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Abstract

We introduce a self-supervised pretraining method,
called OccFeat, for camera-only Bird’s-Eye-View (BEV)
segmentation networks. With OccFeat, we pretrain a BEV
network via occupancy prediction and feature distillation
tasks. Occupancy prediction provides a 3D geometric un-
derstanding of the scene to the model. However, the geom-
etry learned is class-agnostic. Hence, we add semantic in-
formation to the model in the 3D space through distillation
from a self-supervised pretrained image foundation model.
Models pretrained with our method exhibit improved BEV
semantic segmentation performance, particularly in low-
data scenarios. Moreover, empirical results affirm the ef-
ficacy of integrating feature distillation with 3D occupancy
prediction in our pretraining approach.

1. Introduction
Camera-only bird’s-eye-view (BEV) networks have gained
significant interest in recent years within the field of au-
tonomous driving perception [6, 24, 31, 34, 45, 58, 83].
The appeal of the BEV, or else top-view, is that it offers a
unified space for various sensors, including surround-view
cameras, Lidar, and radar [29, 51, 53], for both annotation
and runtime perception purposes, and can serve as input for
subsequent tasks in the driving pipeline, such as forecasting
and planning [1, 8, 29, 31, 32]. Common tasks in the BEV
space are semantic segmentation of objects [6, 24, 58, 83]
and layouts [39, 40], as well as object detection [34, 45].
Our work specifically targets the camera-only BEV seman-
tic segmentation task.

Until now, training networks for camera-only semantic
segmentation in BEV space has relied on full supervision,
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Figure 1. Performance comparison in low data regime (1% anno-
tated data of nuScenes)

necessitating annotations for each scene. This process is
time-consuming due to the transition from the input image
to the “synthetic” BEV space. For instance, annotations are
typically generated for Lidar data, checked for visibility and
classes in images, and then projected onto BEV segmenta-
tion images. To reduce annotation costs, we explore the
potential of self-supervised pretraining camera-only BEV
segmentation networks.

In self-supervised pretraining, networks are typically
trained on annotation-free pretext tasks before the primary
(downstream) task, like semantic segmentation. The aim
is to guide the network in learning useful data representa-
tions during this pretraining phase. This process is intended
to enhance the network’s performance on the downstream
task, enabling it to achieve higher accuracy while utilizing
a reduced amount of annotated data. Pretraining has been
proven efficient for several modalities from images [15, 27]
to Lidar [7] and with different strategies, such as contrastive
learning [15, 26], teacher-student architectures [12, 21–23]
or reconstruction tasks [4, 27].

In the field of autonomous driving, self-supervised pre-
training for camera-only BEV networks has received lim-
ited attention despite its crucial role. Recently, a few meth-
ods have emerged that delve into this subject [54, 79, 81],
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but they predominantly focus on pretraining with 3D ge-
ometry prediction tasks. For instance, ViDAR [81] em-
ploys Lidar point cloud forecasting for pre-training, Uni-
PAD [79] 3D surface and RGB pixels reconstruction, and
UniScene [54] 3D occupancy prediction. While these meth-
ods equip the BEV networks with 3D geometry understand-
ing, they often fall short in making the network capture
semantic-aware information of the 3D scene, essential for
tasks like BEV-based semantic segmentation.

Our approach, called Occupancy Feature Prediction (Oc-
cFeat), addresses this gap by presenting a pretraining ob-
jective that promotes a more comprehensive understanding
of the 3D scene, encompassing both geometric and seman-
tic aspects. In our approach, the camera-only BEV net-
work is tasked to predict a 3D voxel-grid representation
that includes (a) features indicating voxel occupancy and
(b) high-level self-supervised image features characterizing
occupied voxels.

To create this target voxel grid representation, we lever-
age aligned Lidar and image data in autonomous driving se-
tups, along with a self-supervised image foundation model
like DINOv2 [56], which has been pretrained to extract
high-level 2D image features. Specifically, the occupancy
of each voxel is determined using Lidar data, considering a
voxel occupied if it contains at least one Lidar point. Simul-
taneously, the self-supervised image foundation model fills
the occupied voxels with high-level image features. This
process involves projecting the center coordinates of each
occupied voxel cell into the 2D space of the image features
extracted from the foundation model.

Unlike approaches solely focused on 3D geometry pre-
diction, our method goes beyond by training the BEV net-
work to predict a richer, more semantic representation of the
3D scene, all without requiring manual annotation, lever-
aging the pre-trained image foundation model. We empir-
ically demonstrate that this enhancement leads to signifi-
cantly better downstream BEV semantic segmentation re-
sults, especially in low-data regimes (e.g., see Fig. 1).

Our contributions are the following:
1. We present OccFeat, a self-supervised pretraining ap-

proach for camera-only BEV segmentation networks
that enforces both geometric and semantic understand-
ing of 3D scenes.

2. OccFeat exploits three modalities for pretraining: im-
age, Lidar, and DINOv2 features. To the best of our
knowledge, we are the first to leverage foundation im-
age models (DINOv2) for pretraining camera-only BEV
networks. We note that after pretraining, the Lidar and
DINOv2 data are not used anymore.

3. We evaluate OccFeat on nuScenes [9] for BEV seman-
tic segmentation of both vehicles and map layout. The
results show the benefit of our pretraining method, espe-
cially in low-shot regimes, e.g., when using annotations

only for 1% or 10% of nuScene’s training data. Addi-
tionally, our OccFeat pretraining improves the robust-
ness, as evaluated on the nuScenes-C benchmark [74].

2. Related work

Camera-only BEV perception. BEV perception aims for
a unified representation of the surrounding environment of
a vehicle. BEV has recently arised as a prevailing paradigm
for multi-camera perception systems for autonomous driv-
ing. Camera-based BEV models are typically composed
of three parts: (i) an image encoder shared across cam-
eras for extracting 2D features, (ii) a view-projection mod-
ule for “lifting” features in the 3D space to produce BEV
features, and (iii) one or more task decoder modules that
process BEV features towards addressing a task of inter-
est, e.g., semantic segmentation, map prediction, 3D de-
tection, etc. Among them, the view-projection has been
in the spotlight of numerous works in this area in the past
few years. The diversity of the approaches for view pro-
jection is impressive, ranging from purely geometric ones,
e.g., using inverse perspective mapping with strong assump-
tions about the world [63] to projections completely learned
from data, typically leveraging a cross-attention mecha-
nism between image features (often imbued with 3D knowl-
edge or priors) and learnable-queries from the projected
space [6, 48, 49, 75, 83]. Currently, the most commonly
used ones belong to one of the so-called “push” or “pull”
BEV projection approaches [24, 46]. The former are de-
rived from the seminal Lift-Splat-Shoot (LSS) [58] that
leverages depth uncertainty estimations from each view to
project features in a shared BEV space. The predictive per-
formance of LSS can be further improved with other su-
pervision signals, e.g., depth from Lidar points [42, 61],
stereo from time [41, 44, 71] or different depth parameter-
ization [80]. Runtime speed can be significantly reduced
thanks to custom pooling strategies [33, 34, 43, 51, 73, 84].
Pull approaches forego depth estimation and, instead, map
3D locations from the BEV space to the image space of
the cameras. Then, they collect image features with de-
formable attention [45] or bilinear interpolation [24] and
spread them in the 3D space filling it. Pull approaches have
a simpler projection and have also been largely adopted and
improved [14, 38, 78]. While predictive performance of
BEV methods has been improved significantly in the last
two years, very few methods deal with annotation-efficient
learning beyond data augmentation strategies in the image
or BEV space [34, 43]. Obtaining precise 3D annotations
for BEV perception is a costly multi-stage labour-intensive
process involving annotation of both point clouds and im-
ages from multiple cameras. In this work we propose a
strategy to improve the per-annotation efficiency of differ-
ent BEV models and showcase it on two types of view-
projections: SimpleBEV [24] and BEVFormer [45].
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Self-supervised representation learning is a prominent
paradigm that leverages unlabelled data towards produc-
ing useful representations (generalizable, robust, ready-to-
use) for different tasks of interest. Self-supervised learning
(SSL) defines an annotation-free pretext task that is deter-
mined solely by raw data, with the aim of providing super-
vision signal to extract useful patterns from the data and
to learn representations. SSL pretrained models are sub-
sequently used off-the-shelf, probed or finetuned on differ-
ent tasks of interest with limited amounts of labels, display-
ing better performance per-annotation compared to fully su-
pervised counterparts [28]. In the image domain, a myr-
iad of SSL pretext tasks have been proposed such as pre-
dicting perturbations incurred into an image [19, 20, 82],
contrastive learning by separating similar from dissimilar
views [15, 16, 26, 55], learning by clustering [10, 11], self-
distillation [2, 5, 12, 21, 23], or most recently masked-
image modeling objectives, particularly suitable for Vision
Transformer architectures [4, 22, 27, 56, 85]. In spite of
the success on curated internet images, e.g., ImageNet, SSL
pretraining of image backbones on driving data is non-
trivial, due to the high redundancy and class imbalance
specific to driving data [13, 76]. However, the availabil-
ity of multiple sensor types on the vehicle, such as Lidar,
and the emergence of vision foundation models, opens the
door to different strategies to acquire 3D and/or seman-
tic knowledge into image encoders for driving perception,
e.g., unsupervised semantic segmentation [68] or detec-
tion [65]. The synchronization of surround-view cameras
and Lidar is also leveraged for pretraining Lidar networks
with label-free knowledge distillation from pretrained im-
age models leading to substantial performance gains in low-
label regimes [50, 52, 59, 62] and generalization [59].

BEV pretraining and distillation. Pretraining is com-
monly used for perception in autonomous driving (2D/3D
object detection, semantic segmentation) to boost perfor-
mance and compensate for the scarcity of labeled data and
task difficulty, requiring semantic and 3D geometry aware-
ness. ImageNet or depth estimation pretraining are widely
used [57] for monocular perception. For BEV perception
most works start from a backbone pretrained for monocu-
lar 3D object detection [70]. The shared BEV space be-
tween cameras and Lidar enables new forms of pretrain-
ing by distilling 3D reasoning skills from Lidar networks
into camera-based ones in order to compensate for poten-
tial loss of geometric information in the view-projection
module [18, 30, 35, 36, 47, 72]. They take the form a
teacher-student architecture, with the Lidar teacher network
trained in a supervised manner on 3D annotations which
are however costly to acquire. First approaches to pretrain
camera-based BEV networks following the SSL paradigm
with an annotation-free pretext task, such as occupancy es-
timation [54], forecasting Lidar point clouds [81], recon-

structing 3D surfaces and RGB images [79], have emerged
only very recently with promising results. However they
focus mostly on purely geometric cues or rendering RGB
pixels which can be sub-optimal for downstream perception
performance [3] and potentially hinder the existing seman-
tic knowledge in the image encoder. We propose to distill
pretrained image features from DINOv2 [56] in the voxel
space such that the produced BEV features are not only ge-
ometry aware, but also semantic aware. Closest to our work,
is the recent POP-3D [69] that distills CLIP features [60]
into a 3D occupancy prediction model [37] towards open-
vocabulary perception and not for pretraining.

3. Method
Our goal is to pretrain a camera-only BEV segmentation
network in a self-supervised way. To this end, we intend
to equip the learned BEV representations with the ability to
encode both the 3D geometry of the scene and semantic-
aware information, crucial for downstream tasks such as
semantic segmentation within the BEV space. To achieve
this goal, we leverage the availability of (i) aligned Lidar
and image data in autonomous driving setups and (ii) a self-
supervised pretrained image encoder able to extract high-
level 2D features from images (e.g., DINOv2 [56]). The
proposed self-supervised BEV pretraining method OccFeat,
illustrated in Figure 2, encompasses two training objectives:

Occupancy reconstruction (Locc): This objective en-
forces the BEV network to capture the 3D geometry of
the scene through an occupancy reconstruction task,
defined using the available Lidar data.

Occupancy-guided feature distillation (Lfeat): This ob-
jective enforces the BEV network to reconstruct high-
level semantic features. The network is trained to pre-
dict, at occupied voxel locations, the features of an off-
the-shelf self-supervised pretrained image encoder.

The total objective that our self-supervised pre-training ap-
proach minimizes is:

L = Locc + λ · Lfeat, (1)

where λ is the weight coefficient for balancing the two loss
terms. Except otherwise stated, we use λ = 0.01.

In the following, we begin with a brief overview of
camera-only BEV networks in Sec. 3.1. Then, we describe
our occupancy reconstruction objective in Sec. 3.2 and our
occupancy-guided feature distillation objective in Sec. 3.3.

3.1. BEV networks

The BEV networks aim to build a BEV feature map from
registered image data. In our case, this feature map is used
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Figure 2. Overview of OccFeat’s self-supervised BEV pretraining approach. OccFeat attaches an auxiliary pretraining head on top of
the BEV network. This head “unsplats” the BEV features to a 3D feature volume and predicts with it (a) the 3D occupancy of the scene
(occupancy reconstruction loss) and (b) high-level self-supervised image features characterizing the occupied voxels (occupancy-guided
distillation loss). The occupancy targets are produced by “voxelizing” Lidar points (see Fig. 3), while the self-supervised image foundation
model DINOv2 provides the feature targets for the occupied voxels. The pretraining head is removed after the pretraining.

for semantic segmentation. These networks share a com-
mon architecture composed of 1) an image encoder, 2) a
projection module and 3) a decoder.

The image encoder EI produces a feature map Fc for each
image Ic, with c ranging from 1 to C, where C is the total
number of surround-view cameras in the vehicle. Typically,
these encoders come either from ResNet [25] or Efficient-
Net [64] family of models.

The projection module PB is the module responsible for
changing the representation space, from the sensor coordi-
nate system (image features Fc) to the BEV space. PB takes
as input the image features {Fc}Cc=1 and camera calibration
and projects the image features in the BEV space. Architec-
tures differ in the way they operate this projection, from a
full image feature volume aggregated over the vertical axis
(SimpleBEV [24]) or a sparser volume filled according to
an estimated depth distribution (LSS [58]) to an attention-
based projection as in CVT [83], BEVFormer [45].

The decoder DB takes as input the image features in the
BEV space generated by the PB and further processes them
with 2D convolutional layers and optionally upsamples
them to the desired segmentation map resolution [24, 58].
This produces the output BEV features FB ∈ RNB×HB×WB ,
where HB×WB is the spatial resolution of the BEV features
and NB is the number of feature channels.

Architecture-agnostic BEV representation pretraining.
The self-supervised pretraining approach that we propose
is applied on these BEV features FB that DB produces.
Hence, it is possible to apply this pretraining approach to
any BEV model by plugging in the pretraining head, which
we describe next, at the end of the BEV network, before the
downstream task-specific head. We note that the auxiliary
pretraining head is removed after the end of pretraining.

Lidar sensor

Voxel with points
are occupied

Figure 3. Occupancy grid. A voxel is considered occupied if
there is at least one point inside it.

3.2. Occupancy reconstruction

Building on the insights from previous studies that have
highlighted the effectiveness of reconstruction as a valuable
prior for diverse modalities, such as images [4, 27] and Li-
dar point clouds [7], we employ a simple occupancy recon-
struction pretraining task for BEV networks. The goal is
to lead the BEV network to learn BEV features that encode
information about the 3D geometry of the scene.

Let V represent a voxel grid with shape ZB ×HB ×WB,
where ZB is the height dimension. To create the occupancy
targets O ∈ {0, 1}ZB×HB×WB , we adhere to the common
convention [37, 66] wherein a voxel v ∈ V is considered
occupied if at least one Lidar point falls inside (see Fig. 3).

To estimate the occupancy grid Ô, we employ an “un-
splatting” decoder network DV that takes the 2D BEV fea-
ture maps FB ∈ RNB×HB×WB from DB as input and gener-
ates a 3D feature volume FV ∈ RNB×ZB×HB×WB .

The unsplatting decoder DV starts with two 2D convolu-
tional layers. The first layer, with 3×3 kernels and NB out-
put channels, is followed by Instance Normalization [67]
and ReLU units. The second layer has 1×1 kernels with
NBZB output channels. These layers produce 2D BEV fea-
ture maps of shape (NBZB)×HB×WB, which are reshaped
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into a 3D feature volume of shape NB × ZB × HB × WB.
This reshaping is done by dividing the (NBZB)-dimensional
feature channels into ZB groups, each with NB channels.

Next, the decoder DV processes these 3D features with
two 3D convolutional layers. The first layer, with 1×1×1
kernels and 2NB output channels, is followed by a Softplus
non-linearity. The second layer has 1×1×1 kernels with
NB output channels, producing the final 3D feature volume
FV ∈ RNB×ZB×HB×WB .

Finally, to generate the occupancy prediction Ô, a single
3D convolution layer with a 1×1×1 kernel is applied on
FV, followed by a sigmoid activation.

The loss function to minimize is a binary cross-entropy
loss on the voxel occupation:

Locc =
1

|V|
∑
v∈V

BCE(Ôv, Ov). (2)

3.3. Occupancy-guided feature distillation

We introduce a self-supervised objective that complements
occupancy reconstruction by guiding our BEV network to
encode high-level semantic information. To achieve this,
we leverage the availability of a self-supervised pretrained
image network, denoted as EY

I , which takes an image as in-
put and produces high-level 2D feature maps with Ny fea-
ture channels. Our OccFeat approach involves a feature
distillation objective, where we fill the occupied voxels in
V with features extracted from EY

I and then train the BEV
network to predict these voxel features.

Let VOcc represent the set of occupied voxels, defined as
VOcc = {∀v ∈ V |Ov = 1}. Our feature distillation objec-
tive operates specifically on these occupied voxels. To cre-
ate the target feature Yv ∈ RNy for each occupied voxel v ∈
VOcc, we project the voxel’s center 3D coordinates onto the
image feature maps extracted by the target image encoder
EY

I from the surround-view input images {Ic}Cc=1. Given
these projections of 3D points into 2D images, we obtain
an Ny-dimensional feature vector by bilinearly sampling a
feature map of each image Ic with a valid projection (i.e., if
a point is projected inside an image Ic). The target feature
Yv is then computed across images with valid projections
as the average of the bilinearly-sampled feature vectors. To
predict the target features of the occupied voxels, we use the
3D feature volume FV ∈ RNB×ZB×HB×WB produced by the
DV decoder. A single 3D convolution layer with 1×1×1
kernels and Ny output channels is applied on FV, resulting
in the 3D feature volume Ŷ ∈ RNy×ZB×HB×WB . Then, for
each occupied voxel v ∈ VOcc, we extract its corresponding
feature Ŷv ∈ RNy from Ŷ .

The feature distillation loss that we aim to minimize is
the average negative cosine similarity between the predicted

and target features for each occupied voxel v ∈ VOcc:

Lfeat = − 1

|VOcc|
∑

v∈VOcc

cos(Ŷv, Yv). (3)

We note that there exists a small number of occupied
voxels that lack valid projections into any of the images
{Ic}Cc=1. Although not explicitly shown in Eq. (3) for the
sake of notation simplicity, these voxels are, in fact, ex-
cluded from the computation of the feature distillation loss.

4. Experiments
4.1. Experimental setup

Datasets. To evaluate our approach we use the
nuScenes [9] dataset for both conducting the pretraining
of the camera-only BEV networks and for finetuning them
on the downstream tasks of BEV-based semantic segmenta-
tion. The dataset is composed of 1,000 sequences recorded
in Boston and Singapore. The data is divided in training
(700 sequences), validation (100 sequences) and test (200
sequences) splits. Each frame contains a point cloud ac-
quired with 32-layer Lidar and 6 images covering the sur-
roundings of the ego-vehicle .
BEV segmentation tasks. We consider two different tasks
related to BEV segmentation. First, as in [24], we evaluate
our method on vehicle segmentation. We build target BEV
segmentation ground truth by projecting the boxes of vehi-
cles on the BEV plane. We use the same setting as [24],
i.e., a range of 50 meters around the ego-vehicle, and BEV
ground truths of size 200x200 pixels. Second, we focus
on the layout and evaluate on map segmentation. Here, we
evaluate the ability of our finetuned BEV network to seg-
ment bakcground classes: “road”, “sidewalk”, “crosswalk”,
“parking area” and “road dividers”.
Architectures. BEV networks. We experiment with two
BEV architectures: SimpleBEV [24] and BEVFormer [45]
(implementation from [24]).
Image encoders. As image backbones in the BEV seg-
mentation networks, we employ either EfficientNet-B0 [64]
(EN-B0) or ResNet-50 [25] (RN-50). Following the com-
mon practice in camera-only BEV segmentation [24], these
image backbones have undergone pretraining on ImageNet,
either in a supervised way (for EN-B0) or self-supervised
using MoCov2 [17] (for RN-50).
Teacher model. The self-supervised image foundation
model EY

I , used as the teacher for the occupancy-guided
feature distillation, is the ViT-S/14 variant of DINOv2 [56].
OccFeat pretraining. We pretrain BEV segmentation net-
works with batch size 16 on 4×V100 GPUs using the Adam
optimizer with weight decay 1e−7 and a constant learning
rate of 1e−3 during training. By default we pretrain for
50 epochs. We also pretrain some models for 100 epochs,
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Architecture Image BEV Vehicles Map
Backb. Pretraining 1% 10% 100% 1% 10% 100%

None 13.7 26.0 37.4 20.1 28.1 45.3
Img-ALSO 18.5 (+4.8) 26.6 (-0.6) 32.1 (-5.3) 23.2 (+3.1) 29.0 (+0.9) 41.1 (-4.2)
OccFeat 24.3 (+10.6) 30.9 (+4.9) 37.7 (+0.3) 25.4 (+5.3) 33.7 (+5.6) 47.3 (+2.0)EN-B0

OccFeat† 24.5 (+10.8) 32.0 (+6.0) 38.1 (+0.7) 26.2 (+6.1) 34.3 (+6.2) 47.6 (+2.3)

None 13.9 28.6 42.2 20.1 31.2 44.2
Img-ALSO 18.4 (+4.5) 25.6 (-3.0) 37.2 (-5.0) 22.3 (+2.2) 28.7 (-2.5) 41.2 (-3.0)

SimpleBEV

OccFeat 23.5 (+9.6) 31.4 (+2.8) 41.0 (-1.2) 25.2 (+5.1) 33.6 (+2.4) 50.0 (+5.8)RN-50

OccFeat† 24.8 (+10.9) 31.3 (+2.7) 41.7 (-0.5) 25.9 (+5.8) 34.4 (+3.2) 51.3 (+7.1)

None 11.3 22.8 37.2 20.4 29.4 49.6
BEVFormer EN-B0

OccFeat 24.9 (+13.6) 30.1 (+7.3) 38.8 (+1.6) 26.6 (+6.2) 36.2 (+6.8) 50.5 (+0.9)

Table 1. Segmentation IoU results for Vehicle and Map classes. Comparing our OccFeat against no BEV pretraining (None) and the
pretraining baseline Img-ALSO. Results with 224×400 image resolution. †: pretrained for 100 epochs; all other models for 50 epochs.

which we denote with OccFeat† in the tables. We use aug-
mentations from [24]. Except otherwise stated, we use
224×400 image resolution for the input camera frames.

Finetuning. We experiment with finetuning at 1%, 10%
and 100%. We use the the AdamW optimizer and One
Cycle scheduler with 1e−7 as weight decay. The com-
plete hyperparameters (number of epochs / starting learning
rate / batch size / batch gradient accumulation) are the fol-
lowing, 1%: 100/1e−4/6/1; 10%: 50/1e−4/6/1 and 100%:
30/3e−4/8/5. The training is conducted with 2×V100
GPUs. If the BEV segmentation network undergoing fine-
tuning has not been pretrained with OccFeat, we initialize
its image backbone with weights pretrained on ImageNet,
following the same initialization procedure used before the
OccFeat pretraining. This is common practice in camera-
only BEV segmentation [24].

4.2. Pretraining baselines

To validate the effectiveness of our OccFeat approach,
which integrates feature distillation with 3D geometry
prediction, we implement a pretraining baseline focus-
ing solely on 3D geometry reconstruction. To implement
this baseline, called Img-ALSO, we modify the Lidar pre-
training method ALSO [7] for the purpose of pretraining
camera-only BEV networks. ALSO is a top-performing
reconstruction-based approach for self-supervised pre-
training Lidar networks. Its pretext task is to learn an im-
plicit function partitioning the space between empty and oc-
cupied (inside objects) spaces, where the supervision signal
is directly generated from the input Lidar data, using the
sensor line of sights. This entails a geometry reconstruc-
tion task, where each pair of 3D point/output feature must
reconstruct a local neighborhood. To implement our Img-
ALSO baseline, we begin with the ALSO variant tailored
for pretraining Lidar detection networks, such as the SEC-
OND network [77], where the features from the input 3D
point cloud are projected on a top-view plane. In this setup,

we replace the 3D backbone with the image BEV network
intended for pretraining. As the supervision signal in Img-
ALSO still comes from the Lidar points (as in ALSO), we
use the same hyper-parameters as ALSO, i.e., decimation
grid of 10cm, maximal distance-to-Lidar-point for query
of 10cm and a reconstruction radius of 1m. We compare
against Img-ALSO in Sec. 4.3.

In addition to comparing OccFeat with the above base-
line, in Sec. 4.4 we include comparisons against ablations
that use only the occupancy reconstruction objective (Locc),
which is another 3D geometry-based approach, or only the
occupancy-guided feature distillation objective (Lfeat).

4.3. Results

Comparison with baselines. In the SimpleBEV results
presented in Tab. 1, our OccFeat self-supervised BEV pre-
training approach is compared against the proposed base-
line Img-ALSO, along with the case of not conducting BEV
pretraining. We provide results for both Vehicle and Map
segmentation, utilizing 1%, 10%, and 100% of annotated
training data. For the SimpleBEV network we use either
the EN-B0 or the RN-50 image backbones and 224×400
image resolution for the input camera frames.

We observe that, compared to the absence of BEV pre-
training, our OccFeat enhances segmentation results in al-
most all settings. The only exception is that of Vehicle seg-
mentation with 100% annotations using SimpleBEV with
RN-50. The improvement is particularly prominent with
only 1% or 10% of annotated data, showcasing the effec-
tiveness of our approach in low-shot settings. When com-
paring with the examined baseline (Img-ALSO), our Oc-
cFeat outperforms them in almost all cases. An interesting
observation is that Img-ALSO improves segmentation per-
formance only in the 1%-annotation settings, while yielding
worse results for the 10%- and 100%-annotation settings.

Scaling with longer BEV pretraining. In Tab. 1, apart
from presenting results for 50 pretraining epochs, we also
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Figure 4. Study on robustness. Segmentation results on
nuScenes-C dataset for Vehicle classes using BEVFormer network
with EN-B0 image backbone on 100% annotated data. Compari-
son of our OccFeat against no BEV pretraining.

BEV Pretraining
Image Resolution Vehicles

Pretraining Finetuning 1% 10% 100%

None N/A
224×400

13.7 26.0 37.4
OccFeat 224×400 24.3 30.9 37.7
OccFeat† 224×400 24.5 32.0 38.1

None N/A
448×800

12.9 28.4 41.6
OccFeat 448×800 26.5 34.5 41.5
OccFeat† 224×400 26.1 33.3 41.5

Table 2. Impact of image resolution. SimpleBEV segmentation
IoU results for the Vehicle class. Results with the EN-B0 image
backbone. †: pretrained for 100 epochs.

include results for our OccFeat approach and SimpleBEV
(with EN-B0 or RN-50) with an extended pretraining dura-
tion of 100 epochs (OccFeat† model). We observe consis-
tent improvements in segmentation results with this longer
pretraining duration. This observation underscores the scal-
ability of our approach, demonstrating its ability to gain fur-
ther benefits from longer pretraining periods.

Adaptable to various BEV network architectures. As
mentioned in Sec. 3, our BEV pretraining method can be
used with any BEV network architecture. In Tab. 1, apart
from results with SimpleBEV networks, we also present re-
sults using the BEVFormer [45] segmentation network for
the 1%, 10%, and 100% annotation settings. We compare
the performance of our OccFeat method against the scenario
where BEV pretraining is not conducted. We see that even
when employing the BEVFormer network architecture, our
OccFeat pretraining approach enhances segmentation per-
formance across all evaluation settings.

Exploiting higher resolution images. In Tab. 2, we
present segmentation results using either 224×400 or
448×800 resolutions for the camera frames fed into the
SimpleBEV network. Our OccFeat pretraining approach
consistently enhances segmentation results across all cases.
What is noteworthy is that pretraining with the lower

BEV Network
BEV OccFeat losses Vehicles Maps

Pretraining Locc Lfeat 1% 1%

SimpleBEV

✗ 13.7 20.1
✓ ✓ 22.8 25.2
✓ ✓ 17.4 23.4
✓ ✓ ✓ 24.3 25.4

BEVFormer
✗ 11.3 20.4
✓ ✓ 21.9 25.1
✓ ✓ ✓ 24.9 26.6

Table 3. Ablation of OccFeat’s losses. BEV segmentation results
(IoU) for the Vehicle and Map classes using 1% annotated data.
Results with 224×400 resolution and the EN-B0 image backbone.

Loss weight λ 0 0.0001 0.001 0.01 0.1 1.0

Vehicle (1%) 22.8 22.9 22.7 24.3 23.9 19.4

Table 4. Impact of loss weight λ (L = Locc + λ · Lfeat). Sim-
pleBEV vehicle segmentation results using 1% annotated data,
224×400 image resolution and the EN-B0 image backbone.

224×400 resolution and then fine-tuning with the higher
448×800 resolution also improves the results, almost as
much as pretraining directly with the higher resolution.
Robustness study. We study the robustness of OccFeat
by evaluating it on the nuScenes-C benchmark [74]. This
benchmark consists of eight distinct data corruptions, each
with three intensity levels, applied to the validation set of
nuScenes. In Fig. 4 we present vehicle segmentation re-
sults on nuScenes-C using BEVFormer with EN-B0 back-
bone finetuned on 100% annotation data. For each corrup-
tion type we report the average across three severity levels.
The comparison of our OccFeat against no BEV pretraining
illustrates that the OccFeat pretraining improves the robust-
ness of the final BEV model.

4.4. Ablation study

Ablation of OccFeat’s losses. In Tab. 3 we conduct an ab-
lation study on the two pretraining objectives, namely Locc
and Lfeat, of our OccFeat approach. The evaluation focuses
on Vehicle and Map segmentation results with 1% anno-
tated training data, using both the SimpleBEV and BEV-
Former networks. For SimpleBEV, both Locc (a 3D geom-
etry prediction objective) and Lfeat (an occupancy-guided
feature distillation objective) showcase improvements com-
pared to the scenario without BEV pretraining. The com-
bination of both pretraining objectives, forming our Oc-
cFeat approach, yields the most favorable segmentation re-
sults. This underscores the efficacy of our OccFeat pre-
training method, distinguishing it from prior self-supervised
BEV pretraining works that rely solely on 3D geometry pre-
diction. The advantage of enhancing 3D geometry predic-
tion (Locc) with feature distillation (Lfeat) is further affirmed
by the ablation results obtained with BEVFormer.
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Figure 5. Visualisation of predicted 3D features, using a 3-dimensional PCA mapped on RGB channels. The features contain semantic
information, e.g., cars in cyan color. Using the same PCA mapping on a different scene (right), we show that semantic features are
consistent across scenes. Objects within colored circles in the feature space correspond to those in similarly colored circles in the image.

(a) Car (b) Road

Figure 6. Correlation maps of the student’s predicted 3D features
and features selected on a car (a) and on the road (b).

Impact of loss weight λ. In Tab. 4, we investigate the in-
fluence of the loss weight λ, responsible for balancing the
two loss terms of OccFeat (refer to Eq. (1)). The most favor-
able segmentation results are achieved for λ values ranging
between 0.001 and 0.01, with 0.01 being the optimal choice.

4.5. Qualitative results

In Fig. 5 and Fig. 6, we assess the semantic quality of the
reconstructed features, using a colored mapping from PCA
(Fig. 5) and correlation maps (Fig. 6). We can observe that
semantic information from DINOv2 teacher has been pre-
served and semantic classes such as cars are easily separa-
ble. Additionally, the representations are consistent accross
scenes, e.g., on Fig. 5 (right), we apply the PCA mapping
computed on the left scene to a new scene. As an example,
the cyan points on the right correspond to a car.

5. Conclusion

We introduced OccFeat, a self-supervised pretraining
method for camera-only BEV segmentation networks. Our
approach combines two pretraining objectives: a 3D oc-
cupancy prediction task using raw Lidar data and an
occupancy-guided feature distillation task based on the self-
supervised pre-trained image foundation model DINOv2.
The former enhances the learning of 3D geometry-aware
BEV features, while the latter focuses on semantic-aware
BEV features. Our empirical results demonstrate that both
pretraining objectives enhance segmentation performance
compared to not conducting BEV pre-training. Combining

both objectives yields the most favorable results, emphasiz-
ing the effectiveness of our OccFeat approach. This sets our
method apart from prior self-supervised BEV pre-training
methods that solely rely on 3D geometry prediction.

Limitations and Perspectives. While OccFeat has
proven highly effective for low-data scenarios (i.e., 1% and
10% finetuning), it yields slight or no improvements in the
100% finetuning setting. This could be because we self-
supervisedly pretrained and then supervisedly finetuned on
the same data, leaving all information available at finetun-
ing. Additionally, the nuScenes dataset used for pretrain-
ing is relatively small. Perhaps using a larger pretrain-
ing dataset could further enhance performance in the 100%
finetuning setting.

One aspect not sufficiently explored in our work is “scal-
ing the pretraining”. As demonstrated in ScaLR [59], when
pretraining Lidar networks via self-supervised distillation
of image-based models, scaling the teacher and student
can significantly boost performance. For example, using
a larger teacher model, such as going from ViT-S to ViT-L
or ViT-G variants of DINOv2, could yield superior features
for OccFeat’s distillation loss. Similarly, scaling the student
components —specifically, the image encoder and BEV de-
coder—might enhance OccFeat’s distillation process.

Furthermore, another avenue for improvement could in-
volve incorporating time into our self-supervised pretrain-
ing task. For instance, accumulating Lidar points over sev-
eral frames to generate denser occupancy maps could en-
hance the effectiveness of OccFeat’s pretraining.
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