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Abstract

Achieving fully autonomous driving requires not only un-
derstanding the current surrounding conditions but also pre-
dicting how objects that could lead to potential risks may
change in the future. Predicting potential risk regions, es-
pecially where pedestrians or vehicles might suddenly ap-
pear, is crucial for safe autonomous driving and accident
avoidance. Constructing datasets annotated with potential
risk regions is costly. Therefore, conventional methods have
proposed blind spot estimation using depth maps or segmen-
tation masks through automatic labeling. However, these
methods are limited in applicability due to their reliance on
camera parameters or point clouds.

In this study, we propose a method to automatically gen-
erate labels from depth maps and segmentation masks and
estimate potential risk regions in 2D. Our automatic labeling
algorithm relies solely on images, making it applicable to
all onboard camera datasets. To demonstrate the effective-
ness of our approach, we define regions where pedestrians
or vehicles might emerge from blind spots as potential risk
regions and annotate them to create a new dataset extended
with potential risk region annotations. Experiments using
the Cityscapes Dataset show that weakly training with la-
bels generated by our proposed method achieves equal or
superior accuracy compared with supervised training with
manually annotated ground truth (GT). Furthermore, exper-
iments using the Mapillary Vistas Dataset and BDD 100K
Dataset demonstrate the versatility of our approach.

1. Introduction

Advancements in perception, prediction, and planning en-
abled by deep learning have propelled progress toward
achieving fully autonomous driving. Moreover, hardware
advancements, such as cameras and LiDAR, are crucial
technologies supporting the deployment of large-scale im-
age recognition models. Consequently, real-time processing
capabilities during operation have improved, enhancing the
ability to avoid traffic risks. However, in autonomous driving
and driver-assistance systems, crucial perception functions

Figure 1. Labels of potential risk regions assigned by different la-
beling methods and prediction results of the risk region estimation
model trained with each label. A is the label of the potential risk
region generated by the proposed method, and B is the manually
assigned label. C and D are the prediction results of the model
trained with labels A and B, respectively.

such as object detection [15, 21] and semantic segmenta-
tion [3, 25] are limited to pre-defined objects perceptible
to sensors. Consequently, it is challenging to respond to
pedestrians or other vehicles suddenly emerging from cam-
erablind spots. Establishing safe driving techniques requires
not only understanding the current surrounding conditions
but also predicting how objects that could lead to poten-
tial risks in the future will evolve. In particular, predicting
potential risk regions where pedestrians or vehicles might
suddenly appear is crucial for safe autonomous driving and
accident avoidance. These regions typically coincide with a
driver’s blind spots or regions not covered by onboard cam-
eras. Therefore, conventional object detection and semantic
segmentation struggle to address these regions because they
focus solely on predefined objects and are unable to recog-
nize entirely unobserved regions or objects.

Why do methods that achieve state-of-the-art accuracy in
automotive camera datasets [23, 28, 30] fall short of the risk
avoidance required in driving scenarios, even though they
are comparable to human recognition capabilities? There-
fore, in scenarios such as residential regions with many
parked vehicles or in poor visibility conditions like at night
or during rain, humans prepare for unexpected incidents by
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reducing driving speed. Such anticipatory driving repre-
sents the crisis avoidance ability inherent in humans and is a
crucial capability that deep learning models should acquire
to reduce traffic accidents. Methods to obtain crisis avoid-
ance capabilities akin to humans include techniques like
ours, which estimate potential risk regions in 2D, as well as
methods directly estimating regions in 3D using point clouds
and similar data. At this juncture, the most critical aspect
is preparing large-scale datasets with annotations of poten-
tial risk regions. However, annotating potential risk regions
with clear definitions for large datasets is challenging. In
particular, annotations on videos or point clouds are practi-
cally impossible due to their difficulty and the immense time
required.

The main contributions of our study are twofold. First,
we introduce an algorithm that automatically generates la-
bels for potential risk regions using a highly accurate pre-
trained model, along with a newly constructed dataset an-
notated manually with such regions, specifically tailored for
the Cityscapes Dataset [6]. This newly constructed dataset
is referred to as the Potential Risk Dataset (PRD). The
first contribution, the automatic labeling algorithm, a new
weakly supervised potential risk regions estimation method
using those labels, and, selectively extracts potential risk
regions that may adversely affect a vehicle’s driving from
blind spots, common in any scene. Furthermore, the depth
estimation and segmentation models used in the automatic
labeling algorithm are not restricted to specific models, en-
abling adaptability to various scenes and domains, enabling
the selection of appropriate models for any driving scene.

The second contribution, the PRD, serves as a bench-
mark for the potential risk region estimation task and is used
to evaluate the labels generated by the proposed automatic
labeling algorithm. Experimental results demonstrate that
a potential risk region estimation model trained using la-
bels generated by the automatic labeling algorithm achieves
comparable accuracy to a supervised model trained with
manually annotated ground truth (GT), as shown in Fig. 1.
Additionally, experiments conducted using the Mapillary
Vistas Dataset [20] and BDD 100K Dataset [27], constructed
with images collected from various regions, demonstrate the
adaptability of the proposed automatic labeling algorithm
across diverse scenes.

In summary, the contributions of this study are as follows.

» Extension of the Cityscapes Dataset through
the addition of annotations for potential risk re-
gions.

* A new weakly supervised method for estimat-
ing potential risk regions using weakly labels
generated by the proposed automatic labeling
algorithm.

* Proposal of an automatic labeling algorithm for
potential risk regions adaptable to all onboard

camera datasets.

2. Related Work

Establishing safe driving techniques requires preparation
for pedestrians or vehicles emerging from blind spots of
drivers or onboard cameras. Therefore, methods for es-
timating risk regions in advance using sensor information
installed in vehicles have been studied. These methods can
be broadly classified into two categories. One is the use of
fully supervised learning methods, which define risk regions
where pedestrians or vehicles may emerge, annotate existing
datasets, and train risk region estimation models using fully
labeled data. The other is weakly supervised learning meth-
ods that utilize various sensors attached to vehicles to detect
blind spots within onboard cameras and train blind spot esti-
mation models by treating them as labels. In this section, we
review risk region estimation using fully supervised labels
and blind spot estimation using weakly supervised labels.

2.1. Risk Region Estimation

Several methods have been proposed for estimating risk re-
gions using manual annotations as GT labels, defining re-
gions where pedestrians or vehicles may emerge [17, 22].
Kozuka et al. [17] defined risk regions as those where
pedestrians may emerge and proposed a risk region esti-
mation method utilizing one-pixel annotations at the center
of risk regions and a regression-based loss function. How-
ever, since predefined risk regions are limited to those where
pedestrians may emerge, it is challenging to address regions
where vehicles or objects other than pedestrians may emerge.
Shimomura et al. [22] defined potential risk regions as those
where pedestrians or vehicles may emerge and constructed a
new dataset by adding annotations to the Cityscapes Dataset.
Similar to Kozuka et al., the newly constructed dataset adopts
the one-point annotation method, resulting in a small pro-
portion of image regions and limited information available
during training. To address the issue of limited information
in potential risk regions during training, this study solved
the problem by expanding distance-based labels using depth
bias in outdoor images [4] and Gaussian filtering. Addition-
ally, the formulation of a potential risk region as a probability
distribution estimation problem enabled the introduction of
a loss function to handle imbalanced teacher labels, solving
the issue of considering relationships between pixels and
enabling the estimation of potential risk regions.

2.2. Blind Spot Estimation

Instead of manually creating teacher labels for blind spots,
methods for estimating blind spots using LiDARs, cameras,
and pre-trained depth estimation or segmentation models
have also been explored [9, 16, 24, 29]. Zhou et al. [29]
proposed a method to identify the nearest blind spot regions
by calculating vertical gradients using depth maps and to
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Figure 2. Potential Risk Regions Distribution for Cityscapes Dataset.The x-axis and y-axis axes correspond to Cityscapes’ default image

size.

early detect pedestrians appearing from blind spots through
pedestrian object detection. However, it remains challeng-
ing to address multiple blind spot regions present in arbitrary
scenes. Furthermore, in early detection, it is difficult to avoid
collisions unless the moving speeds of the vehicle and pedes-
trians emerging from blind spots are slow enough to be rec-
ognizable by the camera. Sugiura et al. proposed a method
to generate probabilistic multi-hypothesis occupancy grid
maps (OGMs) for blind spot regions and obstacles using
measurements from 2D range sensors or monocular camera
images [24]. While there are several methods to generate
OGMs using surrounding vehicle environmental informa-
tion [1, 13], they face challenges such as the high cost of
learning using point cloud data for generating teacher data
and limited operable scenes.

Odagiri et al. [16] defined blind spots as the points of
contact between the road surface and potential risk objects
emerging from them, in contrast to the aforementioned meth-
ods that generate OGMs. Therefore, it becomes possible to
directly estimate the distance to blind spots from a single
depth map without the need for complementary frames for
invisible regions like Fukuda et al. [9]. However, since
the generated blind spot regions are projected onto the road
surface, there is a possibility of adverse effects on driv-
ing when the eye level drops. Additionally, the evaluation
through experiments is limited by the small number of man-
ually annotated labels provided for the KITTI Dataset [10],
indicating insufficient comparison of accuracy with models
trained using manually annotated labels and effectiveness
assessment using other datasets.

3. Potential Risk Dataset

We provide precise annotations of potential risk regions
in the Cityscapes Dataset collected in 50 cities, including
Germany and neighboring countries.

Data | Risk scene | UnRisk scene | Workers

Train 2741 234 4
Val 461 39 3
Test 1460 40 4

Table 1. Annotation details for Cityscapes Dataset [6], where Risk
scene indicates the number of scenes that contain potential risk
regions and UnRisk scene indicates the number of scenes that do
not contain potential risk regions and UnRisk scene indicate the
number of scenes that contain and do not contain potential risk
regions.

3.1. Potential Risk Annotations

The newly constructed Potential Risk Dataset (PRD) was
annotated by four individuals with extensive driving experi-
ence. Annotating potential risk regions is challenging due to
the inability to define them on the basis of object boundaries,
as in object detection or semantic segmentation. Therefore,
similar to Kozuka et al. [17], we adopted a 1-point anno-
tation method in this study. Annotators were assigned to
each city in Cityscapes Dataset to prevent multiple annota-
tors from annotating the same city. The annotation criteria
were defined as regions where pedestrians or vehicles may
emerge and affect the vehicle’s trajectory. Therefore, not all
scenes in the Cityscapes GtFine Dataset [6] are annotated.
Conventional potential risk region datasets [22] consider
intersections and crossroads where pedestrians or vehicles
may emerge but do not affect the vehicle’s trajectory. How-
ever, annotating potential blind spots caused by intersections
and crossroads is challenging because potential ones cannot
be accurately annotated from 2D onboard camera images
due to the inability to consider road structures. Therefore,
annotations for intersections and crossroads are not pro-
vided in PRD. Tab. 1 shows the number of annotators for
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Dataset | Train | Val [ Test
Shimomura et.al [22] | 6,673 | 1,403 | 3,559
Ours 20,987 | 3,463 | 13,972
Table 2. Number of potential risk regions for each data in
Cityscapes[6].

each dataset and the percentage of scenes containing po-
tential risk regions. The annotation for the entire dataset
takes 4160 minutes, requiring approximately 54 seconds per
image.

3.2. Statistical analysis

We compare the number of potential risk region annotations
in our newly constructed PRD and the dataset by Shimomura
et al. [22] in Tab. 2. It can be observed that there are
more than three times as many annotations for potential risk
regions in both the Train and Test datasets and more than
twice as many annotations in the Val dataset. Furthermore,
the distribution of potential risk region annotations per data
is illustrated in Fig. 2. Unlike Shimomura et al., our newly
constructed dataset does not consider blind spots caused
by intersections and crossroads as potential risk regions,
resulting in a concentration of risk regions towards the image
centers.

4. Proposed Method

This section describes main component: an automatic la-
beling method for discontinuous regions detected using gra-
dients of depth maps used to learn weakly supervised latent
risk region estimation.

4.1. Automatic labeling algorithm for potential risk
regions

Detection of blind spot regions using depth maps. As
discussed in Section 3, manual annotation of potential risk
regions can be costly even when using a single-point anno-
tation method. In our proposed approach for generating po-
tential risk labels using weak supervision, we extract blind
spot regions for any object by detecting discontinuities in
predicted depth maps and performing class selection using
segmentation. An overview of the proposed automatic la-
beling method for potential risk regions is shown in Fig. 3.
The regions where pedestrians or vehicles might suddenly
emerge cannot be visually confirmed by drivers and may
appear suddenly from behind obstacles. Therefore, in this
study, we define blind spot regions calculated from depth
maps as potential risk regions. Our approach uses ZoeDepth
[2], capable of estimating relative and absolute depth with-
out requiring fine-tuning, for depth estimation. Our discon-
tinuity detection algorithm is adaptable to any scene, and
thus differences in depth scale or variations in depth over

time at different instances pose no issue. To identify image
coordinates where distances change discontinuously using
the normalized depth map D predicted by ZoeDepth for any
image I € R(C*H>*W) 'we perform second-order differenti-
ation in the horizontal direction. We define functions F;,
and F,,; to segment the horizontal derivatives of the depth
map.

N max(D -D,,.0) ifx<¥
FalD.x.y) = M Dty ™ Do) >
max(Dy_1,y — D, ,,0) otherwise,
A max(Dy_1.y —Dy,,0) ifx<¥
Fout(D,x,y)z Ax y A oY 2
max(Dy y — Dx41,y,0) otherwise,
2

where, x and y denote the indices of the matrix. In com-
puting the gradient between adjacent pixels in D Eq. (1)
extracts the depth variations from the left half of the image
towards the right and vice versa. Eq. (2) isolates the depth
variations from the right half towards the left and vice versa.
By utilizing Eq. (1) and Eq. (2), we can compute the hor-
izontal distance gradients G* € RW*H and G- ¢ RW*H
from the predicted depth map D.

G+()C,y) :Fin(_F‘in(DA’x’y)’x’y)’ (3)

G_(x,)’) :FOUt(_FOUt(D’x’y)7x’y)7 (4)

where, Eq. (3) and Eq. (4) invert the magnitude of the first-
order differentials to store the gradient computation results
in neighboring pixels. Additionally, to define potential risk
regions as blind spots where pedestrians or vehicles may
suddenly emerge, we use a threshold to confine the risk re-
gions to spaces where vehicles or pedestrians might appear.
The final blind spot region is computed as follows.

G* = {(x, )G [x,y] = o}, (5)

G~ ={(x,)IG [x,y] = 7}. (6)

Here, o represents the threshold. In this study, empiri-
cally, we set oo = 0.05. The horizontal distance gradients
qptained through the second-order differentiation, G* and
G, are Qlustrated in Fig. 4.

The G* computed from Eq. (5) detects blind spot re-
gions unrelated to potential risk regions, as illustrated in
Fig. 4. Therefore, from the detected blind spot region G*
using segmentation, we extract potential risk regions where
pedestrians or vehicles may emerge.

Automatic labeling of potential risk regions using blind
spot and segmentation. In this study, we use mask2former
[5] for segmentation, extracting only the discontinuous re-
gions for any class mask to create labels for potential risk
regions. For any image I € R(C*HXW) 4 binary mask
BM e RUHXW) representing vehicles is created from the
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mask2former [5

Dﬂ%-*m

Zoedepth [2]

Result of Segmentation

Binary mask

Weakly Risk Label

Prior 6
(car track, bus, . )

Result of Depth Estimation

Calc Blind spot

Figure 3. Overview of the automatic labeling method. Blind spots detected by the proposed method are shown in red. Symbols indicate
pixel-wise logical AND. The region is intentionally enlarged for visibility.

Figure 4. Blind spots caused by the vehicle classes detected by the
proposed method. Blue indicates forward blind spots for a given
vehicle class, and red indicates rear blind spots.

segmentation mask M € R(F*W) predicted by mask2former
[5]. The final label /; for potential risk regions generated by
automatic labeling is calculated as follows.

I; =G* A BM, (7)

where, A the pixel-wise logical AND.

Preprocessing of potential risk region labels using depth.
In previous studies, rather than directly using potential risk
regions that occupy a small percentage of the image region
for training, preprocessing with outdoor image depth bias
[22] was used to address imbalanced labels. However, us-
ing preprocessing with outdoor image depth bias makes it
difficult to consider accurate depth in the depth direction.
Additionally, it is challenging to handle scenes where the
road surface on which the vehicle travels does not always
extend straight ahead. Therefore, in this study, we expand
the labels /; of potential risk regions at the pixel level using
the depth map D used during automatic labeling. The final

Algorithm 1 Preprocess

Require: binary matrix 8M, depth map D, scale-f S
1: EM(expansion_matrix) « copy(BM)

2: RM(radius_matrix) <« max(D) — D

3: MR(max_radius) < max(EM) X S

4: output «— zeros((all pixels))

5: for y, x € range(all pixels) do

6: if BM(y,x) =1 then

7: for i, j € range(nearest pixels) do

8: Nearest pixels range is (—M®R, MR + 1))

9: if 242 < MR?then (v, x') — (y+i,x+J)

10: if0 <y <imghn0 <x <imgw
then output(y’,x’) =1

11: end if

12: end if

13: end for

14: end if

15: end for

16: output : Potential Risk Regions after Preprocess

calculation of potential risk region labels is performed by
the Algorithm 1. In this study, we set scale-f=30.

5. Experiments
5.1. Datasets

For evaluation, we adopted two in-vehicle camera datasets.
To investigate the effectiveness of the labels generated by
automatic labeling and demonstrate the adaptability of our
proposed method to various scenes, we conducted experi-
ments using Cityscapes annotated manually by us [6] and
Mapilarry Vistas [20]. These datasets are detailed as fol-
lows.
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Figure 5. Variation of Recall with respect to the threshold of the
weakly label after the application of Gaussian filtering.

CC \ Recall \ mAR
0.4982 | 0.7284 | 0.4321

Table 3. Justification of weakly labels in the Cityscape testset.

Cityscapes GtFine [6]: Consists of 5,000 images with pre-
cise segmentation annotations collected from 50 cities in
Germany. The training and evaluation datasets contain 2,975
and 500 images, respectively, while the remaining 1,525 im-
ages are for testing.

Mapillary Vistas Dataset [20]: Comprises 25,000 images
with precise segmentation annotations collected from vari-
ous regions worldwide. The training and evaluation datasets
contain 18,000 and 2,000 images, respectively, while the re-
maining 5000 images are for testing.

BDD100K Dataset [27]: Comprises 100,000 images with
precise segmentation annotations collected from various
regions US. The training and evaluation datasets contain
70,000 and 10,000 images, respectively, while the remain-
ing 20,000 images are for testing.

5.2. Implement Details

Automatic Label Generation: In Cityscapes GtFine [6],
Depth maps are generated using ZoeDepth [2] with im-
age sizes of 1024 x 2048. Segmentation masks for class
selection are created with image sizes of 512 x 1024 using
mask2former [5]. During automatic labeling, the matrix size
is adjusted using inter-nearest [11] to ensure that the depth
map and segmentation mask have the same size. The final
potential risk regions are generated from the occluded re-
gions on the far side of any instance on the basis of the prior
knowledge learned from the depth map and mask2former
[5].

In Mapillary Vistas Dataset [20] and BDD100K Dataset
[27], Depth maps are generated with image sizes of 774 X
1032 using ZoeDepth [2]. Similarly, segmentation masks
for class selection are created with the same image size as the

depth map using mask2former [5]. Subsequent automatic
labeling follows the same procedure as that for Cityscapes.
Hereafter, we refer to the potential risk regions generated by
the proposed method as weakly labels.

Network Structure: The potential risk regions represent
blind spots caused by vehicles or obstacles captured by cam-
eras or human gaze. Therefore, it is crucial for the network
estimating potential risk regions to mimic human visual pro-
cessing mechanisms. To address this, we adopt TranSalNet
proposed by Lou et al. [19], focusing on research in visual
saliency prediction [8, 14, 26]. Lou et al. noted that con-
volutional neural network (CNN) architectures tend to lose
distant contextual information in extracted image features
due to CNN-specific inductive biases [7]. Thus, TranSalNet
integrates Transformer components into a CNN to consider
the ability of the human visual system to understand local
and global visual information. Moreover, in our experi-
ments, we use Resnet-50 [12] as the backbone network.
Training Details: Training is conducted using Nvidia RTX
A6000. Subsequently, a Gaussian filter is applied with a
kernel size of 5 X 5. Images are resized using inter-nearest
interpolation to 320 x 640 for Cityscapes and 288 x 384 for
Mapillary Vistas. The loss function uses a weighted linear
combination of Exponentially Weighted MSE Loss and Total
Variation Distance, similar to Shimomura et al. [22]. We set
the initial learning rate to 10~ using the AdamW algorithm
[18], and the model is trained for 60 epochs with a batch
size of 16.

5.3. Justification of Weakly labels

The primary goal of estimating potential risk regions are
to reduce the number of traffic accidents due to undetected
risks when considering operation in real-world applications.
Therefore, the validity of weakly labels is evaluated by the
Correlation Coefficient (CC) between labels and Average
Recall (AR). Tab. 3 presents the quantitative evaluation re-
sults using the Cityscapes test data. Recalls for each thresh-
old are shown in the Fig. 5. The correlation coefficients
and Recall indicate that the weakly label generated by the
proposed method is comparable to the manually annotated
ground truth.

5.4. Evaluation metrics for predicting potential risk
regions

To evaluate the consistency between manually annotated
potential risk region labels, labels generated by the pro-
posed method, and predicted potential risk region labels,
both location-based and distribution-based evaluation met-
rics can be considered. Distribution-based evaluation met-
rics like Correlation Coefficient (CC), adopted in previous
studies [22], do not penalize for undetected or falsely de-
tected regions, which is deemed inappropriate for tasks like
ours that prioritize undetected or falsely detected regions.
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Train Label | AUC | Precision | Recall | Fl-score | Specificity | F2-score

Supervised | 0.6634 | 0.9104

0.3283

0.4819 0.9985 0.3762

Weakly 0.6890 | 0.7103

0.3857

0.4975 0.9924 0.4235

Table 4. Quantitative results with the Cityscapes Test dataset. The evaluation was performed with manually assigned GT labels of potential

risk regions.

.
=

Predict

Predict
(use WL) (Supervised)

Figure 6. Visualization results from the Cityscapes Test, where GT is ground truth and WL is Weakly Label. The fourth row shows the
prediction results for the model trained with Weakly Label, and the fifth row shows the prediction results for the model trained with GT

labels.

In this study, we focus on the accuracy of detected regions
of potential risk regions and adopt location-based evalua-
tion metrics such as area under the curve (AUC), Precision,
Recall, Fl-score, and Specificity. Additionally, consider-
ing the significance of undetected potential risk regions as
crucial incidents leading to traffic accidents, we also incor-
porate the F2-score, which prioritizes Recall. The F2-score
is calculated as follows in Eq. (8).

5 - Precision X Recall
F2-score = 4 - Precision + Recall ®

5.5. Comparison with fully supervised learning

We compare the accuracy of models trained using manually
annotated GT labels and potential risk region labels gener-
ated by the proposed method using the Cityscapes Dataset.

Evaluation is conducted using the provided GT annotations.
‘We aim to achieve equal or superior accuracy compared with
fully supervised learning with GT labels, using potential
risk region labels generated by our automatic labeling al-
gorithm, which does not require extensive annotation costs.
Tab. 4 presents the quantitative evaluation results using the
Cityscapes test data. As the results indicate, models trained
using weakly labeled potential risk regions generated by our
proposed automatic labeling algorithm demonstrate equal or
superior accuracy compared with fully supervised models.
We observed improvements in AUC, Recall, F1-score, and
F2-score compared with fully supervised learning. Specif-
ically, AUC improved by 0.0256 pt, Recall by 0.057 pt,
and F2-score by 0.047 pt. These findings demonstrate that
weakly labeled potential risk regions generated by our pro-
posed automatic labeling algorithm are effective for training
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Mapillary Vistas

BDD100K

Weakly Label Image

Predict

Figure 7. Visualization results from the Mapillary Vistas Test and BDD100K Test, where the WL (Weakly Label) in the second row is

generated by the proposed automatic labeling algorithm.

potential risk region estimation networks, achieving equal
or superior effectiveness to the GT labels.

5.6. Model Visualization

Fig. 6 illustrates qualitative evaluations on the Cityscapes
test data. The weakly labels generated by the proposed
method are acceptable potential risk region labels compared
with the GT labels. Moreover, focusing on the third row,
the proposed method can generate accurate potential risk
region labels even for distant objects, where manual anno-
tation would be challenging. From the results, the proposed
method is not limited to specific regions or scenes. Overall,
the proposed method demonstrates the ability to detect po-
tential blind spots behind arbitrary objects in various scenes,
indicating that training of potential risk region estimation
models is possible on any data as long as depth estimation
and semantic segmentation are applicable.

5.7. Versatility of the proposed method

The proposed method is not limited to specific datasets.
Therefore, we demonstrate the high versatility of the pro-
posed method using the Mapillary Vistas Dataset and The
BDD100k Dataset [27]. Since both datasets lack ground
truth annotations, we discuss qualitatively based on the eval-
uation results shown in Figure 7. The left three columns
depict results using the Mappillary Vistas dataset, while
the right three columns show results using the BDD100K
dataset. From Figure 7, it is evident that the weakly labels
generated by our proposed method indicate potential risk re-
gions where pedestrians or vehicles might emerge, not only
in the Cityscapes dataset but also in the Mappillary Vis-
tas and BDD100K datasets. Furthermore, the predictions

of the models trained using weakly labels demonstrate the
ability to predict potential risk regions with high accuracy
qualitatively.

While our evaluation is currently limited to qualitative
assessment, we plan to annotate potential risk regions for
Mappillary Vistas and BDD100K datasets in the future, ex-
panding our evaluation beyond qualitative assessment.

6. Conclusion

To achieve potential risk region estimation not limited to
specific domains, we constructed a new dataset along with
an automatic labeling algorithm that does not rely on cam-
era parameters or point clouds for evaluation. The quan-
titative evaluation experiments, comparing models trained
with manually annotated GT labels and models trained with
automatically generated weakly labels, are, to our knowl-
edge, the first of their kind. The automatic labeling algo-
rithm demonstrated its capability to generate labels equiv-
alent to manual annotations by focusing on blind spot re-
gions behind arbitrary instances. Additionally, we trained
models using the GT labels from the newly constructed po-
tential risk region dataset and weakly labels generated by
our proposed method to investigate the effectiveness of our
approach. The results showed that models trained using
weakly labels generated by our proposed automatic labeling
algorithm achieved equal or superior accuracy compared
with models trained using GT labels. This underscores the
effectiveness of our approach in potential risk region esti-
mation.

References

[1] Oladapo Afolabi, Katherine Driggs—Campbell, Roy Dong,
Mykel J. Kochenderfer, and S. Shankar Sastry. People as sen-

4511



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

sors: Imputing maps from human actions. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 23422348, 2018. 3

Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka,
and Matthias Miiller. Zoedepth: Zero-shot transfer by com-
bining relative and metric depth, 2023. 4, 6

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroft, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV,2018. 1

Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. In Advances in Neu-
ral Information Processing Systems. Curran Associates, Inc.,
2016. 2

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. 2022. 4, 5, 6
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 2,3,4,5,6

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostata Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021. 6

Richard Droste, Jianbo Jiao, and J. Alison Noble. Unified Im-
age and Video Saliency Modeling. In Proceedings of the 16th
European Conference on Computer Vision (ECCV), 2020. 6
Taichi Fukuda, Kotaro Hasegawa, Shinya Ishizaki, Shohei
Nobuhara, and Ko Nishino. Blindspotnet: Seeing where we
cannot see. In Proc. of European Conference on Computer Vi-
sion (ECCV) Workshops — Autonomous Vehicle Vision Work-
shop, 2022. 2,3

A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets
robotics: The KITTI dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013. 3

Pascal Getreuer. Linear Methods for Image Interpolation.
Image Processing On Line, 1:238-259, 2011. https://
doi.org/10.5201/ipol.2011.g_lmii. 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition

(CVPR), pages 770-778, 2016. 6

Masha Itkina, Ye-Ji Mun, Katherine Driggs-Campbell, and
Mykel J. Kochenderfer. Multi-agent variational occlusion
inference using people as sensors. In 2022 International
Conference on Robotics and Automation (ICRA), pages 4585—
4591,2022. 3

Samyak Jain, Pradeep Yarlagadda, Shreyank Jyoti, Shyam-
gopal Karthik, Ramanathan Subramanian, and Vineet
Gandhi. Vinet: Pushing the limits of visual modality for
audio-visual saliency prediction, 2021. 6

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

4512

M. Karthi, V Muthulakshmi, R Priscilla, P Praveen, and K
Vanisri. Evolution of yolo-v5 algorithm for object detec-
tion: Automated detection of library books and performace
validation of dataset. In 2021 International Conference on
Innovative Computing, Intelligent Communication and Smart
Electrical Systems (ICSES), pages 1-6, 2021. 1

Odagiri Kazuya and Onoguchi Kazunori. Monocular blind
spot estimation with occupancy grid mapping. In Interna-
tional Conference on Machine Vision and Applications, MVA,
pages 1-6. IEEE, 2023. 2, 3

Kazuki Kozuka and Juan Carlos Niebles. Risky region local-
ization with point supervision. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV) Work-
shops, 2017. 2,3

Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2017. 6

Jianxun Lou, Hanhe Lin, David Marshall, Dietmar Saupe,
and Hantao Liu. Transalnet: Towards perceptually relevant
visual saliency prediction. Neurocomputing, 2022. 6
Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In 2017 IEEE International
Conference on Computer Vision (ICCV), pages 5000-5009,
2017. 2,5,6

Dillon Reis, Jordan Kupec, Jacqueline Hong, and Ahmad
Daoudi. Real-time flying object detection with yolov8, 2023.
1

Kota Shimomura, Hiroki Adachi, Tsubasa Hirakawa,
Takayoshi Yamashita, Hironobu Fujiyoshi, Masamitsu
Tsuchiya, and Yuji Yasui. Potential risk estimation with single
monocular camera. In Secure and Safe Autonomous Driving
Workshop and Challenge on CVPR 2023,2023. 2,3,4,5,6
Yosuke Shinya. USB: Universal-scale object detection bench-
mark. In British Machine Vision Conference (BMVC), 2022.
1

Takayuki Sugiura and Tomoki Watanabe. Probable multi-
hypothesis blind spot estimation for driving risk prediction.
In 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 4295-4302, 2019. 2, 3

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
In Neural Information Processing Systems (NeurIPS), 2021.
1

Sheng Yang, Guosheng Lin, Qiuping Jiang, and Weisi Lin.
A dilated inception network for visual saliency prediction.
IEEE Transactions on Multimedia, 22(8):2163-2176, 2019.
6

Fisher Yu, Haofeng Chen, Xin Wang, Wengqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 2, 6, 8
Chunhui Zhang, Li Liu, Yawen Cui, Guanjie Huang, Weilin
Lin, Yigian Yang, and Yuehong Hu. A comprehensive
survey on segment anything model for vision and beyond.
arXiv:2305.08196, 2023. 1


https://doi.org/10.5201/ipol.2011.g_lmii
https://doi.org/10.5201/ipol.2011.g_lmii

[29]

(30]

Jiacheng Zhou, Masahiro Hirano, and Yuji Yamakawa. High-
speed recognition of pedestrians out of blind spot with pre-
detection of potentially dangerous regions. In 2022 IEEE
25th International Conference on Intelligent Transportation
Systems (ITSC), pages 945-950, 2022. 2

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: deformable transformers
for end-to-end object detection. In 9th International Confer-
ence on Learning Representations, I[CLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. 1

4513



	. Introduction
	. Related Work
	. Risk Region Estimation
	. Blind Spot Estimation

	. Potential Risk Dataset
	. Potential Risk Annotations
	. Statistical analysis

	. Proposed Method
	. Automatic labeling algorithm for potential risk regions

	. Experiments
	. Datasets
	. Implement Details
	. Justification of Weakly labels
	. Evaluation metrics for predicting potential risk regions
	. Comparison with fully supervised learning
	. Model Visualization
	. Versatility of the proposed method

	. Conclusion

