Precision Recall F1 score Ave. AUC
Stagewise slow fusion 0.940 (0.732*, 0.755*, 0.941*, 0.976*) (0.644, 0.707, 0.967, 0.976) (0.686, 0.730, 0.954, 0.976) 0.982
Slow fusion 0.931 (0.684, 0.692, 0.951, 0.963) (0.644, 0.643, 0.952, 0.975) (0.664, 0.667, 0.952, 0.969) 0.974
Late fusion (scores) 0.918 (0.653, 0.638, 0.922, 0.964) (0.493, 0.618, 0.959, 0.966) (0.562, 0.628, 0.940, 0.965) 0.962
Late fusion (features) 0.931 (0.705, 0.694, 0.935, 0.968) (0.573, 0.592, 0.963, 0.981) (0.632, 0.639, 0.949, 0.974) 0.980
Time-series only 0.920 (0.697, 0.626, 0.924, 0.965) (0.582, 0.617, 0.955, 0.960) (0.634, 0.622, 0.939, 0.963) 0.971
Video only 0.872 (0.553, 0.565, 0.882, 0.929) (0.511, 0.554, 0.909, 0.916) (0.531, 0.559, 0.895, 0.923) 0.956

* The numbers in Precision, Recall, and F1 score are the corresponding metrics for crash, tire strike, near-crash, and normal driving.

Table 2. Comparison of different time-series classification models

Method Base models Acc. Precision Recall F1 score Ave. AUC
1D Swin Transformer Swin Transformer 0.920 (0.697*, 0.626*, 0.924*, 0.965*) (0.582, 0.617, 0.955, 0.960) (0.634, 0.622, 0.939, 0.963) 0.971
Shi et al. [29] CNN+GRU+XGBoost 0.916 (0.725, 0.607, 0.939, 0.953) (0.587, 0.669, 0.942, 0.958) (0.649, 0.636, 0.936, 0.955) 0.967
Arvin et al. [3] CNN+LSTM 0.914 (0.696, 0.602, 0.921, 0.960) (0.569, 0.637, 0.951, 0.953) (0.626, 0.619, 0.935, 0.957) 0.971
Winlaw et al. [37] Statistics+Logistic Regression 0.822 (0.663, 0.458, 0.831, 0.844) (0.298, 0.312, 0.874, 0.891) (0.411, 0.371, 0.852, 0.867) 0.931
Osman et al. [26] Statistics+Adaboost 0.832 (0.625, 0.500, 0.837, 0.872) (0.356, 0.522, 0.898, 0.866) (0.453, 0.511, 0.867, 0.869) 0.884

* The numbers in Precision, Recall, and F1 score are the corresponding metrics for crash, tire strike, near-crash, and normal driving.

average AUC compared to other benchmarks, as detailed in
Table 2. It is evident from these results that the 1D Swin
Transformer, as incorporated within the DuST framework,
sets a state-of-the-art performance standard in time-series
classification tasks.

State-of-the-art Models Comparison The proposed DuST
model is compared with SOTA bechmark models as shown
in Table 3. To ensure a fair comparison, identical training,
validation, and testing datasets were used across all mod-
els. The configurations for benchmark models adhere to
the specifications in the corresponding original published
works. Certain benchmark models leverage open-source
object detection techniques. For a fair comparison, the lat-
est object detection methodology, YOLO V8 [17], was em-
ployed in such cases.

Table 3 shows the DuST model outperforming bench-
mark models in accuracy, AUC, and F1-scores across all
classes, surpassing the highest benchmarks (Simoncini et al.
[31]). These results highlight the model’s exceptional effec-
tiveness in SCE classification.

4.4. DuST Generalizability on BDD100K

To the best of the author’s knowledge, no other pub-
lic datasets simultaneously include videos, kinematic sig-
nals, and most importantly SCE labels as the SHRP2 NDS.
Demonstrating the DuST model’s robustness and adaptabil-
ity, we identify high-risk driving situations in the BDD100K
dataset [39] without any retraining.

BDD100k Dataset and Data Processing The BDD100K
dataset, created by UC Berkeley, is a main public dataset
in autonomous driving and computer vision research with
100,000 forty-second clips. It includes front-view videos
and corresponding triaxial acceleration signals from an

iPhone 5 mounted on the vehicle, capturing kinematics at
50Hz and videos at 720p 30Hz. Notably, the dataset does
not contain labels for SCEs [39].

To adapt videos and triaxial accelerations for the DuST
model, which is trained on SHRP2 data, videos are down-
scaled to a resolution of 480x365 at 15 FPS, and accelera-
tions are downsampled to 10Hz. Optical flows are extracted
from these videos. A moving window strategy is employed,
using a step size of 0.2 seconds, equivalent to 2 accelera-
tion data points or 3 video frames, to create input segments.
Each segment, comprising 51 acceleration points and 77
video frames, is processed by the model.

Results The results aggregate the probabilities of crash,
tire-strike, and near-crash events to calculate an overall ab-
normal driving probability for each segment. It is consid-
ered that a continuous sequence of 8 windows (1.6 seconds),
each displaying an abnormal probability greater than 0.8,
indicates abnormal driving behavior.

Using the DuST model to evaluate the
’bdd100k videos train 01.zip’ dataset, which comprises
1,000 videos and their corresponding triaxial accelerations,
identified 116 instances of abnormal driving behavior.
The comparison of triaxial accelerations (with the Z-axis
adjusted for gravity) between clips featuring abnormal
driving is depicted in Figure 6. This comparison reveals
that clips with abnormal driving behaviors exhibit greater
variance than their counterparts. Further analysis of the
116 identified clips confirmed that 89.7 % indeed represent
real SCEs, with a breakdown by types detailed in Table 4.
These SCEs include potentially severe incidents involving
conflicts with pedestrians and cyclists. Figure 7 presents
two representative examples of such SCEs.

As shown in Figure 7 (a), a pedestrian unexpectedly
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Table 3. Classification performance compared to benchmarks

Model Proposed Model Simoncini et al. [31] Yamamoto et al. [38] Peng et al. [27] Taccari et al. [34]

Video Feature Optical flow + Video
Swin Transformer

CNN + Obj. Detection CNN + Obj. Detection +
LSTM with attention

CNN + LSTM Optical flow + Statistics

Time-Series Feature 1D Swin Transformer DW CNN + LSTM with
attention

LSTM with attention LSTM Statistics

Classification Model Swin Transformer MLP MLP MLP Random Forest
Fusion Method Stagewise Slow Fusion Slow fusion Slow fusion Early fusion Early fusion
Accuracy 0.940 0.921 0.905 0.901 0.880
Precision (0.732*, 0.755*, 0.941*,

0.976*)
(0.752, 0.632, 0.937,
0.955)

(0.662, 0.497, 0.914,
0.955)

(0.683, 0.538, 0.913,
0.933)

(0.724, 0.654, 0.872,
0.914)

Recall (0.644, 0.707, 0.967,
0.976)

(0.551, 0.764, 0.947,
0.961)

(0.453, 0.529, 0.941,
0.965)

(0.440, 0.408, 0.941,
0.971)

(0.397, 0.567, 0.919,
0.937)

F1 score (0.686, 0.730, 0.954,
0.976)

(0.636, 0.692, 0.942,
0.958)

(0.538, 0.512, 0.927,
0.960)

(0.535, 0.464, 0.927,
0.951)

(0.513, 0.608, 0.895,
0.925)

Ave. AUC 0.982 0.972 0.956 0.945 0.960

* The numbers in Precision, Recall and F1 score are the corresponding metrics of crash, tire strike, near-crash, and normal driving.

Table 4. Count of identified SCEs by types in BDD100k

Abnormal driving type Count
Bump 47
Hard brake 19
Conflict with Cut-in Vehicle 11
Conflict with Front Vehicle 10
Conflict with Crossing Vehicle 4
Conflict with Pedestrian 3
Conflict with Straight Vehicle while Cutting in 3
Conflict with Turning Vehicle 2
Conflict with Straight Vehicle while Turning 2
Sensor Error 2
Conflict with Cyclist 1
False Positive 12

Figure 6. Comparing abnormal driving to other clips

entering the roadway prompts the ego-vehicle to yield
abruptly to avoid a collision. Figure 7 (b) illustrates an in-
cident where a white vehicle abruptly merges into the lane,
forcing the ego-vehicle to execute a sharp braking action.
Both events are captured at approximately the 20-second
point in the clips, each with more than 8 continuous abnor-
mal probabilities exceeding 0.8 (denoted by the blue dashed
line).

5. Conclusion
This paper introduces a novel model, DuST: Dual Swin
Transformer, leveraging both video and time-series data for
classifying traffic safety-critical events pertinent to auto-
mated vehicles. The model employs a Video Swin Trans-

Figure 7. Examples of abnormal driving in BDD100k

former for video data and an 1D Swin Transformer for
time-series data. We further devised a stagewise slow fu-
sion technique aimed at harnessing complementary features
from multimodal data.

The surge in video and sensor data utilization in auto-
mated vehicles presents a ripe opportunity for advancing
crash detection technologies. The DuST framework lays a
solid foundation for identifying SCEs, thereby contributing
to the broader endeavor of enhancing autonomous driving
safety through video-time-series based crash detection.
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